#include "common.cuh" #include static __device__ __forceinline__ int get_int_b2(const void * x, const int & i32) { const uint16_t * x16 = (const uint16_t *) x; // assume at least 2 byte alignment int x32 = x16[2*i32 + 0] << 0; x32 |= x16[2*i32 + 1] << 16; return x32; } static __device__ __forceinline__ int get_int_b4(const void * x, const int & i32) { return ((const int *) x)[i32]; // assume at least 4 byte alignment } // VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called // MMVQ = mul_mat_vec_q, MMQ = mul_mat_q #define VDR_Q4_0_Q8_1_MMVQ 2 #define VDR_Q4_0_Q8_1_MMQ 4 template static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl( const int * v, const int * u, const float & d4, const half2 & ds8) { int sumi = 0; #pragma unroll for (int i = 0; i < vdr; ++i) { const int vi0 = (v[i] >> 0) & 0x0F0F0F0F; const int vi1 = (v[i] >> 4) & 0x0F0F0F0F; // SIMD dot product of quantized values sumi = ggml_cuda_dp4a(vi0, u[2*i+0], sumi); sumi = ggml_cuda_dp4a(vi1, u[2*i+1], sumi); } const float2 ds8f = __half22float2(ds8); // second part effectively subtracts 8 from each quant value return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y); } #define VDR_Q4_1_Q8_1_MMVQ 2 #define VDR_Q4_1_Q8_1_MMQ 4 template static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl( const int * v, const int * u, const half2 & dm4, const half2 & ds8) { int sumi = 0; #pragma unroll for (int i = 0; i < vdr; ++i) { const int vi0 = (v[i] >> 0) & 0x0F0F0F0F; const int vi1 = (v[i] >> 4) & 0x0F0F0F0F; // SIMD dot product of quantized values sumi = ggml_cuda_dp4a(vi0, u[2*i+0], sumi); sumi = ggml_cuda_dp4a(vi1, u[2*i+1], sumi); } #ifdef GGML_CUDA_F16 const float2 tmp = __half22float2(__hmul2(dm4, ds8)); const float d4d8 = tmp.x; const float m4s8 = tmp.y; #else const float2 dm4f = __half22float2(dm4); const float2 ds8f = __half22float2(ds8); const float d4d8 = dm4f.x * ds8f.x; const float m4s8 = dm4f.y * ds8f.y; #endif // GGML_CUDA_F16 // scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1)); } #define VDR_Q5_0_Q8_1_MMVQ 2 #define VDR_Q5_0_Q8_1_MMQ 4 template static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl( const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) { int sumi = 0; #pragma unroll for (int i = 0; i < vdr; ++i) { int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4 vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12 vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20 vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28 sumi = ggml_cuda_dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4 vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12 vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20 vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28 sumi = ggml_cuda_dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values } const float2 ds8f = __half22float2(ds8); // second part effectively subtracts 16 from each quant value return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y); } #define VDR_Q5_1_Q8_1_MMVQ 2 #define VDR_Q5_1_Q8_1_MMQ 4 template static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl( const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) { int sumi = 0; #pragma unroll for (int i = 0; i < vdr; ++i) { int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4 vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12 vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20 vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28 sumi = ggml_cuda_dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4 vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12 vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20 vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28 sumi = ggml_cuda_dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values } #ifdef GGML_CUDA_F16 const float2 tmp = __half22float2(__hmul2(dm5, ds8)); const float d5d8 = tmp.x; const float m5s8 = tmp.y; #else const float2 dm5f = __half22float2(dm5); const float2 ds8f = __half22float2(ds8); const float d5d8 = dm5f.x * ds8f.x; const float m5s8 = dm5f.y * ds8f.y; #endif // GGML_CUDA_F16 // scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it return sumi*d5d8 + m5s8 / (QI5_1 / vdr); } #define VDR_Q8_0_Q8_1_MMVQ 2 #define VDR_Q8_0_Q8_1_MMQ 8 template static __device__ __forceinline__ T vec_dot_q8_0_q8_1_impl( const int * v, const int * u, const T & d8_0, const T & d8_1) { int sumi = 0; #pragma unroll for (int i = 0; i < vdr; ++i) { // SIMD dot product of quantized values sumi = ggml_cuda_dp4a(v[i], u[i], sumi); } return d8_0*d8_1 * ((T) sumi); } template static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl( const int * v, const int * u, const half2 & dm8, const half2 & ds8) { int sumi = 0; #pragma unroll for (int i = 0; i < vdr; ++i) { // SIMD dot product of quantized values sumi = ggml_cuda_dp4a(v[i], u[i], sumi); } #ifdef GGML_CUDA_F16 const float2 tmp = __half22float2(__hmul2(dm8, ds8)); const float d8d8 = tmp.x; const float m8s8 = tmp.y; #else const float2 dm8f = __half22float2(dm8); const float2 ds8f = __half22float2(ds8); const float d8d8 = dm8f.x * ds8f.x; const float m8s8 = dm8f.y * ds8f.y; #endif // GGML_CUDA_F16 // scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it return sumi*d8d8 + m8s8 / (QI8_1 / vdr); } #define VDR_Q2_K_Q8_1_MMVQ 1 #define VDR_Q2_K_Q8_1_MMQ 4 // contiguous v/x values static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq( const int & v, const int * __restrict__ u, const uint8_t * __restrict__ scales, const half2 & dm2, const float * __restrict__ d8) { float sumf_d = 0.0f; float sumf_m = 0.0f; #pragma unroll for (int i = 0; i < QR2_K; ++i) { const int sc = scales[2*i]; const int vi = (v >> (2*i)) & 0x03030303; sumf_d += d8[i] * (ggml_cuda_dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product // fill int with 4x m int m = sc >> 4; m |= m << 8; m |= m << 16; sumf_m += d8[i] * ggml_cuda_dp4a(m, u[i], 0); // multiply constant q2_K part with sum of q8_1 values } const float2 dm2f = __half22float2(dm2); return dm2f.x*sumf_d - dm2f.y*sumf_m; } // contiguous v/x + u/y values template static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq( const int * __restrict__ v, const int * __restrict__ u, const half2 * dm2, const float & d8, const half2 * s8) { float sumf = 0.0f; float sumf_d8 = 0.0f; #pragma unroll for (int i0 = 0; i0 < QR2_K*VDR_Q2_K_Q8_1_MMQ; i0 += QI8_1) { const float2 dm2f0 = __half22float2(dm2[i0/(QI8_1/2) + 0]); int sumi_d0 = 0; const float2 dm2f1 = __half22float2(dm2[i0/(QI8_1/2) + 1]); int sumi_d1 = 0; #pragma unroll for (int i = i0; i < i0 + QI8_1/2; ++i) { sumi_d0 = ggml_cuda_dp4a(v[i], u[i], sumi_d0); } sumf_d8 += dm2f0.x * sumi_d0; #pragma unroll for (int i = i0 + QI8_1/2; i < i0 + QI8_1; ++i) { sumi_d1 = ggml_cuda_dp4a(v[i], u[i], sumi_d1); } sumf_d8 += dm2f1.x * sumi_d1; if (i0/QI8_1 < ns8) { const float2 s8f = __half22float2(s8[i0/QI8_1]); sumf -= dm2f0.y*s8f.x; sumf -= dm2f1.y*s8f.y; } else { int sumi_m0 = 0; #pragma unroll for (int i = i0; i < i0 + QI8_1/2; ++i) { sumi_m0 = ggml_cuda_dp4a(0x01010101, u[i], sumi_m0); } sumf_d8 -= dm2f0.y * sumi_m0; int sumi_m1 = 0; #pragma unroll for (int i = i0 + QI8_1/2; i < i0 + QI8_1; ++i) { sumi_m1 = ggml_cuda_dp4a(0x01010101, u[i], sumi_m1); } sumf_d8 -= dm2f1.y * sumi_m1; } } return sumf + d8*sumf_d8; } #define VDR_Q3_K_Q8_1_MMVQ 1 #define VDR_Q3_K_Q8_1_MMQ 2 // contiguous v/x values static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq( const int & vl, const int & vh, const int * __restrict__ u, const uint8_t * __restrict__ scales, const int & scale_offset, const float & d3, const float * __restrict__ d8) { float sumf = 0.0f; #pragma unroll for (int i = 0; i < QR3_K; ++i) { const int isc = scale_offset + 2*i; const int isc_low = isc % (QK_K/32); const int sc_shift_low = 4 * (isc / (QK_K/32)); const int sc_low = (scales[isc_low] >> sc_shift_low) & 0xF; const int isc_high = isc % (QK_K/64); const int sc_shift_high = 2 * (isc / (QK_K/64)); const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4; const int sc = (sc_low | sc_high) - 32; const int vil = (vl >> (2*i)) & 0x03030303; const int vih = ((vh >> i) << 2) & 0x04040404; const int vi = __vsubss4(vil, vih); sumf += d8[i] * (ggml_cuda_dp4a(vi, u[i], 0) * sc); // SIMD dot product } return d3 * sumf; } // contiguous v/x + u/y values static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq( const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales, const float & d3, const float & d8) { int sumi = 0; #pragma unroll for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) { int sumi_sc = 0; #pragma unroll for (int i = i0; i < i0 + QI8_1/2; ++i) { sumi_sc = ggml_cuda_dp4a(v[i], u[i], sumi_sc); // SIMD dot product } sumi += sumi_sc * scales[i0 / (QI8_1/2)]; } return d3*d8 * sumi; } #define VDR_Q4_K_Q8_1_MMVQ 2 #define VDR_Q4_K_Q8_1_MMQ 8 // contiguous v/x values static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq( const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc, const uint8_t * __restrict__ m, const half2 & dm4, const float * __restrict__ d8) { float sumf_d = 0.0f; float sumf_m = 0.0f; #pragma unroll for (int i = 0; i < QR4_K; ++i) { const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F; const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F; const int dot1 = ggml_cuda_dp4a(v1i, u[2*i+1], ggml_cuda_dp4a(v0i, u[2*i+0], 0)); // SIMD dot product const int dot2 = ggml_cuda_dp4a(0x01010101, u[2*i+1], ggml_cuda_dp4a(0x01010101, u[2*i+0], 0)); // sum of u sumf_d += d8[i] * (dot1 * sc[i]); sumf_m += d8[i] * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values } const float2 dm4f = __half22float2(dm4); return dm4f.x*sumf_d - dm4f.y*sumf_m; } // contiguous v/x + u/y values static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq( const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc, const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) { float sumf_d = 0.0f; float sumf_m = 0.0f; #pragma unroll for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) { int sumi_d = 0; #pragma unroll for (int j = 0; j < QI8_1; ++j) { sumi_d = ggml_cuda_dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product } const float2 ds8f = __half22float2(ds8[i]); sumf_d += ds8f.x * (sc[i] * sumi_d); sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val } const float2 dm4f = __half22float2(dm4); return dm4f.x*sumf_d - dm4f.y*sumf_m; } #define VDR_Q5_K_Q8_1_MMVQ 2 #define VDR_Q5_K_Q8_1_MMQ 8 // contiguous v/x values static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq( const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc, const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) { float sumf_d = 0.0f; float sumf_m = 0.0f; #pragma unroll for (int i = 0; i < QR5_K; ++i) { const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F; const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F; const int vh0i = ((vh[0] >> i) << 4) & 0x10101010; const int vh1i = ((vh[1] >> i) << 4) & 0x10101010; const int v0i = vl0i | vh0i; const int v1i = vl1i | vh1i; const int dot1 = ggml_cuda_dp4a(v0i, u[2*i+0], ggml_cuda_dp4a(v1i, u[2*i+1], 0)); // SIMD dot product const int dot2 = ggml_cuda_dp4a(0x01010101, u[2*i+0], ggml_cuda_dp4a(0x01010101, u[2*i+1], 0)); // sum of u sumf_d += d8[i] * (dot1 * sc[i]); sumf_m += d8[i] * (dot2 * m[i]); } const float2 dm5f = __half22float2(dm5); return dm5f.x*sumf_d - dm5f.y*sumf_m; } // contiguous v/x + u/y values static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq( const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc, const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) { float sumf_d = 0.0f; float sumf_m = 0.0f; #pragma unroll for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) { int sumi_d = 0; #pragma unroll for (int j = 0; j < QI8_1; ++j) { sumi_d = ggml_cuda_dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product } const float2 ds8f = __half22float2(ds8[i]); sumf_d += ds8f.x * (sc[i] * sumi_d); sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val } const float2 dm4f = __half22float2(dm4); return dm4f.x*sumf_d - dm4f.y*sumf_m; } #define VDR_Q6_K_Q8_1_MMVQ 1 #define VDR_Q6_K_Q8_1_MMQ 8 // contiguous v/x values static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq( const int & vl, const int & vh, const int * __restrict__ u, const int8_t * __restrict__ scales, const float & d, const float * __restrict__ d8) { float sumf = 0.0f; #pragma unroll for (int i = 0; i < QR6_K; ++i) { const int sc = scales[4*i]; const int vil = (vl >> (4*i)) & 0x0F0F0F0F; const int vih = ((vh >> (4*i)) << 4) & 0x30303030; const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32 sumf += d8[i] * (ggml_cuda_dp4a(vi, u[i], 0) * sc); // SIMD dot product } return d*sumf; } // contiguous v/x + u/y values static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq( const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc, const float & d6, const float * __restrict__ d8) { float sumf_d = 0.0f; const int sc_packed = get_int_b4(sc, 0); const int8_t * sc_reg = (const int8_t *) &sc_packed; #pragma unroll for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) { int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale #pragma unroll for (int i = i0; i < i0 + 2; ++i) { sumi_d.x = ggml_cuda_dp4a(v[2*i+0], u[2*i+0], sumi_d.x); // SIMD dot product sumi_d.x = ggml_cuda_dp4a(v[2*i+1], u[2*i+1], sumi_d.x); // SIMD dot product sumi_d.y = ggml_cuda_dp4a(v[2*i+4], u[2*i+4], sumi_d.y); // SIMD dot product sumi_d.y = ggml_cuda_dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product } sumf_d += d8[i0/4] * (sc_reg[i0/2+0]*sumi_d.x + sc_reg[i0/2+1]*sumi_d.y); } return d6 * sumf_d; } static __device__ __forceinline__ float vec_dot_q4_0_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq + kbx; int v[VDR_Q4_0_Q8_1_MMVQ]; int u[2*VDR_Q4_0_Q8_1_MMVQ]; #pragma unroll for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) { v[i] = get_int_b2(bq4_0->qs, iqs + i); u[2*i+0] = get_int_b4(bq8_1->qs, iqs + i); u[2*i+1] = get_int_b4(bq8_1->qs, iqs + i + QI4_0); } return vec_dot_q4_0_q8_1_impl(v, u, bq4_0->d, bq8_1->ds); } static __device__ __forceinline__ float vec_dot_q4_1_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq + kbx; int v[VDR_Q4_1_Q8_1_MMVQ]; int u[2*VDR_Q4_1_Q8_1_MMVQ]; #pragma unroll for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) { v[i] = get_int_b4(bq4_1->qs, iqs + i); u[2*i+0] = get_int_b4(bq8_1->qs, iqs + i); u[2*i+1] = get_int_b4(bq8_1->qs, iqs + i + QI4_1); } return vec_dot_q4_1_q8_1_impl(v, u, bq4_1->dm, bq8_1->ds); } static __device__ __forceinline__ float vec_dot_q5_0_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq + kbx; int vl[VDR_Q5_0_Q8_1_MMVQ]; int vh[VDR_Q5_0_Q8_1_MMVQ]; int u[2*VDR_Q5_0_Q8_1_MMVQ]; #pragma unroll for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) { vl[i] = get_int_b2(bq5_0->qs, iqs + i); vh[i] = get_int_b2(bq5_0->qh, 0) >> (4 * (iqs + i)); u[2*i+0] = get_int_b4(bq8_1->qs, iqs + i); u[2*i+1] = get_int_b4(bq8_1->qs, iqs + i + QI5_0); } return vec_dot_q5_0_q8_1_impl(vl, vh, u, bq5_0->d, bq8_1->ds); } static __device__ __forceinline__ float vec_dot_q5_1_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq + kbx; int vl[VDR_Q5_1_Q8_1_MMVQ]; int vh[VDR_Q5_1_Q8_1_MMVQ]; int u[2*VDR_Q5_1_Q8_1_MMVQ]; #pragma unroll for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) { vl[i] = get_int_b4(bq5_1->qs, iqs + i); vh[i] = get_int_b4(bq5_1->qh, 0) >> (4 * (iqs + i)); u[2*i+0] = get_int_b4(bq8_1->qs, iqs + i); u[2*i+1] = get_int_b4(bq8_1->qs, iqs + i + QI5_1); } return vec_dot_q5_1_q8_1_impl(vl, vh, u, bq5_1->dm, bq8_1->ds); } static __device__ __forceinline__ float vec_dot_q8_0_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq + kbx; int v[VDR_Q8_0_Q8_1_MMVQ]; int u[VDR_Q8_0_Q8_1_MMVQ]; #pragma unroll for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) { v[i] = get_int_b2(bq8_0->qs, iqs + i); u[i] = get_int_b4(bq8_1->qs, iqs + i); } return vec_dot_q8_0_q8_1_impl(v, u, bq8_0->d, __low2half(bq8_1->ds)); } static __device__ __forceinline__ float vec_dot_q2_K_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { const block_q2_K * bq2_K = (const block_q2_K *) vbq + kbx; const int bq8_offset = QR2_K * (iqs / QI8_1); const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2); const uint8_t * scales = bq2_K->scales + scale_offset; const int v = get_int_b4(bq2_K->qs, iqs); int u[QR2_K]; float d8[QR2_K]; #pragma unroll for (int i = 0; i < QR2_K; ++ i) { u[i] = get_int_b4(bq8_1[bq8_offset + i].qs, iqs % QI8_1); d8[i] = __low2float(bq8_1[bq8_offset + i].ds); } return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8); } static __device__ __forceinline__ float vec_dot_q3_K_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { const block_q3_K * bq3_K = (const block_q3_K *) vbq + kbx; const int bq8_offset = QR3_K * (iqs / (QI3_K/2)); const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2); const float d = bq3_K->d; const int vl = get_int_b2(bq3_K->qs, iqs); // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted const int vh = ~get_int_b2(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset; int u[QR3_K]; float d8[QR3_K]; #pragma unroll for (int i = 0; i < QR3_K; ++i) { u[i] = get_int_b4(bq8_1[bq8_offset + i].qs, iqs % QI8_1); d8[i] = __low2float(bq8_1[bq8_offset + i].ds); } return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8); } static __device__ __forceinline__ float vec_dot_q4_K_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { const block_q4_K * bq4_K = (const block_q4_K *) vbq + kbx; int v[2]; int u[2*QR4_K]; float d8[QR4_K]; // iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6 const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2)); // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12 // iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44 // iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76 // iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108 const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4)); v[0] = q4[0]; v[1] = q4[4]; const uint16_t * scales = (const uint16_t *)bq4_K->scales; uint16_t aux[2]; const int j = bq8_offset/2; if (j < 2) { aux[0] = scales[j+0] & 0x3f3f; aux[1] = scales[j+2] & 0x3f3f; } else { aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2); aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2); } const uint8_t * sc = (const uint8_t *)aux; const uint8_t * m = sc + 2; for (int i = 0; i < QR4_K; ++i) { const block_q8_1 * bq8i = bq8_1 + bq8_offset + i; d8[i] = __low2float(bq8i->ds); const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4); u[2*i+0] = q8[0]; u[2*i+1] = q8[4]; } return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8); } static __device__ __forceinline__ float vec_dot_q5_K_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { const block_q5_K * bq5_K = (const block_q5_K *) vbq + kbx; int vl[2]; int vh[2]; int u[2*QR5_K]; float d8[QR5_K]; const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2)); const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4)); const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4)); vl[0] = ql[0]; vl[1] = ql[4]; vh[0] = qh[0] >> bq8_offset; vh[1] = qh[4] >> bq8_offset; const uint16_t * scales = (const uint16_t *)bq5_K->scales; uint16_t aux[2]; const int j = bq8_offset/2; if (j < 2) { aux[0] = scales[j+0] & 0x3f3f; aux[1] = scales[j+2] & 0x3f3f; } else { aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2); aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2); } const uint8_t * sc = (const uint8_t *)aux; const uint8_t * m = sc + 2; #pragma unroll for (int i = 0; i < QR5_K; ++i) { const block_q8_1 * bq8i = bq8_1 + bq8_offset + i; d8[i] = __low2float(bq8i->ds); const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4); u[2*i+0] = q8[0]; u[2*i+1] = q8[4]; } return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8); } static __device__ __forceinline__ float vec_dot_q6_K_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { const block_q6_K * bq6_K = (const block_q6_K *) vbq + kbx; const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4); const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8); const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4)); const int vl = get_int_b2(bq6_K->ql, iqs); const int vh = get_int_b2(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift; const int8_t * scales = bq6_K->scales + scale_offset; int u[QR6_K]; float d8[QR6_K]; #pragma unroll for (int i = 0; i < QR6_K; ++i) { u[i] = get_int_b4(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1); d8[i] = __low2float(bq8_1[bq8_offset + 2*i].ds); } return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8); } #define VDR_IQ2_XXS_Q8_1_MMVQ 2 #define VDR_IQ2_XXS_Q8_1_MMQ 2 static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq + kbx; const int q2 = get_int_b2(bq2->qs, iqs); const uint8_t * aux8 = (const uint8_t *) &q2; const uint32_t aux32 = get_int_b2(bq2->qs, iqs + 1); int sumi = 0; #pragma unroll for (int k0 = 0; k0 < 8; k0 += 2) { const int * grid_pos = (const int *) (iq2xxs_grid + aux8[k0/2]); const int signs_packed = ksigns_iq2xs[(aux32 >> (7*k0/2)) & 0x7F]; const int signs0 = __vcmpne4(((signs_packed & 0x03) << 7) | ((signs_packed & 0x0C) << 21), 0x00000000); const int grid0 = __vsub4(grid_pos[0] ^ signs0, signs0); const int u0 = get_int_b4(bq8_1[iqs/2].qs, k0 + 0); sumi = ggml_cuda_dp4a(grid0, u0, sumi); const int signs1 = __vcmpne4(((signs_packed & 0x30) << 3) | ((signs_packed & 0xC0) << 17), 0x00000000); const int grid1 = __vsub4(grid_pos[1] ^ signs1, signs1); const int u1 = get_int_b4(bq8_1[iqs/2].qs, k0 + 1); sumi = ggml_cuda_dp4a(grid1, u1, sumi); } const int ls = aux32 >> 28; sumi = (ls*sumi + sumi/2)/4; const float d = __half2float(bq2->d) * __low2float(bq8_1[iqs/2].ds); return d * sumi; } #define VDR_IQ2_XS_Q8_1_MMVQ 2 #define VDR_IQ2_XS_Q8_1_MMQ 2 static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq + kbx; const int2 q2_packed = make_int2(get_int_b2(bq2->qs, iqs + 0), get_int_b2(bq2->qs, iqs + 1)); const uint16_t * q2 = (const uint16_t *) &q2_packed; const int ls0 = bq2->scales[iqs/2] & 0x0F; const int ls1 = bq2->scales[iqs/2] >> 4; int sumi0 = 0; int sumi1 = 0; #pragma unroll for (int l0 = 0; l0 < 8; l0 += 2) { const uint32_t * grid_pos = (const uint32_t *)(iq2xs_grid + (q2[l0/2] & 0x000001FF)); const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l0/2] >> 9)); const int grid_l = __vsub4(grid_pos[0] ^ signs[0], signs[0]); const int grid_h = __vsub4(grid_pos[1] ^ signs[1], signs[1]); const int u0 = get_int_b4(bq8_1[iqs/2].qs, l0 + 0); const int u1 = get_int_b4(bq8_1[iqs/2].qs, l0 + 1); if (l0 < 4) { sumi0 = ggml_cuda_dp4a(grid_l, u0, sumi0); sumi0 = ggml_cuda_dp4a(grid_h, u1, sumi0); } else { sumi1 = ggml_cuda_dp4a(grid_l, u0, sumi1); sumi1 = ggml_cuda_dp4a(grid_h, u1, sumi1); } } const int sumi = (sumi0*ls0 + sumi1*ls1 + (sumi0 + sumi1)/2)/4; const float d = __half2float(bq2->d) * __low2float(bq8_1[iqs/2].ds); return d * sumi; } #define VDR_IQ2_S_Q8_1_MMVQ 2 #define VDR_IQ2_S_Q8_1_MMQ 2 static __device__ __forceinline__ float vec_dot_iq2_s_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { const block_iq2_s * bq2 = (const block_iq2_s *) vbq + kbx; const int qs_packed = get_int_b2(bq2->qs, iqs/2); const uint8_t * qs = (const uint8_t *) &qs_packed; const int qh = bq2->qh[iqs/2]; const int signs_packed_32 = get_int_b2(bq2->qs, QK_K/32 + iqs/2); const uint8_t * signs_packed_8 = (const uint8_t *) &signs_packed_32; const int ls0 = bq2->scales[iqs/2] & 0x0F; const int ls1 = bq2->scales[iqs/2] >> 4; int sumi0 = 0; int sumi1 = 0; #pragma unroll for (int l0 = 0; l0 < 8; l0 += 2) { const int * grid_pos = (const int *)(iq2s_grid + (qs[l0/2] | ((qh << (8-l0)) & 0x300))); const int signs0 = __vcmpne4(((signs_packed_8[l0/2] & 0x03) << 7) | ((signs_packed_8[l0/2] & 0x0C) << 21), 0x00000000); const int signs1 = __vcmpne4(((signs_packed_8[l0/2] & 0x30) << 3) | ((signs_packed_8[l0/2] & 0xC0) << 17), 0x00000000); const int grid_l = __vsub4(grid_pos[0] ^ signs0, signs0); const int grid_h = __vsub4(grid_pos[1] ^ signs1, signs1); const int u0 = get_int_b4(bq8_1[iqs/2].qs, l0 + 0); const int u1 = get_int_b4(bq8_1[iqs/2].qs, l0 + 1); if (l0 < 4) { sumi0 = ggml_cuda_dp4a(grid_l, u0, sumi0); sumi0 = ggml_cuda_dp4a(grid_h, u1, sumi0); } else { sumi1 = ggml_cuda_dp4a(grid_l, u0, sumi1); sumi1 = ggml_cuda_dp4a(grid_h, u1, sumi1); } } const int sumi = (sumi0*ls0 + sumi1*ls1 + (sumi0 + sumi1)/2)/4; const float d = __half2float(bq2->d) * __low2float(bq8_1[iqs/2].ds); return d * sumi; } #define VDR_IQ3_XXS_Q8_1_MMVQ 2 #define VDR_IQ3_XXS_Q8_1_MMQ 2 static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { const block_iq3_xxs * bq3 = (const block_iq3_xxs *) vbq + kbx; const int2 q3_packed = make_int2(get_int_b2(bq3->qs, iqs), get_int_b2(bq3->qs, iqs+1)); const uint8_t * q3 = (const uint8_t *) &q3_packed; const uint32_t aux32 = get_int_b2(bq3->qs, QK_K/16 + iqs/2); int sumi = 0; #pragma unroll for (int l0 = 0; l0 < 8; l0 += 2) { const int2 grid_pos = make_int2(iq3xxs_grid[q3[l0 + 0]], iq3xxs_grid[q3[l0 + 1]]); const int * signs = (const int *)(ksigns64 + ((aux32 >> (7*l0/2)) & 0x7F)); const int grid_l = __vsub4(grid_pos.x ^ signs[0], signs[0]); const int grid_h = __vsub4(grid_pos.y ^ signs[1], signs[1]); const int u0 = get_int_b4(bq8_1[iqs/2].qs, l0 + 0); const int u1 = get_int_b4(bq8_1[iqs/2].qs, l0 + 1); sumi = ggml_cuda_dp4a(grid_l, u0, sumi); sumi = ggml_cuda_dp4a(grid_h, u1, sumi); } const int ls = aux32 >> 28; sumi = (ls*sumi + sumi/2)/2; const float d = __half2float(bq3->d) * __low2float(bq8_1[iqs/2].ds); return d * sumi; } #define VDR_IQ3_S_Q8_1_MMVQ 2 #define VDR_IQ3_S_Q8_1_MMQ 2 // TODO: don't use lookup table for signs static __device__ __forceinline__ float vec_dot_iq3_s_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { const block_iq3_s * bq3 = (const block_iq3_s *) vbq + kbx; const int2 qs_packed = make_int2(get_int_b2(bq3->qs, iqs + 0), get_int_b2(bq3->qs, iqs + 1)); const uint8_t * qs = (const uint8_t *) &qs_packed; const int qh = bq3->qh[iqs/2]; const int signs_packed_32 = get_int_b2(bq3->signs, iqs/2); const uint8_t * signs_packed_8 = (const uint8_t *) &signs_packed_32; int sumi = 0; #pragma unroll for (int l0 = 0; l0 < 8; l0 += 2) { const int2 grid_pos = make_int2( iq3s_grid[qs[l0 + 0] | ((qh << (8 - l0)) & 0x100)], iq3s_grid[qs[l0 + 1] | ((qh << (7 - l0)) & 0x100)]); const int signs0 = __vcmpne4(((signs_packed_8[l0/2] & 0x03) << 7) | ((signs_packed_8[l0/2] & 0x0C) << 21), 0x00000000); const int signs1 = __vcmpne4(((signs_packed_8[l0/2] & 0x30) << 3) | ((signs_packed_8[l0/2] & 0xC0) << 17), 0x00000000); const int grid_l = __vsub4(grid_pos.x ^ signs0, signs0); const int grid_h = __vsub4(grid_pos.y ^ signs1, signs1); const int u0 = get_int_b4(bq8_1[iqs/2].qs, l0 + 0); const int u1 = get_int_b4(bq8_1[iqs/2].qs, l0 + 1); sumi = ggml_cuda_dp4a(grid_l, u0, sumi); sumi = ggml_cuda_dp4a(grid_h, u1, sumi); } sumi *= 1 + 2*((bq3->scales[iqs/4] >> ((iqs << 1) & 0x04)) & 0x0F); const float d = __half2float(bq3->d) * __low2float(bq8_1[iqs/2].ds); return d * sumi; } #define VDR_IQ1_S_Q8_1_MMVQ 1 #define VDR_IQ1_S_Q8_1_MMQ 1 static __device__ __forceinline__ float vec_dot_iq1_s_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { const block_iq1_s * bq1 = (const block_iq1_s *) vbq + kbx; const int qs_packed = get_int_b2(bq1->qs, iqs); const uint8_t * qs = (const uint8_t *) &qs_packed; const int qh = bq1->qh[iqs]; int sumi = 0; #pragma unroll for (int l0 = 0; l0 < 8; l0 += 2) { const int grid = iq1s_grid_gpu[qs[l0/2] | (((qh >> 3*(l0/2)) & 0x07) << 8)]; const int grid0 = (grid >> 0) & 0x0F0F0F0F; const int grid1 = (grid >> 4) & 0x0F0F0F0F; const int u0 = get_int_b4(bq8_1[iqs].qs, l0 + 0); const int u1 = get_int_b4(bq8_1[iqs].qs, l0 + 1); sumi = ggml_cuda_dp4a(grid0, u0, sumi); sumi = ggml_cuda_dp4a(grid1, u1, sumi); } const float d1q = __half2float(bq1->d) * (((qh >> 11) & 0x0E) + 1); const float delta = -1.0f + IQ1S_DELTA - (qh & 0x8000) * (2.0f*IQ1S_DELTA/0x8000); const float2 ds = __half22float2(bq8_1[iqs].ds); return d1q * (ds.x*sumi + ds.y*delta); } #define VDR_IQ1_M_Q8_1_MMVQ 1 #define VDR_IQ1_M_Q8_1_MMQ 1 static __device__ __forceinline__ float vec_dot_iq1_m_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { const block_iq1_m * bq1 = (const block_iq1_m *) vbq + kbx; const int qs_packed = get_int_b4(bq1->qs, iqs); const uint8_t * qs = (const uint8_t *) &qs_packed; int sumi[2] = {0}; float sumf[2] = {0.0f}; #pragma unroll for (int l0 = 0; l0 < 8; l0 += 2) { const int qhl = bq1->qh[2*iqs + l0/4] >> (4 * ((l0/2) % 2)); const int grid = iq1s_grid_gpu[qs[l0/2] | ((qhl & 0x07) << 8)]; const int grid0 = (grid >> 0) & 0x0F0F0F0F; const int grid1 = (grid >> 4) & 0x0F0F0F0F; const int u0 = get_int_b4(bq8_1[iqs].qs, l0 + 0); const int u1 = get_int_b4(bq8_1[iqs].qs, l0 + 1); sumi[l0/4] = ggml_cuda_dp4a(grid0, u0, sumi[l0/4]); sumi[l0/4] = ggml_cuda_dp4a(grid1, u1, sumi[l0/4]); const float delta = -1.0f + IQ1M_DELTA - (qhl & 0x08) * (2.0f*IQ1M_DELTA/0x08); int sumy = 0; sumy = ggml_cuda_dp4a(u0, 0x01010101, sumy); sumy = ggml_cuda_dp4a(u1, 0x01010101, sumy); sumf[l0/4] += delta*sumy; } const uint16_t * sc = (const uint16_t *) bq1->scales; iq1m_scale_t scale; scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00F0) | ((sc[2] >> 4) & 0x0F00) | (sc[3] & 0xF000); const float d = __half2float(scale.f16) * __low2float(bq8_1[iqs].ds); const int tmp = sc[iqs/2] >> (6*(iqs%2)); const int sc0 = 2*((tmp >> 0) & 0x07) + 1; const int sc1 = 2*((tmp >> 3) & 0x07) + 1; return d * ((sumi[0] + sumf[0]) * sc0 + (sumi[1] + sumf[1]) * sc1); } static __device__ __forceinline__ int2 get_int_from_table_16(const int & q4) { const int q0_32 = (q4 >> 0) & 0x0F0F0F0F; const int8_t * q0_8 = (const int8_t *) &q0_32; const char4 val0_8 = make_char4( kvalues_iq4nl[q0_8[0]], kvalues_iq4nl[q0_8[1]], kvalues_iq4nl[q0_8[2]], kvalues_iq4nl[q0_8[3]]); const int q1_32 = (q4 >> 4) & 0x0F0F0F0F; const int8_t * q1_8 = (const int8_t *) &q1_32; const char4 val1_8 = make_char4( kvalues_iq4nl[q1_8[0]], kvalues_iq4nl[q1_8[1]], kvalues_iq4nl[q1_8[2]], kvalues_iq4nl[q1_8[3]]); return make_int2(*((const int *) &val0_8), *((const int *) &val1_8)); } #define VDR_IQ4_NL_Q8_1_MMVQ 2 #define VDR_IQ4_NL_Q8_1_MMQ 4 static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { const block_iq4_nl * bq4 = (const block_iq4_nl *) vbq + kbx; const int * q8 = (const int *) bq8_1->qs + iqs; int sumi = 0; #pragma unroll for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) { const int aux_q4 = get_int_b2(bq4->qs, iqs + l); const int2 v = get_int_from_table_16(aux_q4); sumi = ggml_cuda_dp4a(v.x, q8[l + 0], sumi); sumi = ggml_cuda_dp4a(v.y, q8[l + 4], sumi); } const float d = __half2float(bq4->d) * __low2float(bq8_1->ds); return d * sumi; } #define VDR_IQ4_XS_Q8_1_MMVQ 4 #define VDR_IQ4_XS_Q8_1_MMQ 4 static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1( const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) { const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq + kbx; int sumi = 0; #pragma unroll for (int j = 0; j < 4; ++j) { const int aux_q4 = get_int_b4(bq4->qs, iqs + j); const int2 v = get_int_from_table_16(aux_q4); const int u0 = get_int_b4(bq8_1[iqs/4].qs, j + 0); const int u1 = get_int_b4(bq8_1[iqs/4].qs, j + 4); sumi = ggml_cuda_dp4a(v.x, u0, sumi); sumi = ggml_cuda_dp4a(v.y, u1, sumi); } const int ls = ((bq4->scales_l[iqs/8] >> (iqs & 0x04)) & 0x0F) | (((bq4->scales_h >> (iqs/2)) & 0x03) << 4); sumi *= ls - 32; const float d = __half2float(bq4->d) * __low2float(bq8_1[iqs/4].ds); return d * sumi; }