#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _WIN32 #include #include // For _mkdir on Windows #else #include #include #include #endif #define ASYNCIO_CONCURRENCY 64 std::mutex lock; std::vector> shader_fnames; std::string GLSLC = "glslc"; std::string input_dir = "vulkan-shaders"; std::string output_dir = "/tmp"; std::string target_hpp = "ggml-vulkan-shaders.hpp"; std::string target_cpp = "ggml-vulkan-shaders.cpp"; bool no_clean = false; const std::vector type_names = { "f32", "f16", "q4_0", "q4_1", "q5_0", "q5_1", "q8_0", "q2_k", "q3_k", "q4_k", "q5_k", "q6_k" }; void execute_command(const std::string& command, std::string& stdout_str, std::string& stderr_str) { #ifdef _WIN32 HANDLE stdout_read, stdout_write; HANDLE stderr_read, stderr_write; SECURITY_ATTRIBUTES sa = { sizeof(SECURITY_ATTRIBUTES), NULL, TRUE }; if (!CreatePipe(&stdout_read, &stdout_write, &sa, 0) || !SetHandleInformation(stdout_read, HANDLE_FLAG_INHERIT, 0)) { throw std::runtime_error("Failed to create stdout pipe"); } if (!CreatePipe(&stderr_read, &stderr_write, &sa, 0) || !SetHandleInformation(stderr_read, HANDLE_FLAG_INHERIT, 0)) { throw std::runtime_error("Failed to create stderr pipe"); } PROCESS_INFORMATION pi; STARTUPINFOA si = { sizeof(STARTUPINFOA) }; si.dwFlags = STARTF_USESTDHANDLES; si.hStdOutput = stdout_write; si.hStdError = stderr_write; std::vector cmd(command.begin(), command.end()); cmd.push_back('\0'); if (!CreateProcessA(NULL, cmd.data(), NULL, NULL, TRUE, 0, NULL, NULL, &si, &pi)) { throw std::runtime_error("Failed to create process"); } CloseHandle(stdout_write); CloseHandle(stderr_write); std::array buffer; DWORD bytes_read; while (ReadFile(stdout_read, buffer.data(), buffer.size(), &bytes_read, NULL) && bytes_read > 0) { stdout_str.append(buffer.data(), bytes_read); } while (ReadFile(stderr_read, buffer.data(), buffer.size(), &bytes_read, NULL) && bytes_read > 0) { stderr_str.append(buffer.data(), bytes_read); } CloseHandle(stdout_read); CloseHandle(stderr_read); WaitForSingleObject(pi.hProcess, INFINITE); CloseHandle(pi.hProcess); CloseHandle(pi.hThread); #else int stdout_pipe[2]; int stderr_pipe[2]; if (pipe(stdout_pipe) != 0 || pipe(stderr_pipe) != 0) { throw std::runtime_error("Failed to create pipes"); } pid_t pid = fork(); if (pid < 0) { throw std::runtime_error("Failed to fork process"); } if (pid == 0) { close(stdout_pipe[0]); close(stderr_pipe[0]); dup2(stdout_pipe[1], STDOUT_FILENO); dup2(stderr_pipe[1], STDERR_FILENO); close(stdout_pipe[1]); close(stderr_pipe[1]); execl("/bin/sh", "sh", "-c", command.c_str(), (char*) nullptr); _exit(EXIT_FAILURE); } else { close(stdout_pipe[1]); close(stderr_pipe[1]); std::array buffer; ssize_t bytes_read; while ((bytes_read = read(stdout_pipe[0], buffer.data(), buffer.size())) > 0) { stdout_str.append(buffer.data(), bytes_read); } while ((bytes_read = read(stderr_pipe[0], buffer.data(), buffer.size())) > 0) { stderr_str.append(buffer.data(), bytes_read); } close(stdout_pipe[0]); close(stderr_pipe[0]); waitpid(pid, nullptr, 0); } #endif } bool directory_exists(const std::string& path) { struct stat info; if (stat(path.c_str(), &info) != 0) { return false; // Path doesn't exist or can't be accessed } return (info.st_mode & S_IFDIR) != 0; // Check if it is a directory } bool create_directory(const std::string& path) { #ifdef _WIN32 return _mkdir(path.c_str()) == 0 || errno == EEXIST; // EEXIST means the directory already exists #else return mkdir(path.c_str(), 0755) == 0 || errno == EEXIST; // 0755 is the directory permissions #endif } std::string to_uppercase(const std::string& input) { std::string result = input; for (char& c : result) { c = std::toupper(c); } return result; } bool string_ends_with(const std::string& str, const std::string& suffix) { if (suffix.size() > str.size()) { return false; } return std::equal(suffix.rbegin(), suffix.rend(), str.rbegin()); } #ifdef _WIN32 static const char path_separator = '\\'; #else static const char path_separator = '/'; #endif std::string join_paths(const std::string& path1, const std::string& path2) { return path1 + path_separator + path2; } std::string basename(const std::string &path) { return path.substr(path.find_last_of("/\\") + 1); } void string_to_spv(const std::string& _name, const std::string& in_fname, const std::map& defines, bool fp16 = true) { std::string name = _name + (fp16 ? "" : "_fp32"); std::string out_fname = join_paths(output_dir, name + ".spv"); std::string in_path = join_paths(input_dir, in_fname); std::vector cmd = {GLSLC, "-fshader-stage=compute", "--target-env=vulkan1.2", "-O", in_path, "-o", out_fname}; for (const auto& define : defines) { cmd.push_back("-D" + define.first + "=" + define.second); } std::string command; for (const auto& part : cmd) { command += part + " "; } std::string stdout_str, stderr_str; try { // std::cout << "Executing command: "; // for (const auto& part : cmd) { // std::cout << part << " "; // } // std::cout << std::endl; execute_command(command, stdout_str, stderr_str); if (!stderr_str.empty()) { std::cerr << "cannot compile " << name << "\n\n" << command << "\n\n" << stderr_str << std::endl; return; } std::lock_guard guard(lock); shader_fnames.push_back(std::make_pair(name, out_fname)); } catch (const std::exception& e) { std::cerr << "Error executing command for " << name << ": " << e.what() << std::endl; } } std::map merge_maps(const std::map& a, const std::map& b) { std::map result = a; result.insert(b.begin(), b.end()); return result; } void matmul_shaders(std::vector>& tasks, bool fp16, bool matmul_id) { std::string load_vec = fp16 ? "8" : "4"; std::string aligned_b_type_f32 = fp16 ? "mat2x4" : "vec4"; std::string aligned_b_type_f16 = fp16 ? "f16mat2x4" : "f16vec4"; std::map base_dict = {{"FLOAT_TYPE", fp16 ? "float16_t" : "float"}}; std::string shader_name = "matmul"; if (matmul_id) { base_dict["MUL_MAT_ID"] = "1"; shader_name = "matmul_id"; } if (fp16) { base_dict["FLOAT16"] = "1"; } // Shaders with f16 B_TYPE tasks.push_back(std::async(std::launch::async, [=] { string_to_spv(shader_name + "_f32_f16", "mul_mm.comp", merge_maps(base_dict, {{"DATA_A_F32", "1"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}}), fp16); })); tasks.push_back(std::async(std::launch::async, [=] { string_to_spv(shader_name + "_f32_f16_aligned", "mul_mm.comp", merge_maps(base_dict, {{"DATA_A_F32", "1"}, {"LOAD_VEC_A", load_vec}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"D_TYPE", "float"}}), fp16); })); tasks.push_back(std::async(std::launch::async, [=] { string_to_spv(shader_name + "_f16", "mul_mm.comp", merge_maps(base_dict, {{"DATA_A_F16", "1"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}}), fp16); })); tasks.push_back(std::async(std::launch::async, [=] { string_to_spv(shader_name + "_f16_aligned", "mul_mm.comp", merge_maps(base_dict, {{"DATA_A_F16", "1"}, {"LOAD_VEC_A", load_vec}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"D_TYPE", "float"}}), fp16); })); for (const auto& tname : type_names) { std::string data_a_key = "DATA_A_" + to_uppercase(tname); std::string load_vec_a = (tname == "f32" || tname == "f16") ? load_vec : "2"; tasks.push_back(std::async(std::launch::async, [=] { string_to_spv(shader_name + "_" + tname + "_f32", "mul_mm.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}), fp16); })); tasks.push_back(std::async(std::launch::async, [=] { string_to_spv(shader_name + "_" + tname + "_f32_aligned", "mul_mm.comp", merge_maps(base_dict, {{data_a_key, "2"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f32}, {"D_TYPE", "float"}}), fp16); })); } } void process_shaders(std::vector>& tasks) { std::cout << "ggml_vulkan: Generating and compiling shaders to SPIR-V" << std::endl; std::map base_dict = {{"FLOAT_TYPE", "float"}}; for (const auto& fp16 : {false, true}) { matmul_shaders(tasks, fp16, false); matmul_shaders(tasks, fp16, true); } for (const auto& tname : type_names) { // mul mat vec std::string data_a_key = "DATA_A_" + to_uppercase(tname); std::string shader = (string_ends_with(tname, "_k")) ? "mul_mat_vec_" + tname + ".comp" : "mul_mat_vec.comp"; tasks.push_back(std::async(std::launch::async, [=] { string_to_spv("mul_mat_vec_" + tname + "_f32_f32", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}})); })); tasks.push_back(std::async(std::launch::async, [=] { string_to_spv("mul_mat_vec_" + tname + "_f16_f32", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}})); })); tasks.push_back(std::async(std::launch::async, [=] { string_to_spv("mul_mat_vec_id_" + tname + "_f32", shader, merge_maps(base_dict, {{"MUL_MAT_ID", "1"}, {data_a_key, "1"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}})); })); // Dequant shaders if (tname != "f16") { tasks.push_back(std::async(std::launch::async, [=] { string_to_spv("dequant_" + tname, "dequant_" + tname + ".comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float16_t"}})); })); } if (!string_ends_with(tname, "_k")) { shader = (tname == "f32" || tname == "f16") ? "get_rows.comp" : "get_rows_quant.comp"; if (tname == "f16") { tasks.push_back(std::async(std::launch::async, [=] { string_to_spv("get_rows_" + tname, shader, {{data_a_key, "1"}, {"B_TYPE", "int"}, {"D_TYPE", "float16_t"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}}); })); } else { tasks.push_back(std::async(std::launch::async, [=] { string_to_spv("get_rows_" + tname, shader, {{data_a_key, "1"}, {"B_TYPE", "int"}, {"D_TYPE", "float16_t"}}); })); } tasks.push_back(std::async(std::launch::async, [=] { string_to_spv("get_rows_" + tname + "_f32", shader, {{data_a_key, "1"}, {"B_TYPE", "int"}, {"D_TYPE", "float"}}); })); } } tasks.push_back(std::async(std::launch::async, [] { string_to_spv("mul_mat_vec_p021_f16_f32", "mul_mat_vec_p021.comp", {{"A_TYPE", "float16_t"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}); })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("mul_mat_vec_nc_f16_f32", "mul_mat_vec_nc.comp", {{"A_TYPE", "float16_t"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}); })); // Norms tasks.push_back(std::async(std::launch::async, [=] { string_to_spv("norm_f32", "norm.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}})); })); tasks.push_back(std::async(std::launch::async, [=] { string_to_spv("rms_norm_f32", "rms_norm.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}})); })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("cpy_f32_f32", "copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("cpy_f32_f16", "copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float16_t"}}); })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("cpy_f16_f16", "copy.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}}); })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("add_f32", "add.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}}); })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("split_k_reduce", "mul_mat_split_k_reduce.comp", {}); })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("mul_f32", "mul.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}}); })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("div_f32", "div.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}}); })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("scale_f32", "scale.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}}); })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("sqr_f32", "square.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}}); })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("clamp_f32", "clamp.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}}); })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("gelu_f32", "gelu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("silu_f32", "silu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("relu_f32", "relu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("diag_mask_inf_f32", "diag_mask_inf.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); })); tasks.push_back(std::async(std::launch::async, [=] { string_to_spv("soft_max_f32", "soft_max.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}})); })); tasks.push_back(std::async(std::launch::async, [=] { string_to_spv("soft_max_f32_f16", "soft_max.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}})); })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("rope_norm_f32", "rope_norm.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("rope_norm_f16", "rope_norm.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}}); })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("rope_neox_f32", "rope_neox.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}}); })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("rope_neox_f16", "rope_neox.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}}); })); tasks.push_back(std::async(std::launch::async, [] { string_to_spv("argsort_f32", "argsort.comp", {{"A_TYPE", "float"}}); })); tasks.push_back(std::async(std::launch::async, [=] { string_to_spv("sum_rows_f32", "sum_rows.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}})); })); } void write_output_files() { FILE* hdr = fopen(target_hpp.c_str(), "w"); FILE* src = fopen(target_cpp.c_str(), "w"); fprintf(hdr, "#include \n\n"); fprintf(src, "#include \"%s\"\n\n", basename(target_hpp).c_str()); for (const auto& pair : shader_fnames) { const std::string& name = pair.first; const std::string& path = pair.second; FILE* spv = fopen(path.c_str(), "rb"); if (!spv) { std::cerr << "Error opening SPIR-V file: " << path << "\n"; continue; } fseek(spv, 0, SEEK_END); size_t size = ftell(spv); fseek(spv, 0, SEEK_SET); std::vector data(size); size_t read_size = fread(data.data(), 1, size, spv); fclose(spv); if (read_size != size) { std::cerr << "Error reading SPIR-V file: " << path << "\n"; continue; } fprintf(hdr, "extern unsigned char %s_data[%zu];\n", name.c_str(), size); fprintf(hdr, "const uint64_t %s_len = %zu;\n\n", name.c_str(), size); fprintf(src, "unsigned char %s_data[%zu] = {\n", name.c_str(), size); for (size_t i = 0; i < size; ++i) { fprintf(src, "0x%02x,", data[i]); if ((i + 1) % 12 == 0) fprintf(src, "\n"); } fprintf(src, "\n};\n\n"); if (!no_clean) { std::remove(path.c_str()); } } fclose(hdr); fclose(src); } int main(int argc, char** argv) { std::map args; for (int i = 1; i < argc; i += 2) { if (i + 1 < argc) { args[argv[i]] = argv[i + 1]; } } if (args.find("--glslc") != args.end()) { GLSLC = args["--glslc"]; // Path to glslc } if (args.find("--input-dir") != args.end()) { input_dir = args["--input-dir"]; // Directory containing shader sources } if (args.find("--output-dir") != args.end()) { output_dir = args["--output-dir"]; // Directory for containing SPIR-V output } if (args.find("--target-hpp") != args.end()) { target_hpp = args["--target-hpp"]; // Path to generated header file } if (args.find("--target-cpp") != args.end()) { target_cpp = args["--target-cpp"]; // Path to generated cpp file } if (args.find("--no-clean") != args.end()) { no_clean = true; // Keep temporary SPIR-V files in output-dir after build } if (!directory_exists(input_dir)) { std::cerr << "\"" << input_dir << "\" must be a valid directory containing shader sources" << std::endl; return EXIT_FAILURE; } if (!directory_exists(output_dir)) { if (!create_directory(output_dir)) { std::cerr << "Error creating output directory: " << output_dir << "\n"; return EXIT_FAILURE; } } std::vector> tasks; process_shaders(tasks); for (auto& task : tasks) { task.get(); } write_output_files(); return EXIT_SUCCESS; }