#include "arg.h" #include "log.h" #include "sampling.h" #include #include #include #include #include #include #include #include #include #include "json-schema-to-grammar.h" using json = nlohmann::ordered_json; llama_arg & llama_arg::set_examples(std::initializer_list examples) { this->examples = std::move(examples); return *this; } llama_arg & llama_arg::set_env(const char * env) { help = help + "\n(env: " + env + ")"; this->env = env; return *this; } llama_arg & llama_arg::set_sparam() { is_sparam = true; return *this; } bool llama_arg::in_example(enum llama_example ex) { return examples.find(ex) != examples.end(); } bool llama_arg::get_value_from_env(std::string & output) { if (env == nullptr) return false; char * value = std::getenv(env); if (value) { output = value; return true; } return false; } bool llama_arg::has_value_from_env() { return env != nullptr && std::getenv(env); } static std::vector break_str_into_lines(std::string input, size_t max_char_per_line) { std::vector result; std::istringstream iss(input); std::string line; auto add_line = [&](const std::string& l) { if (l.length() <= max_char_per_line) { result.push_back(l); } else { std::istringstream line_stream(l); std::string word, current_line; while (line_stream >> word) { if (current_line.length() + !current_line.empty() + word.length() > max_char_per_line) { if (!current_line.empty()) result.push_back(current_line); current_line = word; } else { current_line += (!current_line.empty() ? " " : "") + word; } } if (!current_line.empty()) result.push_back(current_line); } }; while (std::getline(iss, line)) { add_line(line); } return result; } std::string llama_arg::to_string() { // params for printing to console const static int n_leading_spaces = 40; const static int n_char_per_line_help = 70; // TODO: detect this based on current console std::string leading_spaces(n_leading_spaces, ' '); std::ostringstream ss; for (const auto arg : args) { if (arg == args.front()) { if (args.size() == 1) { ss << arg; } else { // first arg is usually abbreviation, we need padding to make it more beautiful auto tmp = std::string(arg) + ", "; auto spaces = std::string(std::max(0, 7 - (int)tmp.size()), ' '); ss << tmp << spaces; } } else { ss << arg << (arg != args.back() ? ", " : ""); } } if (value_hint) ss << " " << value_hint; if (value_hint_2) ss << " " << value_hint_2; if (ss.tellp() > n_leading_spaces - 3) { // current line is too long, add new line ss << "\n" << leading_spaces; } else { // padding between arg and help, same line ss << std::string(leading_spaces.size() - ss.tellp(), ' '); } const auto help_lines = break_str_into_lines(help, n_char_per_line_help); for (const auto & line : help_lines) { ss << (&line == &help_lines.front() ? "" : leading_spaces) << line << "\n"; } return ss.str(); } // // utils // #ifdef __GNUC__ #ifdef __MINGW32__ #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__))) #else #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__))) #endif #else #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) #endif LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2) static std::string format(const char * fmt, ...) { va_list ap; va_list ap2; va_start(ap, fmt); va_copy(ap2, ap); int size = vsnprintf(NULL, 0, fmt, ap); GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT std::vector buf(size + 1); int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); GGML_ASSERT(size2 == size); va_end(ap2); va_end(ap); return std::string(buf.data(), size); } static void gpt_params_handle_model_default(gpt_params & params) { if (!params.hf_repo.empty()) { // short-hand to avoid specifying --hf-file -> default it to --model if (params.hf_file.empty()) { if (params.model.empty()) { throw std::invalid_argument("error: --hf-repo requires either --hf-file or --model\n"); } params.hf_file = params.model; } else if (params.model.empty()) { params.model = fs_get_cache_file(string_split(params.hf_file, '/').back()); } } else if (!params.model_url.empty()) { if (params.model.empty()) { auto f = string_split(params.model_url, '#').front(); f = string_split(f, '?').front(); params.model = fs_get_cache_file(string_split(f, '/').back()); } } else if (params.model.empty()) { params.model = DEFAULT_MODEL_PATH; } } // // CLI argument parsing functions // static bool gpt_params_parse_ex(int argc, char ** argv, gpt_params_context & ctx_arg) { std::string arg; const std::string arg_prefix = "--"; gpt_params & params = ctx_arg.params; std::unordered_map arg_to_options; for (auto & opt : ctx_arg.options) { for (const auto & arg : opt.args) { arg_to_options[arg] = &opt; } } // handle environment variables for (auto & opt : ctx_arg.options) { std::string value; if (opt.get_value_from_env(value)) { try { if (opt.handler_void && (value == "1" || value == "true")) { opt.handler_void(params); } if (opt.handler_int) { opt.handler_int(params, std::stoi(value)); } if (opt.handler_string) { opt.handler_string(params, value); continue; } } catch (std::exception & e) { throw std::invalid_argument(format( "error while handling environment variable \"%s\": %s\n\n", opt.env, e.what())); } } } // handle command line arguments auto check_arg = [&](int i) { if (i+1 >= argc) { throw std::invalid_argument("expected value for argument"); } }; for (int i = 1; i < argc; i++) { const std::string arg_prefix = "--"; std::string arg = argv[i]; if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { std::replace(arg.begin(), arg.end(), '_', '-'); } if (arg_to_options.find(arg) == arg_to_options.end()) { throw std::invalid_argument(format("error: invalid argument: %s", arg.c_str())); } auto opt = *arg_to_options[arg]; if (opt.has_value_from_env()) { fprintf(stderr, "warn: %s environment variable is set, but will be overwritten by command line argument %s\n", opt.env, arg.c_str()); } try { if (opt.handler_void) { opt.handler_void(params); continue; } // arg with single value check_arg(i); std::string val = argv[++i]; if (opt.handler_int) { opt.handler_int(params, std::stoi(val)); continue; } if (opt.handler_string) { opt.handler_string(params, val); continue; } // arg with 2 values check_arg(i); std::string val2 = argv[++i]; if (opt.handler_str_str) { opt.handler_str_str(params, val, val2); continue; } } catch (std::exception & e) { throw std::invalid_argument(format( "error while handling argument \"%s\": %s\n\n" "usage:\n%s\n\nto show complete usage, run with -h", arg.c_str(), e.what(), arg_to_options[arg]->to_string().c_str())); } } postprocess_cpu_params(params.cpuparams, nullptr); postprocess_cpu_params(params.cpuparams_batch, ¶ms.cpuparams); postprocess_cpu_params(params.draft_cpuparams, ¶ms.cpuparams); postprocess_cpu_params(params.draft_cpuparams_batch, ¶ms.cpuparams_batch); if (params.prompt_cache_all && (params.interactive || params.interactive_first)) { throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n"); } gpt_params_handle_model_default(params); if (params.escape) { string_process_escapes(params.prompt); string_process_escapes(params.input_prefix); string_process_escapes(params.input_suffix); for (auto & antiprompt : params.antiprompt) { string_process_escapes(antiprompt); } } if (!params.kv_overrides.empty()) { params.kv_overrides.emplace_back(); params.kv_overrides.back().key[0] = 0; } if (params.reranking && params.embedding) { throw std::invalid_argument("error: either --embedding or --reranking can be specified, but not both"); } return true; } static void gpt_params_print_usage(gpt_params_context & ctx_arg) { auto print_options = [](std::vector & options) { for (llama_arg * opt : options) { printf("%s", opt->to_string().c_str()); } }; std::vector common_options; std::vector sparam_options; std::vector specific_options; for (auto & opt : ctx_arg.options) { // in case multiple LLAMA_EXAMPLE_* are set, we prioritize the LLAMA_EXAMPLE_* matching current example if (opt.is_sparam) { sparam_options.push_back(&opt); } else if (opt.in_example(ctx_arg.ex)) { specific_options.push_back(&opt); } else { common_options.push_back(&opt); } } printf("----- common params -----\n\n"); print_options(common_options); printf("\n\n----- sampling params -----\n\n"); print_options(sparam_options); // TODO: maybe convert enum llama_example to string printf("\n\n----- example-specific params -----\n\n"); print_options(specific_options); } bool gpt_params_parse(int argc, char ** argv, gpt_params & params, llama_example ex, void(*print_usage)(int, char **)) { auto ctx_arg = gpt_params_parser_init(params, ex, print_usage); const gpt_params params_org = ctx_arg.params; // the example can modify the default params try { if (!gpt_params_parse_ex(argc, argv, ctx_arg)) { ctx_arg.params = params_org; return false; } if (ctx_arg.params.usage) { gpt_params_print_usage(ctx_arg); if (ctx_arg.print_usage) { ctx_arg.print_usage(argc, argv); } exit(0); } } catch (const std::invalid_argument & ex) { fprintf(stderr, "%s\n", ex.what()); ctx_arg.params = params_org; return false; } return true; } gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex, void(*print_usage)(int, char **)) { gpt_params_context ctx_arg(params); ctx_arg.print_usage = print_usage; ctx_arg.ex = ex; std::string sampler_type_chars; std::string sampler_type_names; for (const auto & sampler : params.sparams.samplers) { sampler_type_chars += gpt_sampler_type_to_chr(sampler); sampler_type_names += gpt_sampler_type_to_str(sampler) + ";"; } sampler_type_names.pop_back(); /** * filter options by example * rules: * - all examples inherit options from LLAMA_EXAMPLE_COMMON * - if LLAMA_EXAMPLE_* is set (other than COMMON), we only show the option in the corresponding example * - if both {LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_*,} are set, we will prioritize the LLAMA_EXAMPLE_* matching current example */ auto add_opt = [&](llama_arg arg) { if (arg.in_example(ex) || arg.in_example(LLAMA_EXAMPLE_COMMON)) { ctx_arg.options.push_back(std::move(arg)); } }; add_opt(llama_arg( {"-h", "--help", "--usage"}, "print usage and exit", [](gpt_params & params) { params.usage = true; } )); add_opt(llama_arg( {"--version"}, "show version and build info", [](gpt_params &) { fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT); fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET); exit(0); } )); add_opt(llama_arg( {"--verbose-prompt"}, format("print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false"), [](gpt_params & params) { params.verbose_prompt = true; } )); add_opt(llama_arg( {"--no-display-prompt"}, format("don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false"), [](gpt_params & params) { params.display_prompt = false; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(llama_arg( {"-co", "--color"}, format("colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false"), [](gpt_params & params) { params.use_color = true; } ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP})); add_opt(llama_arg( {"-t", "--threads"}, "N", format("number of threads to use during generation (default: %d)", params.cpuparams.n_threads), [](gpt_params & params, int value) { params.cpuparams.n_threads = value; if (params.cpuparams.n_threads <= 0) { params.cpuparams.n_threads = std::thread::hardware_concurrency(); } } ).set_env("LLAMA_ARG_THREADS")); add_opt(llama_arg( {"-tb", "--threads-batch"}, "N", "number of threads to use during batch and prompt processing (default: same as --threads)", [](gpt_params & params, int value) { params.cpuparams_batch.n_threads = value; if (params.cpuparams_batch.n_threads <= 0) { params.cpuparams_batch.n_threads = std::thread::hardware_concurrency(); } } )); add_opt(llama_arg( {"-td", "--threads-draft"}, "N", "number of threads to use during generation (default: same as --threads)", [](gpt_params & params, int value) { params.draft_cpuparams.n_threads = value; if (params.draft_cpuparams.n_threads <= 0) { params.draft_cpuparams.n_threads = std::thread::hardware_concurrency(); } } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"-tbd", "--threads-batch-draft"}, "N", "number of threads to use during batch and prompt processing (default: same as --threads-draft)", [](gpt_params & params, int value) { params.draft_cpuparams_batch.n_threads = value; if (params.draft_cpuparams_batch.n_threads <= 0) { params.draft_cpuparams_batch.n_threads = std::thread::hardware_concurrency(); } } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"-C", "--cpu-mask"}, "M", "CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: \"\")", [](gpt_params & params, const std::string & mask) { params.cpuparams.mask_valid = true; if (!parse_cpu_mask(mask, params.cpuparams.cpumask)) { throw std::invalid_argument("invalid cpumask"); } } )); add_opt(llama_arg( {"-Cr", "--cpu-range"}, "lo-hi", "range of CPUs for affinity. Complements --cpu-mask", [](gpt_params & params, const std::string & range) { params.cpuparams.mask_valid = true; if (!parse_cpu_range(range, params.cpuparams.cpumask)) { throw std::invalid_argument("invalid range"); } } )); add_opt(llama_arg( {"--cpu-strict"}, "<0|1>", format("use strict CPU placement (default: %u)\n", (unsigned) params.cpuparams.strict_cpu), [](gpt_params & params, const std::string & value) { params.cpuparams.strict_cpu = std::stoul(value); } )); add_opt(llama_arg( {"--prio"}, "N", format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams.priority), [](gpt_params & params, int prio) { if (prio < 0 || prio > 3) { throw std::invalid_argument("invalid value"); } params.cpuparams.priority = (enum ggml_sched_priority) prio; } )); add_opt(llama_arg( {"--poll"}, "<0...100>", format("use polling level to wait for work (0 - no polling, default: %u)\n", (unsigned) params.cpuparams.poll), [](gpt_params & params, const std::string & value) { params.cpuparams.poll = std::stoul(value); } )); add_opt(llama_arg( {"-Cb", "--cpu-mask-batch"}, "M", "CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask)", [](gpt_params & params, const std::string & mask) { params.cpuparams_batch.mask_valid = true; if (!parse_cpu_mask(mask, params.cpuparams_batch.cpumask)) { throw std::invalid_argument("invalid cpumask"); } } )); add_opt(llama_arg( {"-Crb", "--cpu-range-batch"}, "lo-hi", "ranges of CPUs for affinity. Complements --cpu-mask-batch", [](gpt_params & params, const std::string & range) { params.cpuparams_batch.mask_valid = true; if (!parse_cpu_range(range, params.cpuparams_batch.cpumask)) { throw std::invalid_argument("invalid range"); } } )); add_opt(llama_arg( {"--cpu-strict-batch"}, "<0|1>", "use strict CPU placement (default: same as --cpu-strict)", [](gpt_params & params, int value) { params.cpuparams_batch.strict_cpu = value; } )); add_opt(llama_arg( {"--prio-batch"}, "N", format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams_batch.priority), [](gpt_params & params, int prio) { if (prio < 0 || prio > 3) { throw std::invalid_argument("invalid value"); } params.cpuparams_batch.priority = (enum ggml_sched_priority) prio; } )); add_opt(llama_arg( {"--poll-batch"}, "<0|1>", "use polling to wait for work (default: same as --poll)", [](gpt_params & params, int value) { params.cpuparams_batch.poll = value; } )); add_opt(llama_arg( {"-Cd", "--cpu-mask-draft"}, "M", "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)", [](gpt_params & params, const std::string & mask) { params.draft_cpuparams.mask_valid = true; if (!parse_cpu_mask(mask, params.draft_cpuparams.cpumask)) { throw std::invalid_argument("invalid cpumask"); } } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"-Crd", "--cpu-range-draft"}, "lo-hi", "Ranges of CPUs for affinity. Complements --cpu-mask-draft", [](gpt_params & params, const std::string & range) { params.draft_cpuparams.mask_valid = true; if (!parse_cpu_range(range, params.draft_cpuparams.cpumask)) { throw std::invalid_argument("invalid range"); } } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"--cpu-strict-draft"}, "<0|1>", "Use strict CPU placement for draft model (default: same as --cpu-strict)", [](gpt_params & params, int value) { params.draft_cpuparams.strict_cpu = value; } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"--prio-draft"}, "N", format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.draft_cpuparams.priority), [](gpt_params & params, int prio) { if (prio < 0 || prio > 3) { throw std::invalid_argument("invalid value"); } params.draft_cpuparams.priority = (enum ggml_sched_priority) prio; } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"--poll-draft"}, "<0|1>", "Use polling to wait for draft model work (default: same as --poll])", [](gpt_params & params, int value) { params.draft_cpuparams.poll = value; } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"-Cbd", "--cpu-mask-batch-draft"}, "M", "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)", [](gpt_params & params, const std::string & mask) { params.draft_cpuparams_batch.mask_valid = true; if (!parse_cpu_mask(mask, params.draft_cpuparams_batch.cpumask)) { throw std::invalid_argument("invalid cpumask"); } } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"-Crbd", "--cpu-range-batch-draft"}, "lo-hi", "Ranges of CPUs for affinity. Complements --cpu-mask-draft-batch)", [](gpt_params & params, const std::string & range) { params.draft_cpuparams_batch.mask_valid = true; if (!parse_cpu_range(range, params.draft_cpuparams_batch.cpumask)) { throw std::invalid_argument("invalid cpumask"); } } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"--cpu-strict-batch-draft"}, "<0|1>", "Use strict CPU placement for draft model (default: --cpu-strict-draft)", [](gpt_params & params, int value) { params.draft_cpuparams_batch.strict_cpu = value; } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"--prio-batch-draft"}, "N", format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.draft_cpuparams_batch.priority), [](gpt_params & params, int prio) { if (prio < 0 || prio > 3) { throw std::invalid_argument("invalid value"); } params.draft_cpuparams_batch.priority = (enum ggml_sched_priority) prio; } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"--poll-batch-draft"}, "<0|1>", "Use polling to wait for draft model work (default: --poll-draft)", [](gpt_params & params, int value) { params.draft_cpuparams_batch.poll = value; } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"--draft"}, "N", format("number of tokens to draft for speculative decoding (default: %d)", params.n_draft), [](gpt_params & params, int value) { params.n_draft = value; } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP})); add_opt(llama_arg( {"-ps", "--p-split"}, "N", format("speculative decoding split probability (default: %.1f)", (double)params.p_split), [](gpt_params & params, const std::string & value) { params.p_split = std::stof(value); } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"-lcs", "--lookup-cache-static"}, "FNAME", "path to static lookup cache to use for lookup decoding (not updated by generation)", [](gpt_params & params, const std::string & value) { params.lookup_cache_static = value; } ).set_examples({LLAMA_EXAMPLE_LOOKUP})); add_opt(llama_arg( {"-lcd", "--lookup-cache-dynamic"}, "FNAME", "path to dynamic lookup cache to use for lookup decoding (updated by generation)", [](gpt_params & params, const std::string & value) { params.lookup_cache_dynamic = value; } ).set_examples({LLAMA_EXAMPLE_LOOKUP})); add_opt(llama_arg( {"-c", "--ctx-size"}, "N", format("size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx), [](gpt_params & params, int value) { params.n_ctx = value; } ).set_env("LLAMA_ARG_CTX_SIZE")); add_opt(llama_arg( {"-n", "--predict", "--n-predict"}, "N", format("number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)", params.n_predict), [](gpt_params & params, int value) { params.n_predict = value; } ).set_env("LLAMA_ARG_N_PREDICT")); add_opt(llama_arg( {"-b", "--batch-size"}, "N", format("logical maximum batch size (default: %d)", params.n_batch), [](gpt_params & params, int value) { params.n_batch = value; } ).set_env("LLAMA_ARG_BATCH")); add_opt(llama_arg( {"-ub", "--ubatch-size"}, "N", format("physical maximum batch size (default: %d)", params.n_ubatch), [](gpt_params & params, int value) { params.n_ubatch = value; } ).set_env("LLAMA_ARG_UBATCH")); add_opt(llama_arg( {"--keep"}, "N", format("number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep), [](gpt_params & params, int value) { params.n_keep = value; } )); add_opt(llama_arg( {"--no-context-shift"}, format("disables context shift on inifinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"), [](gpt_params & params) { params.ctx_shift = false; } ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONTEXT_SHIFT")); add_opt(llama_arg( {"--chunks"}, "N", format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks), [](gpt_params & params, int value) { params.n_chunks = value; } ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_RETRIEVAL})); add_opt(llama_arg( {"-fa", "--flash-attn"}, format("enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled"), [](gpt_params & params) { params.flash_attn = true; } ).set_env("LLAMA_ARG_FLASH_ATTN")); add_opt(llama_arg( {"-p", "--prompt"}, "PROMPT", ex == LLAMA_EXAMPLE_MAIN ? "prompt to start generation with\nif -cnv is set, this will be used as system prompt" : "prompt to start generation with", [](gpt_params & params, const std::string & value) { params.prompt = value; } )); add_opt(llama_arg( {"--no-perf"}, format("disable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"), [](gpt_params & params) { params.no_perf = true; params.sparams.no_perf = true; } ).set_env("LLAMA_ARG_NO_PERF")); add_opt(llama_arg( {"-f", "--file"}, "FNAME", "a file containing the prompt (default: none)", [](gpt_params & params, const std::string & value) { std::ifstream file(value); if (!file) { throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str())); } // store the external file name in params params.prompt_file = value; std::copy(std::istreambuf_iterator(file), std::istreambuf_iterator(), back_inserter(params.prompt)); if (!params.prompt.empty() && params.prompt.back() == '\n') { params.prompt.pop_back(); } } )); add_opt(llama_arg( {"--in-file"}, "FNAME", "an input file (repeat to specify multiple files)", [](gpt_params & params, const std::string & value) { std::ifstream file(value); if (!file) { throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str())); } params.in_files.push_back(value); } ).set_examples({LLAMA_EXAMPLE_IMATRIX})); add_opt(llama_arg( {"-bf", "--binary-file"}, "FNAME", "binary file containing the prompt (default: none)", [](gpt_params & params, const std::string & value) { std::ifstream file(value, std::ios::binary); if (!file) { throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str())); } // store the external file name in params params.prompt_file = value; std::ostringstream ss; ss << file.rdbuf(); params.prompt = ss.str(); fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), value.c_str()); } )); add_opt(llama_arg( {"-e", "--escape"}, format("process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false"), [](gpt_params & params) { params.escape = true; } )); add_opt(llama_arg( {"--no-escape"}, "do not process escape sequences", [](gpt_params & params) { params.escape = false; } )); add_opt(llama_arg( {"-ptc", "--print-token-count"}, "N", format("print token count every N tokens (default: %d)", params.n_print), [](gpt_params & params, int value) { params.n_print = value; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(llama_arg( {"--prompt-cache"}, "FNAME", "file to cache prompt state for faster startup (default: none)", [](gpt_params & params, const std::string & value) { params.path_prompt_cache = value; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(llama_arg( {"--prompt-cache-all"}, "if specified, saves user input and generations to cache as well\n", [](gpt_params & params) { params.prompt_cache_all = true; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(llama_arg( {"--prompt-cache-ro"}, "if specified, uses the prompt cache but does not update it", [](gpt_params & params) { params.prompt_cache_ro = true; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(llama_arg( {"-r", "--reverse-prompt"}, "PROMPT", "halt generation at PROMPT, return control in interactive mode\n", [](gpt_params & params, const std::string & value) { params.antiprompt.emplace_back(value); } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(llama_arg( {"-sp", "--special"}, format("special tokens output enabled (default: %s)", params.special ? "true" : "false"), [](gpt_params & params) { params.special = true; } ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER})); add_opt(llama_arg( {"-cnv", "--conversation"}, format( "run in conversation mode:\n" "- does not print special tokens and suffix/prefix\n" "- interactive mode is also enabled\n" "(default: %s)", params.conversation ? "true" : "false" ), [](gpt_params & params) { params.conversation = true; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(llama_arg( {"-i", "--interactive"}, format("run in interactive mode (default: %s)", params.interactive ? "true" : "false"), [](gpt_params & params) { params.interactive = true; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(llama_arg( {"-if", "--interactive-first"}, format("run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false"), [](gpt_params & params) { params.interactive_first = true; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(llama_arg( {"-mli", "--multiline-input"}, "allows you to write or paste multiple lines without ending each in '\\'", [](gpt_params & params) { params.multiline_input = true; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(llama_arg( {"--in-prefix-bos"}, "prefix BOS to user inputs, preceding the `--in-prefix` string", [](gpt_params & params) { params.input_prefix_bos = true; params.enable_chat_template = false; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(llama_arg( {"--in-prefix"}, "STRING", "string to prefix user inputs with (default: empty)", [](gpt_params & params, const std::string & value) { params.input_prefix = value; params.enable_chat_template = false; } ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL})); add_opt(llama_arg( {"--in-suffix"}, "STRING", "string to suffix after user inputs with (default: empty)", [](gpt_params & params, const std::string & value) { params.input_suffix = value; params.enable_chat_template = false; } ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL})); add_opt(llama_arg( {"--no-warmup"}, "skip warming up the model with an empty run", [](gpt_params & params) { params.warmup = false; } ).set_examples({LLAMA_EXAMPLE_MAIN})); add_opt(llama_arg( {"--spm-infill"}, format( "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)", params.spm_infill ? "enabled" : "disabled" ), [](gpt_params & params) { params.spm_infill = true; } ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_INFILL})); add_opt(llama_arg( {"--samplers"}, "SAMPLERS", format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()), [](gpt_params & params, const std::string & value) { const auto sampler_names = string_split(value, ';'); params.sparams.samplers = gpt_sampler_types_from_names(sampler_names, true); } ).set_sparam()); add_opt(llama_arg( {"-s", "--seed"}, "SEED", format("RNG seed (default: %u, use random seed for %u)", params.sparams.seed, LLAMA_DEFAULT_SEED), [](gpt_params & params, const std::string & value) { params.sparams.seed = std::stoul(value); } ).set_sparam()); add_opt(llama_arg( {"--sampling-seq"}, "SEQUENCE", format("simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str()), [](gpt_params & params, const std::string & value) { params.sparams.samplers = gpt_sampler_types_from_chars(value); } ).set_sparam()); add_opt(llama_arg( {"--ignore-eos"}, "ignore end of stream token and continue generating (implies --logit-bias EOS-inf)", [](gpt_params & params) { params.sparams.ignore_eos = true; } ).set_sparam()); add_opt(llama_arg( {"--penalize-nl"}, format("penalize newline tokens (default: %s)", params.sparams.penalize_nl ? "true" : "false"), [](gpt_params & params) { params.sparams.penalize_nl = true; } ).set_sparam()); add_opt(llama_arg( {"--temp"}, "N", format("temperature (default: %.1f)", (double)params.sparams.temp), [](gpt_params & params, const std::string & value) { params.sparams.temp = std::stof(value); params.sparams.temp = std::max(params.sparams.temp, 0.0f); } ).set_sparam()); add_opt(llama_arg( {"--top-k"}, "N", format("top-k sampling (default: %d, 0 = disabled)", params.sparams.top_k), [](gpt_params & params, int value) { params.sparams.top_k = value; } ).set_sparam()); add_opt(llama_arg( {"--top-p"}, "N", format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sparams.top_p), [](gpt_params & params, const std::string & value) { params.sparams.top_p = std::stof(value); } ).set_sparam()); add_opt(llama_arg( {"--min-p"}, "N", format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sparams.min_p), [](gpt_params & params, const std::string & value) { params.sparams.min_p = std::stof(value); } ).set_sparam()); add_opt(llama_arg( {"--tfs"}, "N", format("tail free sampling, parameter z (default: %.1f, 1.0 = disabled)", (double)params.sparams.tfs_z), [](gpt_params & params, const std::string & value) { params.sparams.tfs_z = std::stof(value); } ).set_sparam()); add_opt(llama_arg( {"--typical"}, "N", format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sparams.typ_p), [](gpt_params & params, const std::string & value) { params.sparams.typ_p = std::stof(value); } ).set_sparam()); add_opt(llama_arg( {"--repeat-last-n"}, "N", format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sparams.penalty_last_n), [](gpt_params & params, int value) { params.sparams.penalty_last_n = value; params.sparams.n_prev = std::max(params.sparams.n_prev, params.sparams.penalty_last_n); } ).set_sparam()); add_opt(llama_arg( {"--repeat-penalty"}, "N", format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sparams.penalty_repeat), [](gpt_params & params, const std::string & value) { params.sparams.penalty_repeat = std::stof(value); } ).set_sparam()); add_opt(llama_arg( {"--presence-penalty"}, "N", format("repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)params.sparams.penalty_present), [](gpt_params & params, const std::string & value) { params.sparams.penalty_present = std::stof(value); } ).set_sparam()); add_opt(llama_arg( {"--frequency-penalty"}, "N", format("repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)params.sparams.penalty_freq), [](gpt_params & params, const std::string & value) { params.sparams.penalty_freq = std::stof(value); } ).set_sparam()); add_opt(llama_arg( {"--dynatemp-range"}, "N", format("dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)params.sparams.dynatemp_range), [](gpt_params & params, const std::string & value) { params.sparams.dynatemp_range = std::stof(value); } ).set_sparam()); add_opt(llama_arg( {"--dynatemp-exp"}, "N", format("dynamic temperature exponent (default: %.1f)", (double)params.sparams.dynatemp_exponent), [](gpt_params & params, const std::string & value) { params.sparams.dynatemp_exponent = std::stof(value); } ).set_sparam()); add_opt(llama_arg( {"--mirostat"}, "N", format("use Mirostat sampling.\nTop K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n" "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sparams.mirostat), [](gpt_params & params, int value) { params.sparams.mirostat = value; } ).set_sparam()); add_opt(llama_arg( {"--mirostat-lr"}, "N", format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sparams.mirostat_eta), [](gpt_params & params, const std::string & value) { params.sparams.mirostat_eta = std::stof(value); } ).set_sparam()); add_opt(llama_arg( {"--mirostat-ent"}, "N", format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sparams.mirostat_tau), [](gpt_params & params, const std::string & value) { params.sparams.mirostat_tau = std::stof(value); } ).set_sparam()); add_opt(llama_arg( {"-l", "--logit-bias"}, "TOKEN_ID(+/-)BIAS", "modifies the likelihood of token appearing in the completion,\n" "i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n" "or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'", [](gpt_params & params, const std::string & value) { std::stringstream ss(value); llama_token key; char sign; std::string value_str; try { if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) { const float bias = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f); params.sparams.logit_bias.push_back({key, bias}); } else { throw std::invalid_argument("invalid input format"); } } catch (const std::exception&) { throw std::invalid_argument("invalid input format"); } } ).set_sparam()); add_opt(llama_arg( {"--grammar"}, "GRAMMAR", format("BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", params.sparams.grammar.c_str()), [](gpt_params & params, const std::string & value) { params.sparams.grammar = value; } ).set_sparam()); add_opt(llama_arg( {"--grammar-file"}, "FNAME", "file to read grammar from", [](gpt_params & params, const std::string & value) { std::ifstream file(value); if (!file) { throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str())); } std::copy( std::istreambuf_iterator(file), std::istreambuf_iterator(), std::back_inserter(params.sparams.grammar) ); } ).set_sparam()); add_opt(llama_arg( {"-j", "--json-schema"}, "SCHEMA", "JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead", [](gpt_params & params, const std::string & value) { params.sparams.grammar = json_schema_to_grammar(json::parse(value)); } ).set_sparam()); add_opt(llama_arg( {"--pooling"}, "{none,mean,cls,last,rank}", "pooling type for embeddings, use model default if unspecified", [](gpt_params & params, const std::string & value) { /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; } else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; } else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; } else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; } else if (value == "rank") { params.pooling_type = LLAMA_POOLING_TYPE_RANK; } else { throw std::invalid_argument("invalid value"); } } ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_POOLING")); add_opt(llama_arg( {"--attention"}, "{causal,non,causal}", "attention type for embeddings, use model default if unspecified", [](gpt_params & params, const std::string & value) { /**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; } else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NON_CAUSAL; } else { throw std::invalid_argument("invalid value"); } } ).set_examples({LLAMA_EXAMPLE_EMBEDDING})); add_opt(llama_arg( {"--rope-scaling"}, "{none,linear,yarn}", "RoPE frequency scaling method, defaults to linear unless specified by the model", [](gpt_params & params, const std::string & value) { /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; } else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; } else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; } else { throw std::invalid_argument("invalid value"); } } ).set_env("LLAMA_ARG_ROPE_SCALING_TYPE")); add_opt(llama_arg( {"--rope-scale"}, "N", "RoPE context scaling factor, expands context by a factor of N", [](gpt_params & params, const std::string & value) { params.rope_freq_scale = 1.0f / std::stof(value); } ).set_env("LLAMA_ARG_ROPE_SCALE")); add_opt(llama_arg( {"--rope-freq-base"}, "N", "RoPE base frequency, used by NTK-aware scaling (default: loaded from model)", [](gpt_params & params, const std::string & value) { params.rope_freq_base = std::stof(value); } ).set_env("LLAMA_ARG_ROPE_FREQ_BASE")); add_opt(llama_arg( {"--rope-freq-scale"}, "N", "RoPE frequency scaling factor, expands context by a factor of 1/N", [](gpt_params & params, const std::string & value) { params.rope_freq_scale = std::stof(value); } ).set_env("LLAMA_ARG_ROPE_FREQ_SCALE")); add_opt(llama_arg( {"--yarn-orig-ctx"}, "N", format("YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx), [](gpt_params & params, int value) { params.yarn_orig_ctx = value; } ).set_env("LLAMA_ARG_YARN_ORIG_CTX")); add_opt(llama_arg( {"--yarn-ext-factor"}, "N", format("YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor), [](gpt_params & params, const std::string & value) { params.yarn_ext_factor = std::stof(value); } ).set_env("LLAMA_ARG_YARN_EXT_FACTOR")); add_opt(llama_arg( {"--yarn-attn-factor"}, "N", format("YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor), [](gpt_params & params, const std::string & value) { params.yarn_attn_factor = std::stof(value); } ).set_env("LLAMA_ARG_YARN_ATTN_FACTOR")); add_opt(llama_arg( {"--yarn-beta-slow"}, "N", format("YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow), [](gpt_params & params, const std::string & value) { params.yarn_beta_slow = std::stof(value); } ).set_env("LLAMA_ARG_YARN_BETA_SLOW")); add_opt(llama_arg( {"--yarn-beta-fast"}, "N", format("YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast), [](gpt_params & params, const std::string & value) { params.yarn_beta_fast = std::stof(value); } ).set_env("LLAMA_ARG_YARN_BETA_FAST")); add_opt(llama_arg( {"-gan", "--grp-attn-n"}, "N", format("group-attention factor (default: %d)", params.grp_attn_n), [](gpt_params & params, int value) { params.grp_attn_n = value; } ).set_env("LLAMA_ARG_GRP_ATTN_N")); add_opt(llama_arg( {"-gaw", "--grp-attn-w"}, "N", format("group-attention width (default: %.1f)", (double)params.grp_attn_w), [](gpt_params & params, int value) { params.grp_attn_w = value; } ).set_env("LLAMA_ARG_GRP_ATTN_W")); add_opt(llama_arg( {"-dkvc", "--dump-kv-cache"}, "verbose print of the KV cache", [](gpt_params & params) { params.dump_kv_cache = true; } )); add_opt(llama_arg( {"-nkvo", "--no-kv-offload"}, "disable KV offload", [](gpt_params & params) { params.no_kv_offload = true; } ).set_env("LLAMA_ARG_NO_KV_OFFLOAD")); add_opt(llama_arg( {"-ctk", "--cache-type-k"}, "TYPE", format("KV cache data type for K (default: %s)", params.cache_type_k.c_str()), [](gpt_params & params, const std::string & value) { // TODO: get the type right here params.cache_type_k = value; } ).set_env("LLAMA_ARG_CACHE_TYPE_K")); add_opt(llama_arg( {"-ctv", "--cache-type-v"}, "TYPE", format("KV cache data type for V (default: %s)", params.cache_type_v.c_str()), [](gpt_params & params, const std::string & value) { // TODO: get the type right here params.cache_type_v = value; } ).set_env("LLAMA_ARG_CACHE_TYPE_V")); add_opt(llama_arg( {"--perplexity", "--all-logits"}, format("return logits for all tokens in the batch (default: %s)", params.logits_all ? "true" : "false"), [](gpt_params & params) { params.logits_all = true; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(llama_arg( {"--hellaswag"}, "compute HellaSwag score over random tasks from datafile supplied with -f", [](gpt_params & params) { params.hellaswag = true; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(llama_arg( {"--hellaswag-tasks"}, "N", format("number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks), [](gpt_params & params, int value) { params.hellaswag_tasks = value; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(llama_arg( {"--winogrande"}, "compute Winogrande score over random tasks from datafile supplied with -f", [](gpt_params & params) { params.winogrande = true; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(llama_arg( {"--winogrande-tasks"}, "N", format("number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks), [](gpt_params & params, int value) { params.winogrande_tasks = value; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(llama_arg( {"--multiple-choice"}, "compute multiple choice score over random tasks from datafile supplied with -f", [](gpt_params & params) { params.multiple_choice = true; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(llama_arg( {"--multiple-choice-tasks"}, "N", format("number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks), [](gpt_params & params, int value) { params.multiple_choice_tasks = value; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(llama_arg( {"--kl-divergence"}, "computes KL-divergence to logits provided via --kl-divergence-base", [](gpt_params & params) { params.kl_divergence = true; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(llama_arg( {"--save-all-logits", "--kl-divergence-base"}, "FNAME", "set logits file", [](gpt_params & params, const std::string & value) { params.logits_file = value; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(llama_arg( {"--ppl-stride"}, "N", format("stride for perplexity calculation (default: %d)", params.ppl_stride), [](gpt_params & params, int value) { params.ppl_stride = value; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(llama_arg( {"--ppl-output-type"}, "<0|1>", format("output type for perplexity calculation (default: %d)", params.ppl_output_type), [](gpt_params & params, int value) { params.ppl_output_type = value; } ).set_examples({LLAMA_EXAMPLE_PERPLEXITY})); add_opt(llama_arg( {"-dt", "--defrag-thold"}, "N", format("KV cache defragmentation threshold (default: %.1f, < 0 - disabled)", (double)params.defrag_thold), [](gpt_params & params, const std::string & value) { params.defrag_thold = std::stof(value); } ).set_env("LLAMA_ARG_DEFRAG_THOLD")); add_opt(llama_arg( {"-np", "--parallel"}, "N", format("number of parallel sequences to decode (default: %d)", params.n_parallel), [](gpt_params & params, int value) { params.n_parallel = value; } ).set_env("LLAMA_ARG_N_PARALLEL")); add_opt(llama_arg( {"-ns", "--sequences"}, "N", format("number of sequences to decode (default: %d)", params.n_sequences), [](gpt_params & params, int value) { params.n_sequences = value; } ).set_examples({LLAMA_EXAMPLE_PARALLEL})); add_opt(llama_arg( {"-cb", "--cont-batching"}, format("enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled"), [](gpt_params & params) { params.cont_batching = true; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CONT_BATCHING")); add_opt(llama_arg( {"-nocb", "--no-cont-batching"}, "disable continuous batching", [](gpt_params & params) { params.cont_batching = false; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONT_BATCHING")); add_opt(llama_arg( {"--mmproj"}, "FILE", "path to a multimodal projector file for LLaVA. see examples/llava/README.md", [](gpt_params & params, const std::string & value) { params.mmproj = value; } ).set_examples({LLAMA_EXAMPLE_LLAVA})); add_opt(llama_arg( {"--image"}, "FILE", "path to an image file. use with multimodal models. Specify multiple times for batching", [](gpt_params & params, const std::string & value) { params.image.emplace_back(value); } ).set_examples({LLAMA_EXAMPLE_LLAVA})); #ifdef GGML_USE_RPC add_opt(llama_arg( {"--rpc"}, "SERVERS", "comma separated list of RPC servers", [](gpt_params & params, const std::string & value) { params.rpc_servers = value; } ).set_env("LLAMA_ARG_RPC")); #endif add_opt(llama_arg( {"--mlock"}, "force system to keep model in RAM rather than swapping or compressing", [](gpt_params & params) { params.use_mlock = true; } ).set_env("LLAMA_ARG_MLOCK")); add_opt(llama_arg( {"--no-mmap"}, "do not memory-map model (slower load but may reduce pageouts if not using mlock)", [](gpt_params & params) { params.use_mmap = false; } ).set_env("LLAMA_ARG_NO_MMAP")); add_opt(llama_arg( {"--numa"}, "TYPE", "attempt optimizations that help on some NUMA systems\n" "- distribute: spread execution evenly over all nodes\n" "- isolate: only spawn threads on CPUs on the node that execution started on\n" "- numactl: use the CPU map provided by numactl\n" "if run without this previously, it is recommended to drop the system page cache before using this\n" "see https://github.com/ggerganov/llama.cpp/issues/1437", [](gpt_params & params, const std::string & value) { /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; } else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; } else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; } else { throw std::invalid_argument("invalid value"); } } ).set_env("LLAMA_ARG_NUMA")); add_opt(llama_arg( {"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N", "number of layers to store in VRAM", [](gpt_params & params, int value) { params.n_gpu_layers = value; if (!llama_supports_gpu_offload()) { fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers option will be ignored\n"); fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); } } ).set_env("LLAMA_ARG_N_GPU_LAYERS")); add_opt(llama_arg( {"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N", "number of layers to store in VRAM for the draft model", [](gpt_params & params, int value) { params.n_gpu_layers_draft = value; if (!llama_supports_gpu_offload()) { fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers-draft option will be ignored\n"); fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); } } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"-sm", "--split-mode"}, "{none,layer,row}", "how to split the model across multiple GPUs, one of:\n" "- none: use one GPU only\n" "- layer (default): split layers and KV across GPUs\n" "- row: split rows across GPUs", [](gpt_params & params, const std::string & value) { std::string arg_next = value; if (arg_next == "none") { params.split_mode = LLAMA_SPLIT_MODE_NONE; } else if (arg_next == "layer") { params.split_mode = LLAMA_SPLIT_MODE_LAYER; } else if (arg_next == "row") { #ifdef GGML_USE_SYCL fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n"); exit(1); #endif // GGML_USE_SYCL params.split_mode = LLAMA_SPLIT_MODE_ROW; } else { throw std::invalid_argument("invalid value"); } if (!llama_supports_gpu_offload()) { fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the split mode has no effect.\n"); } } ).set_env("LLAMA_ARG_SPLIT_MODE")); add_opt(llama_arg( {"-ts", "--tensor-split"}, "N0,N1,N2,...", "fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1", [](gpt_params & params, const std::string & value) { std::string arg_next = value; // split string by , and / const std::regex regex{ R"([,/]+)" }; std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 }; std::vector split_arg{ it, {} }; if (split_arg.size() >= llama_max_devices()) { throw std::invalid_argument( format("got %d input configs, but system only has %d devices", (int)split_arg.size(), (int)llama_max_devices()) ); } for (size_t i = 0; i < llama_max_devices(); ++i) { if (i < split_arg.size()) { params.tensor_split[i] = std::stof(split_arg[i]); } else { params.tensor_split[i] = 0.0f; } } if (!llama_supports_gpu_offload()) { fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting a tensor split has no effect.\n"); } } ).set_env("LLAMA_ARG_TENSOR_SPLIT")); add_opt(llama_arg( {"-mg", "--main-gpu"}, "INDEX", format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu), [](gpt_params & params, int value) { params.main_gpu = value; if (!llama_supports_gpu_offload()) { fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the main GPU has no effect.\n"); } } ).set_env("LLAMA_ARG_MAIN_GPU")); add_opt(llama_arg( {"--check-tensors"}, format("check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false"), [](gpt_params & params) { params.check_tensors = true; } )); add_opt(llama_arg( {"--override-kv"}, "KEY=TYPE:VALUE", "advanced option to override model metadata by key. may be specified multiple times.\n" "types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false", [](gpt_params & params, const std::string & value) { if (!string_parse_kv_override(value.c_str(), params.kv_overrides)) { throw std::runtime_error(format("error: Invalid type for KV override: %s\n", value.c_str())); } } )); add_opt(llama_arg( {"--lora"}, "FNAME", "path to LoRA adapter (can be repeated to use multiple adapters)", [](gpt_params & params, const std::string & value) { params.lora_adapters.push_back({ std::string(value), 1.0 }); } // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA})); add_opt(llama_arg( {"--lora-scaled"}, "FNAME", "SCALE", "path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters)", [](gpt_params & params, const std::string & fname, const std::string & scale) { params.lora_adapters.push_back({ fname, std::stof(scale) }); } // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA})); add_opt(llama_arg( {"--control-vector"}, "FNAME", "add a control vector\nnote: this argument can be repeated to add multiple control vectors", [](gpt_params & params, const std::string & value) { params.control_vectors.push_back({ 1.0f, value, }); } )); add_opt(llama_arg( {"--control-vector-scaled"}, "FNAME", "SCALE", "add a control vector with user defined scaling SCALE\n" "note: this argument can be repeated to add multiple scaled control vectors", [](gpt_params & params, const std::string & fname, const std::string & scale) { params.control_vectors.push_back({ std::stof(scale), fname }); } )); add_opt(llama_arg( {"--control-vector-layer-range"}, "START", "END", "layer range to apply the control vector(s) to, start and end inclusive", [](gpt_params & params, const std::string & start, const std::string & end) { params.control_vector_layer_start = std::stoi(start); params.control_vector_layer_end = std::stoi(end); } )); add_opt(llama_arg( {"-a", "--alias"}, "STRING", "set alias for model name (to be used by REST API)", [](gpt_params & params, const std::string & value) { params.model_alias = value; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ALIAS")); add_opt(llama_arg( {"-m", "--model"}, "FNAME", ex == LLAMA_EXAMPLE_EXPORT_LORA ? std::string("model path from which to load base model") : format( "model path (default: `models/$filename` with filename from `--hf-file` " "or `--model-url` if set, otherwise %s)", DEFAULT_MODEL_PATH ), [](gpt_params & params, const std::string & value) { params.model = value; } ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL")); add_opt(llama_arg( {"-md", "--model-draft"}, "FNAME", "draft model for speculative decoding (default: unused)", [](gpt_params & params, const std::string & value) { params.model_draft = value; } ).set_examples({LLAMA_EXAMPLE_SPECULATIVE})); add_opt(llama_arg( {"-mu", "--model-url"}, "MODEL_URL", "model download url (default: unused)", [](gpt_params & params, const std::string & value) { params.model_url = value; } ).set_env("LLAMA_ARG_MODEL_URL")); add_opt(llama_arg( {"-hfr", "--hf-repo"}, "REPO", "Hugging Face model repository (default: unused)", [](gpt_params & params, const std::string & value) { params.hf_repo = value; } ).set_env("LLAMA_ARG_HF_REPO")); add_opt(llama_arg( {"-hff", "--hf-file"}, "FILE", "Hugging Face model file (default: unused)", [](gpt_params & params, const std::string & value) { params.hf_file = value; } ).set_env("LLAMA_ARG_HF_FILE")); add_opt(llama_arg( {"-hft", "--hf-token"}, "TOKEN", "Hugging Face access token (default: value from HF_TOKEN environment variable)", [](gpt_params & params, const std::string & value) { params.hf_token = value; } ).set_env("HF_TOKEN")); add_opt(llama_arg( {"--context-file"}, "FNAME", "file to load context from (repeat to specify multiple files)", [](gpt_params & params, const std::string & value) { std::ifstream file(value, std::ios::binary); if (!file) { throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str())); } params.context_files.push_back(value); } ).set_examples({LLAMA_EXAMPLE_RETRIEVAL})); add_opt(llama_arg( {"--chunk-size"}, "N", format("minimum length of embedded text chunks (default: %d)", params.chunk_size), [](gpt_params & params, int value) { params.chunk_size = value; } ).set_examples({LLAMA_EXAMPLE_RETRIEVAL})); add_opt(llama_arg( {"--chunk-separator"}, "STRING", format("separator between chunks (default: '%s')", params.chunk_separator.c_str()), [](gpt_params & params, const std::string & value) { params.chunk_separator = value; } ).set_examples({LLAMA_EXAMPLE_RETRIEVAL})); add_opt(llama_arg( {"--junk"}, "N", format("number of times to repeat the junk text (default: %d)", params.n_junk), [](gpt_params & params, int value) { params.n_junk = value; } ).set_examples({LLAMA_EXAMPLE_PASSKEY})); add_opt(llama_arg( {"--pos"}, "N", format("position of the passkey in the junk text (default: %d)", params.i_pos), [](gpt_params & params, int value) { params.i_pos = value; } ).set_examples({LLAMA_EXAMPLE_PASSKEY})); add_opt(llama_arg( {"-o", "--output", "--output-file"}, "FNAME", format("output file (default: '%s')", ex == LLAMA_EXAMPLE_EXPORT_LORA ? params.lora_outfile.c_str() : ex == LLAMA_EXAMPLE_CVECTOR_GENERATOR ? params.cvector_outfile.c_str() : params.out_file.c_str()), [](gpt_params & params, const std::string & value) { params.out_file = value; params.cvector_outfile = value; params.lora_outfile = value; } ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA})); add_opt(llama_arg( {"-ofreq", "--output-frequency"}, "N", format("output the imatrix every N iterations (default: %d)", params.n_out_freq), [](gpt_params & params, int value) { params.n_out_freq = value; } ).set_examples({LLAMA_EXAMPLE_IMATRIX})); add_opt(llama_arg( {"--save-frequency"}, "N", format("save an imatrix copy every N iterations (default: %d)", params.n_save_freq), [](gpt_params & params, int value) { params.n_save_freq = value; } ).set_examples({LLAMA_EXAMPLE_IMATRIX})); add_opt(llama_arg( {"--process-output"}, format("collect data for the output tensor (default: %s)", params.process_output ? "true" : "false"), [](gpt_params & params) { params.process_output = true; } ).set_examples({LLAMA_EXAMPLE_IMATRIX})); add_opt(llama_arg( {"--no-ppl"}, format("do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false"), [](gpt_params & params) { params.compute_ppl = false; } ).set_examples({LLAMA_EXAMPLE_IMATRIX})); add_opt(llama_arg( {"--chunk", "--from-chunk"}, "N", format("start processing the input from chunk N (default: %d)", params.i_chunk), [](gpt_params & params, int value) { params.i_chunk = value; } ).set_examples({LLAMA_EXAMPLE_IMATRIX})); add_opt(llama_arg( {"-pps"}, format("is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false"), [](gpt_params & params) { params.is_pp_shared = true; } ).set_examples({LLAMA_EXAMPLE_BENCH})); add_opt(llama_arg( {"-npp"}, "n0,n1,...", "number of prompt tokens", [](gpt_params & params, const std::string & value) { auto p = string_split(value, ','); params.n_pp.insert(params.n_pp.end(), p.begin(), p.end()); } ).set_examples({LLAMA_EXAMPLE_BENCH})); add_opt(llama_arg( {"-ntg"}, "n0,n1,...", "number of text generation tokens", [](gpt_params & params, const std::string & value) { auto p = string_split(value, ','); params.n_tg.insert(params.n_tg.end(), p.begin(), p.end()); } ).set_examples({LLAMA_EXAMPLE_BENCH})); add_opt(llama_arg( {"-npl"}, "n0,n1,...", "number of parallel prompts", [](gpt_params & params, const std::string & value) { auto p = string_split(value, ','); params.n_pl.insert(params.n_pl.end(), p.begin(), p.end()); } ).set_examples({LLAMA_EXAMPLE_BENCH})); add_opt(llama_arg( {"--embd-normalize"}, "N", format("normalisation for embendings (default: %d) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)", params.embd_normalize), [](gpt_params & params, int value) { params.embd_normalize = value; } ).set_examples({LLAMA_EXAMPLE_EMBEDDING})); add_opt(llama_arg( {"--embd-output-format"}, "FORMAT", "empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix", [](gpt_params & params, const std::string & value) { params.embd_out = value; } ).set_examples({LLAMA_EXAMPLE_EMBEDDING})); add_opt(llama_arg( {"--embd-separator"}, "STRING", "separator of embendings (default \\n) for example \"<#sep#>\"", [](gpt_params & params, const std::string & value) { params.embd_sep = value; } ).set_examples({LLAMA_EXAMPLE_EMBEDDING})); add_opt(llama_arg( {"--host"}, "HOST", format("ip address to listen (default: %s)", params.hostname.c_str()), [](gpt_params & params, const std::string & value) { params.hostname = value; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_HOST")); add_opt(llama_arg( {"--port"}, "PORT", format("port to listen (default: %d)", params.port), [](gpt_params & params, int value) { params.port = value; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_PORT")); add_opt(llama_arg( {"--path"}, "PATH", format("path to serve static files from (default: %s)", params.public_path.c_str()), [](gpt_params & params, const std::string & value) { params.public_path = value; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_STATIC_PATH")); add_opt(llama_arg( {"--embedding", "--embeddings"}, format("restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled"), [](gpt_params & params) { params.embedding = true; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS")); add_opt(llama_arg( {"--reranking", "--rerank"}, format("enable reranking endpoint on server (default: %s)", params.reranking ? "enabled" : "disabled"), [](gpt_params & params) { params.reranking = true; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_RERANKING")); add_opt(llama_arg( {"--api-key"}, "KEY", "API key to use for authentication (default: none)", [](gpt_params & params, const std::string & value) { params.api_keys.push_back(value); } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_API_KEY")); add_opt(llama_arg( {"--api-key-file"}, "FNAME", "path to file containing API keys (default: none)", [](gpt_params & params, const std::string & value) { std::ifstream key_file(value); if (!key_file) { throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str())); } std::string key; while (std::getline(key_file, key)) { if (!key.empty()) { params.api_keys.push_back(key); } } key_file.close(); } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(llama_arg( {"--ssl-key-file"}, "FNAME", "path to file a PEM-encoded SSL private key", [](gpt_params & params, const std::string & value) { params.ssl_file_key = value; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_KEY_FILE")); add_opt(llama_arg( {"--ssl-cert-file"}, "FNAME", "path to file a PEM-encoded SSL certificate", [](gpt_params & params, const std::string & value) { params.ssl_file_cert = value; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_CERT_FILE")); add_opt(llama_arg( {"-to", "--timeout"}, "N", format("server read/write timeout in seconds (default: %d)", params.timeout_read), [](gpt_params & params, int value) { params.timeout_read = value; params.timeout_write = value; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_TIMEOUT")); add_opt(llama_arg( {"--threads-http"}, "N", format("number of threads used to process HTTP requests (default: %d)", params.n_threads_http), [](gpt_params & params, int value) { params.n_threads_http = value; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP")); add_opt(llama_arg( {"-spf", "--system-prompt-file"}, "FNAME", "set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications", [](gpt_params & params, const std::string & value) { std::ifstream file(value); if (!file) { throw std::runtime_error(format("error: failed to open file '%s'\n", value.c_str())); } std::string system_prompt; std::copy( std::istreambuf_iterator(file), std::istreambuf_iterator(), std::back_inserter(system_prompt) ); params.system_prompt = system_prompt; } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(llama_arg( {"--metrics"}, format("enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled"), [](gpt_params & params) { params.endpoint_metrics = true; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS")); add_opt(llama_arg( {"--no-slots"}, format("disables slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"), [](gpt_params & params) { params.endpoint_slots = false; } ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_ENDPOINT_SLOTS")); add_opt(llama_arg( {"--slot-save-path"}, "PATH", "path to save slot kv cache (default: disabled)", [](gpt_params & params, const std::string & value) { params.slot_save_path = value; // if doesn't end with DIRECTORY_SEPARATOR, add it if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) { params.slot_save_path += DIRECTORY_SEPARATOR; } } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(llama_arg( {"--chat-template"}, "JINJA_TEMPLATE", "set custom jinja chat template (default: template taken from model's metadata)\n" "if suffix/prefix are specified, template will be disabled\n" "only commonly used templates are accepted:\nhttps://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template", [](gpt_params & params, const std::string & value) { if (!llama_chat_verify_template(value)) { throw std::runtime_error(format( "error: the supplied chat template is not supported: %s\n" "note: llama.cpp does not use jinja parser, we only support commonly used templates\n", value.c_str() )); } params.chat_template = value; } ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE")); add_opt(llama_arg( {"-sps", "--slot-prompt-similarity"}, "SIMILARITY", format("how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity), [](gpt_params & params, const std::string & value) { params.slot_prompt_similarity = std::stof(value); } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(llama_arg( {"--lora-init-without-apply"}, format("load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: %s)", params.lora_init_without_apply ? "enabled" : "disabled"), [](gpt_params & params) { params.lora_init_without_apply = true; } ).set_examples({LLAMA_EXAMPLE_SERVER})); add_opt(llama_arg( {"--simple-io"}, "use basic IO for better compatibility in subprocesses and limited consoles", [](gpt_params & params) { params.simple_io = true; } ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL})); add_opt(llama_arg( {"-ld", "--logdir"}, "LOGDIR", "path under which to save YAML logs (no logging if unset)", [](gpt_params & params, const std::string & value) { params.logdir = value; if (params.logdir.back() != DIRECTORY_SEPARATOR) { params.logdir += DIRECTORY_SEPARATOR; } } )); add_opt(llama_arg( {"--positive-file"}, "FNAME", format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()), [](gpt_params & params, const std::string & value) { params.cvector_positive_file = value; } ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); add_opt(llama_arg( {"--negative-file"}, "FNAME", format("negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str()), [](gpt_params & params, const std::string & value) { params.cvector_negative_file = value; } ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); add_opt(llama_arg( {"--pca-batch"}, "N", format("batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch), [](gpt_params & params, int value) { params.n_pca_batch = value; } ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); add_opt(llama_arg( {"--pca-iter"}, "N", format("number of iterations used for PCA (default: %d)", params.n_pca_iterations), [](gpt_params & params, int value) { params.n_pca_iterations = value; } ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); add_opt(llama_arg( {"--method"}, "{pca, mean}", "dimensionality reduction method to be used (default: pca)", [](gpt_params & params, const std::string & value) { /**/ if (value == "pca") { params.cvector_dimre_method = DIMRE_METHOD_PCA; } else if (value == "mean") { params.cvector_dimre_method = DIMRE_METHOD_MEAN; } else { throw std::invalid_argument("invalid value"); } } ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR})); add_opt(llama_arg( {"--output-format"}, "{md,jsonl}", "output format for batched-bench results (default: md)", [](gpt_params & params, const std::string & value) { /**/ if (value == "jsonl") { params.batched_bench_output_jsonl = true; } else if (value == "md") { params.batched_bench_output_jsonl = false; } else { std::invalid_argument("invalid value"); } } ).set_examples({LLAMA_EXAMPLE_BENCH})); add_opt(llama_arg( {"--log-disable"}, "Log disable", [](gpt_params &) { gpt_log_pause(gpt_log_main()); } )); add_opt(llama_arg( {"--log-file"}, "FNAME", "Log to file", [](gpt_params &, const std::string & value) { gpt_log_set_file(gpt_log_main(), value.c_str()); } )); add_opt(llama_arg( {"--log-colors"}, "Enable colored logging", [](gpt_params &) { gpt_log_set_colors(gpt_log_main(), true); } ).set_env("LLAMA_LOG_COLORS")); add_opt(llama_arg( {"-v", "--verbose", "--log-verbose"}, "Set verbosity level to infinity (i.e. log all messages, useful for debugging)", [](gpt_params & params) { params.verbosity = INT_MAX; gpt_log_set_verbosity_thold(INT_MAX); } )); add_opt(llama_arg( {"-lv", "--verbosity", "--log-verbosity"}, "N", "Set the verbosity threshold. Messages with a higher verbosity will be ignored.", [](gpt_params & params, int value) { params.verbosity = value; gpt_log_set_verbosity_thold(value); } ).set_env("LLAMA_LOG_VERBOSITY")); add_opt(llama_arg( {"--log-prefix"}, "Enable prefx in log messages", [](gpt_params &) { gpt_log_set_prefix(gpt_log_main(), true); } ).set_env("LLAMA_LOG_PREFIX")); add_opt(llama_arg( {"--log-timestamps"}, "Enable timestamps in log messages", [](gpt_params &) { gpt_log_set_timestamps(gpt_log_main(), true); } ).set_env("LLAMA_LOG_TIMESTAMPS")); return ctx_arg; }