// A basic application simulating a server with multiple clients. // The clients submite requests to the server and they are processed in parallel. #include "build-info.h" #include "common.h" #include "llama.h" #include #include #include #include // trim whitespace from the beginning and end of a string static std::string trim(const std::string & str) { size_t start = 0; size_t end = str.size(); while (start < end && isspace(str[start])) { start += 1; } while (end > start && isspace(str[end - 1])) { end -= 1; } return str.substr(start, end - start); } static std::string k_system = R"( Transcript of a dialog, where the User interacts with an Assistant. The Assistant is helpful, kind, honest, good at writing, and never fails to answer the User's requests immediately and with precision. User: Hello, what is the temperature outside? Assistant: It is 72 degrees Fahrenheit. User: What is the definition of a prime number? Assistant: A prime number is a number that is divisible only by itself and 1. User: )"; static std::vector k_prompts = { "What is the meaning of life?", "What is the population of Europe?", "List all planets in the Solar System.", "What is the capital of France?", "Tell me an interesting fact about llamas.", "What is the best way to cook a steak?", "Are you familiar with the Special Theory of Relativity and can you explain it to me?", "Recommend some interesting books to read.", "What is the best way to learn a new language?", "How to get a job at Google?", "If you could have any superpower, what would it be?", "I want to learn how to play the piano.", }; struct client { int32_t id = 0; llama_seq_id seq_id = -1; llama_token sampled; int32_t n_prompt = 0; int32_t n_decoded = 0; int32_t i_batch = -1; std::string input; std::string prompt; std::string response; std::vector last_tokens; }; int main(int argc, char ** argv) { gpt_params params; if (gpt_params_parse(argc, argv, params) == false) { return 1; } const int n_clients = 16; #ifndef LOG_DISABLE_LOGS log_set_target(log_filename_generator("parallel", "log")); LOG_TEE("Log start\n"); log_dump_cmdline(argc, argv); #endif // LOG_DISABLE_LOGS // init llama.cpp llama_backend_init(params.numa); llama_model * model = NULL; llama_context * ctx = NULL; // load the target model params.logits_all = true; std::tie(model, ctx) = llama_init_from_gpt_params(params); fprintf(stderr, "\n\n"); fflush(stderr); const int n_ctx = llama_n_ctx(ctx); const int n_vocab = llama_n_vocab(ctx); std::vector clients(n_clients); for (size_t i = 0; i < clients.size(); ++i) { auto & client = clients[i]; client.id = i; client.last_tokens.resize(n_ctx); std::fill(client.last_tokens.begin(), client.last_tokens.end(), 0); } std::vector candidates; candidates.reserve(n_vocab); auto t_main_start = ggml_time_us(); int64_t n_tokens_total = 0; llama_seq_id g_seq_id = 0; std::vector batch_token; std::vector batch_pos; std::vector batch_seq_id; std::vector batch_clients; while (true) { uint32_t n_tokens = 0; batch_token.clear(); batch_pos.clear(); batch_seq_id.clear(); for (auto & client : clients) { if (client.seq_id == -1) { client.seq_id = g_seq_id; client.input = k_prompts[rand() % k_prompts.size()]; client.prompt = k_system + client.input + "\nAssistant:"; client.response = ""; std::fill(client.last_tokens.begin(), client.last_tokens.end(), 0); std::vector prompt_tokens; prompt_tokens = ::llama_tokenize(ctx, client.prompt, true); for (size_t i = 0; i < prompt_tokens.size(); ++i) { batch_token.push_back(prompt_tokens[i]); batch_pos.push_back(i); batch_seq_id.push_back(client.seq_id); batch_clients.push_back(&client); } client.n_prompt = prompt_tokens.size(); client.n_decoded = prompt_tokens.size(); client.i_batch = batch_token.size() - 1; g_seq_id += 1; } else { batch_token.push_back(client.sampled); batch_pos.push_back(client.n_decoded); batch_seq_id.push_back(client.seq_id); batch_clients.push_back(&client); client.n_decoded += 1; client.i_batch = batch_token.size() - 1; } } // process in chunks of params.n_batch for (size_t i = 0; i < batch_token.size(); i += params.n_batch) { n_tokens = std::min(params.n_batch, (int32_t) (batch_token.size() - i)); llama_batch batch = { n_tokens, batch_token.data() + i, nullptr, batch_pos.data() + i, batch_seq_id.data() + i, 0, 0, 0, // unused }; if (llama_decode(ctx, batch, params.n_threads)) { LOG_TEE("%s : failed to decode batch\n", __func__); return 1; } for (auto & client : clients) { if (client.i_batch < (int) i || client.i_batch >= (int) (i + n_tokens)) { continue; } const llama_token id = llama_sample_token(ctx, NULL, NULL, params, client.last_tokens, candidates, client.i_batch - i); // remember which tokens were sampled - used for repetition penalties during sampling client.last_tokens.erase(client.last_tokens.begin()); client.last_tokens.push_back(id); const std::string token_str = llama_token_to_piece(ctx, id); client.response += token_str; client.sampled = id; //printf("client %d, seq %d, token %d, pos %d, batch %d: %s\n", // client.id, client.seq_id, id, client.n_decoded, client.i_batch, token_str.c_str()); if (id == llama_token_eos(ctx) || client.n_decoded > params.n_predict || client.response.find("User:") != std::string::npos) { const size_t pos = client.response.find("User:"); if (pos != std::string::npos) { client.response = client.response.substr(0, pos); } llama_kv_cache_rm_seq(ctx, client.seq_id, 0, n_ctx); const auto t_main_end = ggml_time_us(); n_tokens_total += client.n_decoded - client.n_prompt; printf("\033[1mClient %d, seq %d, prompt %d t, response %d t, speed: %.2f t/s\033[0m: \n\nInput: %s\nResponse: %s\n\n", client.id, client.seq_id, client.n_prompt, client.n_decoded - client.n_prompt, (double) n_tokens_total / (t_main_end - t_main_start) * 1e6, client.input.c_str(), ::trim(client.response).c_str()); client.seq_id = -1; } } } static bool is_first = true; if (is_first) { t_main_start = ggml_time_us(); n_tokens_total = 0; is_first = false; } } LOG_TEE("\n\n"); llama_print_timings(ctx); llama_free(ctx); llama_free_model(model); llama_backend_free(); fprintf(stderr, "\n\n"); return 0; }