#include "ggml.h" #include "train.h" #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif #ifdef LLAMA_DEFAULT_RMS_EPS constexpr float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS; #else constexpr float rms_norm_eps = 5e-6f; #endif static void ggml_graph_compute_helper(std::vector & buf, ggml_cgraph * graph, int n_threads) { struct ggml_cplan plan = ggml_graph_plan(graph, n_threads); if (plan.work_size > 0) { buf.resize(plan.work_size); plan.work_data = buf.data(); } ggml_graph_compute(graph, &plan); } static struct ggml_tensor * randomize_tensor( struct ggml_tensor * tensor, int ndims, const int64_t ne[], float fmin, float fmax ) { switch (ndims) { case 1: for (int i0 = 0; i0 < ne[0]; i0++) { ((float *)tensor->data)[i0] = frand()*(fmax - fmin) + fmin; } break; case 2: for (int i1 = 0; i1 < ne[1]; i1++) { for (int i0 = 0; i0 < ne[0]; i0++) { ((float *)tensor->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; } } break; case 3: for (int i2 = 0; i2 < ne[2]; i2++) { for (int i1 = 0; i1 < ne[1]; i1++) { for (int i0 = 0; i0 < ne[0]; i0++) { ((float *)tensor->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; } } } break; case 4: for (int i3 = 0; i3 < ne[3]; i3++) { for (int i2 = 0; i2 < ne[2]; i2++) { for (int i1 = 0; i1 < ne[1]; i1++) { for (int i0 = 0; i0 < ne[0]; i0++) { ((float *)tensor->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; } } } } break; default: assert(false); }; return tensor; } struct llama_hparams { uint32_t n_vocab = 32000; uint32_t n_ctx = 512; // this is provided as user input? uint32_t n_embd = 4096; uint32_t n_mult = 4; uint32_t n_head = 32; uint32_t n_layer = 32; uint32_t n_rot = 64; bool operator!=(const llama_hparams & other) const { return memcmp(this, &other, sizeof(llama_hparams)); } }; static uint32_t get_n_ff(const struct llama_hparams* hparams) { const uint32_t n_ff = ((2*(4*hparams->n_embd)/3 + hparams->n_mult - 1)/hparams->n_mult)*hparams->n_mult; return n_ff; } struct llama_hparams_lora { uint32_t n_vocab = 32000; uint32_t n_ctx = 512; // this is provided as user input? uint32_t n_embd = 4096; uint32_t n_mult = 4; uint32_t n_head = 32; uint32_t n_layer = 32; uint32_t n_rot = 64; uint32_t n_lora = 64; bool operator!=(const llama_hparams_lora & other) const { return memcmp(this, &other, sizeof(llama_hparams_lora)) != 0; } }; struct llama_layer { // normalization struct ggml_tensor * attention_norm; // attention struct ggml_tensor * wq; struct ggml_tensor * wk; struct ggml_tensor * wv; struct ggml_tensor * wo; // normalization struct ggml_tensor * ffn_norm; // ff struct ggml_tensor * w1; struct ggml_tensor * w2; struct ggml_tensor * w3; }; struct llama_layer_lora { // normalization struct ggml_tensor * attention_norm; // attention struct ggml_tensor * wqa; struct ggml_tensor * wqb; struct ggml_tensor * wka; struct ggml_tensor * wkb; struct ggml_tensor * wva; struct ggml_tensor * wvb; struct ggml_tensor * woa; struct ggml_tensor * wob; // normalization struct ggml_tensor * ffn_norm; // ff struct ggml_tensor * w1; struct ggml_tensor * w2; struct ggml_tensor * w3; }; struct llama_kv_cache { struct ggml_context * ctx = NULL; struct ggml_tensor * k; struct ggml_tensor * v; // llama_ctx_buffer buf; int n; // number of tokens currently in the cache }; struct llama_model { struct ggml_context * ctx = NULL; llama_hparams hparams; struct ggml_tensor * tok_embeddings; struct ggml_tensor * norm; struct ggml_tensor * output; std::vector layers; }; struct llama_model_lora { struct ggml_context * ctx = NULL; llama_hparams_lora hparams; struct ggml_tensor * tok_embeddings; struct ggml_tensor * norm; struct ggml_tensor * outputa; struct ggml_tensor * outputb; std::vector layers; }; static void init_model(struct llama_model * model) { const auto & hparams = model->hparams; const uint32_t n_embd = hparams.n_embd; const uint32_t n_layer = hparams.n_layer; const uint32_t n_vocab = hparams.n_vocab; const uint32_t n_ff = get_n_ff(&hparams); struct ggml_context * ctx = model->ctx; model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); // ("tok_embeddings.weight", {n_embd, n_vocab}); model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // ("norm.weight", {n_embd}); model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); // ("output.weight", {n_embd, n_vocab}); model->layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { auto & layer = model->layers[i]; // std::string layers_i = "layers." + std::to_string(i); layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // (layers_i + ".attention_norm.weight", {n_embd}); layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); // (layers_i + ".attention.wq.weight", {n_embd, n_embd}); layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); // (layers_i + ".attention.wk.weight", {n_embd, n_embd}); layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); // (layers_i + ".attention.wv.weight", {n_embd, n_embd}); layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); // (layers_i + ".attention.wo.weight", {n_embd, n_embd}); layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // (layers_i + ".ffn_norm.weight", {n_embd}); layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); // (layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}); layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd); // (layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}); layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); // (layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}); } } static void init_model_lora(struct llama_model_lora * model) { const auto & hparams = model->hparams; const uint32_t n_embd = hparams.n_embd; const uint32_t n_mult = hparams.n_mult; const uint32_t n_layer = hparams.n_layer; const uint32_t n_vocab = hparams.n_vocab; const uint32_t n_lora = hparams.n_lora; const uint32_t n_ff = ((2*(4*n_embd)/3 + n_mult - 1)/n_mult)*n_mult; struct ggml_context * ctx = model->ctx; model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); // ("tok_embeddings.weight", {n_embd, n_vocab}); model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // ("norm.weight", {n_embd}); model->outputa = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_lora, n_vocab); // ("output.weight", {n_embd, n_vocab}); model->outputb = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_lora); // ("output.weight", {n_embd, n_vocab}); model->layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { auto & layer = model->layers[i]; // std::string layers_i = "layers." + std::to_string(i); layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // (layers_i + ".attention_norm.weight", {n_embd}); layer.wqa = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_lora, n_embd); // (layers_i + ".attention.wq.weight", {n_embd, n_embd}); layer.wqb = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_lora); // (layers_i + ".attention.wq.weight", {n_embd, n_embd}); layer.wka = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_lora, n_embd); // (layers_i + ".attention.wk.weight", {n_embd, n_embd}); layer.wkb = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_lora); // (layers_i + ".attention.wk.weight", {n_embd, n_embd}); layer.wva = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_lora, n_embd); // (layers_i + ".attention.wv.weight", {n_embd, n_embd}); layer.wvb = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_lora); // (layers_i + ".attention.wv.weight", {n_embd, n_embd}); layer.woa = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_lora, n_embd); // (layers_i + ".attention.wo.weight", {n_embd, n_embd}); layer.wob = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_lora); // (layers_i + ".attention.wo.weight", {n_embd, n_embd}); layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // (layers_i + ".ffn_norm.weight", {n_embd}); layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); // (layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}); layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd); // (layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}); layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); // (layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}); } } static void set_param_model(struct llama_model * model) { const auto& hparams = model->hparams; const uint32_t n_layer = hparams.n_layer; struct ggml_context* ctx = model->ctx; ggml_set_param(ctx, model->tok_embeddings); ggml_set_param(ctx, model->norm); ggml_set_param(ctx, model->output); for (uint32_t i = 0; i < n_layer; ++i) { auto & layer = model->layers[i]; ggml_set_param(ctx, layer.attention_norm); ggml_set_param(ctx, layer.wq); ggml_set_param(ctx, layer.wk); ggml_set_param(ctx, layer.wv); ggml_set_param(ctx, layer.wo); ggml_set_param(ctx, layer.ffn_norm); ggml_set_param(ctx, layer.w1); ggml_set_param(ctx, layer.w2); ggml_set_param(ctx, layer.w3); } } static void set_param_model_lora(struct llama_model_lora * model) { const auto& hparams = model->hparams; const uint32_t n_layer = hparams.n_layer; struct ggml_context* ctx = model->ctx; ggml_set_param(ctx, model->tok_embeddings); ggml_set_param(ctx, model->norm); ggml_set_param(ctx, model->outputa); ggml_set_param(ctx, model->outputb); for (uint32_t i = 0; i < n_layer; ++i) { auto & layer = model->layers[i]; ggml_set_param(ctx, layer.attention_norm); ggml_set_param(ctx, layer.wqa); ggml_set_param(ctx, layer.wqb); ggml_set_param(ctx, layer.wka); ggml_set_param(ctx, layer.wkb); ggml_set_param(ctx, layer.wva); ggml_set_param(ctx, layer.wvb); ggml_set_param(ctx, layer.woa); ggml_set_param(ctx, layer.wob); ggml_set_param(ctx, layer.ffn_norm); ggml_set_param(ctx, layer.w1); ggml_set_param(ctx, layer.w2); ggml_set_param(ctx, layer.w3); } } static void randomize_model(struct llama_model * model, int seed, float mean, float std, float min, float max) { const auto & hparams = model->hparams; const uint32_t n_layer = hparams.n_layer; struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max); randomize_tensor_normal(model->tok_embeddings , rnd); randomize_tensor_normal(model->norm , rnd); randomize_tensor_normal(model->output , rnd); for (uint32_t i = 0; i < n_layer; ++i) { auto & layer = model->layers[i]; randomize_tensor_normal(layer.attention_norm, rnd); randomize_tensor_normal(layer.wq, rnd); randomize_tensor_normal(layer.wk, rnd); randomize_tensor_normal(layer.wv, rnd); randomize_tensor_normal(layer.wo, rnd); randomize_tensor_normal(layer.ffn_norm, rnd); randomize_tensor_normal(layer.w1, rnd); randomize_tensor_normal(layer.w2, rnd); randomize_tensor_normal(layer.w3, rnd); } free_random_normal_distribution(rnd); } static void randomize_model_lora( struct llama_model_lora * model, int seed, float mean, float std, float min, float max ) { const auto & hparams = model->hparams; const uint32_t n_layer = hparams.n_layer; struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max); randomize_tensor_normal(model->tok_embeddings, rnd); randomize_tensor_normal(model->norm , rnd); randomize_tensor_normal(model->outputa , rnd); randomize_tensor_normal(model->outputb , rnd); for (uint32_t i = 0; i < n_layer; ++i) { auto & layer = model->layers[i]; randomize_tensor_normal(layer.attention_norm, rnd); randomize_tensor_normal(layer.wqa, rnd); randomize_tensor_normal(layer.wqb, rnd); randomize_tensor_normal(layer.wka, rnd); randomize_tensor_normal(layer.wkb, rnd); randomize_tensor_normal(layer.wva, rnd); randomize_tensor_normal(layer.wvb, rnd); randomize_tensor_normal(layer.woa, rnd); randomize_tensor_normal(layer.wob, rnd); randomize_tensor_normal(layer.ffn_norm, rnd); randomize_tensor_normal(layer.w1, rnd); randomize_tensor_normal(layer.w2, rnd); randomize_tensor_normal(layer.w3, rnd); } free_random_normal_distribution(rnd); } static bool init_kv_cache(struct llama_kv_cache* cache, struct llama_model * model, int n_batch) { const auto & hparams = model->hparams; const uint32_t n_ctx = hparams.n_ctx; const uint32_t n_embd = hparams.n_embd; const uint32_t n_layer = hparams.n_layer; const int64_t n_mem = n_layer*n_ctx*n_batch; const int64_t n_elements = n_embd*n_mem; // cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB); // struct ggml_init_params params; // params.mem_size = cache.buf.size; // params.mem_buffer = cache.buf.addr; // params.no_alloc = false; if (!cache->ctx) { struct ggml_init_params params; params.mem_size = 2u*n_elements*ggml_type_size(GGML_TYPE_F32) + 2u*1024*1024; params.mem_buffer = NULL; params.no_alloc = false; cache->ctx = ggml_init(params); if (!cache->ctx) { fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__); return false; } } cache->k = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements); cache->v = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements); return true; } static bool init_kv_cache_lora(struct llama_kv_cache* cache, struct llama_model_lora * model, int n_batch) { const auto & hparams = model->hparams; const uint32_t n_ctx = hparams.n_ctx; const uint32_t n_embd = hparams.n_embd; const uint32_t n_layer = hparams.n_layer; const int64_t n_mem = n_layer*n_ctx*n_batch; const int64_t n_elements = n_embd*n_mem; // cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB); // struct ggml_init_params params; // params.mem_size = cache.buf.size; // params.mem_buffer = cache.buf.addr; // params.no_alloc = false; if (!cache->ctx) { struct ggml_init_params params; params.mem_size = 2u*n_elements*ggml_type_size(GGML_TYPE_F32) + 2u*1024*1024; params.mem_buffer = NULL; params.no_alloc = false; cache->ctx = ggml_init(params); if (!cache->ctx) { fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__); return false; } } cache->k = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements); cache->v = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements); return true; } static struct ggml_tensor * forward( struct llama_model * model, struct llama_kv_cache * cache, struct ggml_context * ctx0, struct ggml_cgraph * gf, struct ggml_tensor * tokens_input, const int n_tokens, const int n_past ) { const int N = n_tokens; struct llama_kv_cache& kv_self = *cache; const auto & hparams = model->hparams; const int n_ctx = hparams.n_ctx; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_head = hparams.n_head; const int n_rot = hparams.n_rot; struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(tokens->data, tokens_input->data, N*ggml_element_size(tokens)); struct ggml_tensor * kc = kv_self.k; struct ggml_tensor * vc = kv_self.v; struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); { int * data = (int *) KQ_pos->data; for (int i = 0; i < N; ++i) { data[i] = n_past + i; } } // inpL shape [n_embd,N,1,1] struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; struct ggml_tensor * cur; // lctx.use_buf(ctx0, 0); // norm { // cur shape [n_embd,N,1,1] cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps); // cur = attention_norm*cur cur = ggml_mul(ctx0, ggml_repeat(ctx0, model->layers[il].attention_norm, cur), cur); } // self-attention { // compute Q and K and RoPE them // wq shape [n_embd, n_embd, 1, 1] // wk shape [n_embd, n_embd, 1, 1] // Qcur shape [n_embd/n_head, n_head, N, 1] // Kcur shape [n_embd/n_head, n_head, N, 1] struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0, 0); struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0, 0); // store key and value to memory { // compute the transposed [N, n_embd] V matrix // wv shape [n_embd, n_embd, 1, 1] // Vcur shape [n_embd, N, 1, 1] struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wv, cur), n_embd, N))); // kv_self.k shape [n_embd * n_ctx * n_layer, 1] // kv_self.v shape [n_embd * n_ctx * n_layer, 1] // k shape [n_embd * N, 1] == kv_self.k[:,n_past:n_past+N,il,0] // v shape [N, n_embd, 1, 1] == kv_self.v[:,n_past:n_past+N,il,0] /* { struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd, ( n_ctx)*ggml_element_size(kv_self.v), (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v)); // important: storing RoPE-ed version of K in the KV cache! ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); } //*/ kc = ggml_set_1d(ctx0, kc, ggml_reshape_1d(ctx0, Kcur, n_embd*N), (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); vc = ggml_set_2d(ctx0, vc, Vcur, ( n_ctx)*ggml_element_size(kv_self.v), (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v)); } // Qcur shape [n_embd/n_head, n_head, N, 1] // Q shape [n_embd/n_head, N, n_head, 1] struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); // kv_self.k shape [n_embd * n_ctx * n_layer, 1] // K shape [n_embd/n_head, n_past + N, n_head, 1] struct ggml_tensor * K = ggml_permute(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, kc, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kc)*n_embd), n_embd/n_head, n_head, n_past + N), 0, 2, 1, 3); // K * Q // KQ shape [n_past + N, N, n_head, 1] struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); // KQ_scaled = KQ / sqrt(n_embd/n_head) // KQ_scaled shape [n_past + N, N, n_head, 1] struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head))); // KQ_masked = mask_past(KQ_scaled) // KQ_masked shape [n_past + N, N, n_head, 1] struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past); // KQ = soft_max(KQ_masked) // KQ_soft_max shape [n_past + N, N, n_head, 1] struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); // split cached V into n_head heads //// V shape [n_past + N, n_embd/n_head, n_head, 1] // V shape [n_past + N, n_embd/n_head, n_head, 1] == kv_self.v[:,:(n_past+N),il,1] struct ggml_tensor * V = ggml_view_3d(ctx0, vc, n_past + N, n_embd/n_head, n_head, n_ctx*ggml_element_size(vc), n_ctx*ggml_element_size(vc)*n_embd/n_head, il*n_ctx*ggml_element_size(vc)*n_embd); // KQV shape [n_embd/n_head, N, n_head, 1] struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); // KQV_merged = KQV.permute(0, 2, 1, 3) // KQV_merged shape [n_embd/n_head, n_head, N, 1] struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); // KQV_merged shape // cur = KQV_merged.contiguous().view(n_embd, N) // cur shape [n_embd,N,1,1] cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N); // cur = ggml_cpy(ctx0, // KQV_merged, // ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); // projection (no bias) // cur shape [n_embd,N,1,1] cur = ggml_mul_mat(ctx0, model->layers[il].wo, cur); } // lctx.use_buf(ctx0, 1); // inpFF shape [n_embd,N,1,1] struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA); // feed-forward network { // norm { // cur shape [n_embd,N,1,1] cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps); // cur = ffn_norm*cur // cur shape [n_embd,N,1,1] cur = ggml_mul(ctx0, ggml_repeat(ctx0, model->layers[il].ffn_norm, cur), cur); } // tmp shape [n_ff,N,1,1] struct ggml_tensor * tmp = ggml_mul_mat(ctx0, model->layers[il].w3, cur); // cur shape [n_ff,N,1,1] cur = ggml_mul_mat(ctx0, model->layers[il].w1, cur); // SILU activation // cur shape [n_ff,N,1,1] cur = ggml_silu(ctx0, cur); // cur shape [n_ff,N,1,1] cur = ggml_mul(ctx0, cur, tmp); // cur shape [n_embd,N,1,1] cur = ggml_mul_mat(ctx0, model->layers[il].w2, cur); } // cur shape [n_embd,N,1,1] cur = ggml_add(ctx0, cur, inpFF); // input for next layer // inpL shape [n_embd,N,1,1] inpL = cur; } // norm { // inpL shape [n_embd,N,1,1] inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps); // inpL = norm*inpL // inpL shape [n_embd,N,1,1] inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model->norm, inpL), inpL); //embeddings = inpL; } // lm_head // inpL shape [n_vocab,N,1,1] inpL = ggml_mul_mat(ctx0, model->output, inpL); // run the computation ggml_build_forward_expand(gf, inpL); return inpL; } static struct ggml_tensor * forward_batch( struct llama_model * model, struct llama_kv_cache * cache, struct ggml_context * ctx0, struct ggml_cgraph * gf, struct ggml_tensor * tokens_input, const int n_tokens, const int n_past, const int n_batch ) { const int N = n_tokens; struct llama_kv_cache& kv_self = *cache; const auto & hparams = model->hparams; const int n_ctx = hparams.n_ctx; const int n_vocab = hparams.n_vocab; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_head = hparams.n_head; const int n_rot = hparams.n_rot; const int n_ff = get_n_ff(&hparams); struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N*n_batch); memcpy(tokens->data, tokens_input->data, ggml_element_size(tokens)*N*n_batch); struct ggml_tensor * kc = kv_self.k; struct ggml_tensor * vc = kv_self.v; struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); { int * data = (int *) KQ_pos->data; for (int i = 0; i < N; ++i) { data[i] = n_past + i; } } // inpL shape [n_embd,N*n_batch,1] struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens); assert_shape_2d(inpL, n_embd, N*n_batch); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; struct ggml_tensor * cur; // lctx.use_buf(ctx0, 0); // norm { // cur shape [n_embd,N*n_batch,1,1] cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps); assert_shape_2d(cur, n_embd, N*n_batch); // cur = attention_norm*cur cur = ggml_mul(ctx0, ggml_repeat(ctx0, model->layers[il].attention_norm, cur), cur); assert_shape_2d(cur, n_embd, N*n_batch); } // self-attention { // compute Q and K and RoPE them // wq shape [n_embd, n_embd, 1, 1] // wk shape [n_embd, n_embd, 1, 1] // Qcur shape [n_embd/n_head, n_head, N, n_batch] // Kcur shape [n_embd/n_head, n_head, N, n_batch] struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), KQ_pos, n_rot, 0, 0); struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), KQ_pos, n_rot, 0, 0); assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch); assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch); // store key and value to memory { // compute the transposed [N, n_embd] V matrix // wv shape [n_embd, n_embd, 1, 1] // Vcur shape [N, n_embd, n_batch, 1] struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_permute(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wv, cur), n_embd, N, n_batch), 1, 0, 2, 3)); assert_shape_3d(Vcur, N, n_embd, n_batch); // kv_self.k shape [n_embd * n_ctx * n_batch * n_layer] // kv_self.v shape [n_ctx * n_embd * n_batch * n_layer] // k shape [n_embd * N, n_batch] == kv_self.k[:,n_past:n_past+N,:,il] // v shape [N, n_embd, n_batch, 1] == kv_self.v[:,n_past:n_past+N,:,il] /* { struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd, ( n_ctx)*ggml_element_size(kv_self.v), (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v)); // important: storing RoPE-ed version of K in the KV cache! ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); } //*/ kc = ggml_set_2d(ctx0, kc, ggml_reshape_2d(ctx0, Kcur, n_embd*N, n_batch), ggml_element_size(kc)*n_embd*n_ctx, (ggml_element_size(kc)*n_embd)*(il*n_batch*n_ctx + n_past)); vc = ggml_set_2d(ctx0, vc, ggml_reshape_2d(ctx0, Vcur, N*n_embd, n_batch), ggml_element_size(vc)*n_ctx*n_embd, ggml_element_size(vc)*(n_past + il*n_embd*n_batch*n_ctx)); assert_shape_1d(kc, n_embd * n_ctx * n_batch * n_layer); assert_shape_1d(vc, n_embd * n_ctx * n_batch * n_layer); } // Qcur shape [n_embd/n_head, n_head, N, n_batch] // Q shape [n_embd/n_head, N, n_head, n_batch] struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); assert_shape_4d(Q, n_embd/n_head, N, n_head, n_batch); // kv_self.k shape [n_embd * n_ctx * n_batch * n_layer] // K shape [n_embd/n_head, n_past + N, n_head, n_batch] struct ggml_tensor * K = ggml_permute(ctx0, ggml_reshape_4d(ctx0, ggml_view_3d(ctx0, kc, n_embd, (n_past + N), n_batch, n_embd*ggml_element_size(kc), n_ctx*n_embd*ggml_element_size(kc), il*n_batch*n_ctx*n_embd*ggml_element_size(kc)), n_embd/n_head, n_head, n_past + N, n_batch), 0, 2, 1, 3); assert_shape_4d(K, n_embd/n_head, n_past + N, n_head, n_batch); // K * Q // KQ shape [n_past + N, N, n_head, n_batch] struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); assert_shape_4d(KQ, n_past + N, N, n_head, n_batch); // KQ_scaled = KQ / sqrt(n_embd/n_head) // KQ_scaled shape [n_past + N, N, n_head, n_batch] struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head))); assert_shape_4d(KQ_scaled, n_past + N, N, n_head, n_batch); // KQ_masked = mask_past(KQ_scaled) // KQ_masked shape [n_past + N, N, n_head, n_batch] struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past); assert_shape_4d(KQ_masked, n_past + N, N, n_head, n_batch); // KQ = soft_max(KQ_masked) // KQ_soft_max shape [n_past + N, N, n_head, n_batch] struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); assert_shape_4d(KQ_soft_max, n_past + N, N, n_head, n_batch); // split cached V into n_head heads // kv_self.v shape [n_ctx * n_embd * n_batch * n_layer] // V shape [n_past + N, n_embd/n_head, n_head, n_batch] == kv_self.v[:(n_past+N),:,:,il] struct ggml_tensor * V = ggml_view_4d(ctx0, vc, n_past + N, n_embd/n_head, n_head, n_batch, ggml_element_size(vc)*n_ctx, ggml_element_size(vc)*n_ctx*n_embd/n_head, ggml_element_size(vc)*n_ctx*n_embd, il*n_batch*n_ctx*n_embd*ggml_element_size(vc)); assert_shape_4d(V, n_past + N, n_embd/n_head, n_head, n_batch); // KQV shape [n_embd/n_head, N, n_head, n_batch] struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); assert_shape_4d(KQV, n_embd/n_head, N, n_head, n_batch); // KQV_merged = KQV.permute(0, 2, 1, 3) // KQV_merged shape [n_embd/n_head, n_head, N, n_batch] struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); assert_shape_4d(KQV_merged, n_embd/n_head, n_head, N, n_batch); // KQV_merged shape // cur = KQV_merged.contiguous().view(n_embd, N) // cur shape [n_embd,N*n_batch,1,1] cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N*n_batch); assert_shape_2d(cur, n_embd, N*n_batch); // cur = ggml_cpy(ctx0, // KQV_merged, // ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); // projection (no bias) // cur shape [n_embd,N*n_batch,1,1] cur = ggml_mul_mat(ctx0, model->layers[il].wo, cur); assert_shape_2d(cur, n_embd, N*n_batch); } // lctx.use_buf(ctx0, 1); // inpFF shape [n_embd,N*n_batch,1,1] struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA); assert_shape_2d(inpFF, n_embd, N*n_batch); // feed-forward network { // norm { // cur shape [n_embd,N*n_batch,1,1] cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps); assert_shape_2d(cur, n_embd, N*n_batch); // cur = ffn_norm*cur // cur shape [n_embd,N*n_batch,1,1] cur = ggml_mul(ctx0, ggml_repeat(ctx0, model->layers[il].ffn_norm, cur), cur); assert_shape_2d(cur, n_embd, N*n_batch); } // tmp shape [n_ff,N*n_batch,1,1] struct ggml_tensor * tmp = ggml_mul_mat(ctx0, model->layers[il].w3, cur); assert_shape_2d(tmp, n_ff, N*n_batch); // cur shape [n_ff,N*n_batch,1,1] cur = ggml_mul_mat(ctx0, model->layers[il].w1, cur); assert_shape_2d(cur, n_ff, N*n_batch); // SILU activation // cur shape [n_ff,N*n_batch,1,1] cur = ggml_silu(ctx0, cur); assert_shape_2d(cur, n_ff, N*n_batch); // cur shape [n_ff,N*n_batch,1,1] cur = ggml_mul(ctx0, cur, tmp); assert_shape_2d(cur, n_ff, N*n_batch); // cur shape [n_embd,N*n_batch,1,1] cur = ggml_mul_mat(ctx0, model->layers[il].w2, cur); assert_shape_2d(cur, n_embd, N*n_batch); } // cur shape [n_embd,N*n_batch,1,1] cur = ggml_add(ctx0, cur, inpFF); assert_shape_2d(cur, n_embd, N*n_batch); // input for next layer // inpL shape [n_embd,N*n_batch,1,1] inpL = cur; assert_shape_2d(inpL, n_embd, N*n_batch); } // norm { // inpL shape [n_embd,N*n_batch,1,1] inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps); assert_shape_2d(inpL, n_embd, N*n_batch); // inpL = norm*inpL // inpL shape [n_embd,N*n_batch,1,1] inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model->norm, inpL), inpL); assert_shape_2d(inpL, n_embd, N*n_batch); //embeddings = inpL; } // lm_head // inpL shape [n_vocab,N*n_batch,1,1] inpL = ggml_mul_mat(ctx0, model->output, inpL); assert_shape_2d(inpL, n_vocab, N*n_batch); { // inpL shape [n_vocab,N,n_batch,1] inpL = ggml_reshape_3d(ctx0, inpL, n_vocab, N, n_batch); assert_shape_3d(inpL, n_vocab, N, n_batch); } // run the computation ggml_build_forward_expand(gf, inpL); return inpL; } static struct ggml_tensor * forward_lora( struct llama_model_lora * model, struct llama_kv_cache * cache, struct ggml_context * ctx0, struct ggml_cgraph * gf, struct ggml_tensor * tokens_input, const int n_tokens, const int n_past ) { const int N = n_tokens; struct llama_kv_cache& kv_self = *cache; const auto & hparams = model->hparams; const int n_ctx = hparams.n_ctx; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_head = hparams.n_head; const int n_rot = hparams.n_rot; struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(tokens->data, tokens_input->data, N*ggml_element_size(tokens)); struct ggml_tensor * kc = kv_self.k; struct ggml_tensor * vc = kv_self.v; struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); { int * data = (int *) KQ_pos->data; for (int i = 0; i < N; ++i) { data[i] = n_past + i; } } // inpL shape [n_embd,N,1,1] struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; struct ggml_tensor * cur; // norm { // cur shape [n_embd,N,1,1] cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps); // cur = attention_norm*cur cur = ggml_mul(ctx0, ggml_repeat(ctx0, model->layers[il].attention_norm, cur), cur); } // self-attention { // compute Q and K and RoPE them // wq shape [n_embd, n_embd, 1, 1] // wk shape [n_embd, n_embd, 1, 1] // Qcur shape [n_embd/n_head, n_head, N, 1] // Kcur shape [n_embd/n_head, n_head, N, 1] struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wqa, ggml_mul_mat(ctx0, model->layers[il].wqb, cur)), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0, 0); struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wka, ggml_mul_mat(ctx0, model->layers[il].wkb, cur)), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0, 0); // store key and value to memory { // compute the transposed [N, n_embd] V matrix // wv shape [n_embd, n_embd, 1, 1] // Vcur shape [n_embd, N, 1, 1] struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wva, ggml_mul_mat(ctx0, model->layers[il].wvb, cur)), n_embd, N))); // kv_self.k shape [n_embd * n_ctx * n_layer, 1] // kv_self.v shape [n_embd * n_ctx * n_layer, 1] // k shape [n_embd * N, 1] == kv_self.k[:,n_past:n_past+N,il,0] // v shape [N, n_embd, 1, 1] == kv_self.v[:,n_past:n_past+N,il,0] /* { struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd, ( n_ctx)*ggml_element_size(kv_self.v), (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v)); // important: storing RoPE-ed version of K in the KV cache! ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); } //*/ kc = ggml_set_1d(ctx0, kc, ggml_reshape_1d(ctx0, Kcur, n_embd*N), (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); vc = ggml_set_2d(ctx0, vc, Vcur, ( n_ctx)*ggml_element_size(kv_self.v), (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v)); } // Qcur shape [n_embd/n_head, n_head, N, 1] // Q shape [n_embd/n_head, N, n_head, 1] struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); // kv_self.k shape [n_embd * n_ctx * n_layer, 1] // K shape [n_embd/n_head, n_past + N, n_head, 1] struct ggml_tensor * K = ggml_permute(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, kc, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kc)*n_embd), n_embd/n_head, n_head, n_past + N), 0, 2, 1, 3); // K * Q // KQ shape [n_past + N, N, n_head, 1] struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); // KQ_scaled = KQ / sqrt(n_embd/n_head) // KQ_scaled shape [n_past + N, N, n_head, 1] struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head))); // KQ_masked = mask_past(KQ_scaled) // KQ_masked shape [n_past + N, N, n_head, 1] struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past); // KQ = soft_max(KQ_masked) // KQ_soft_max shape [n_past + N, N, n_head, 1] struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); // split cached V into n_head heads //// V shape [n_past + N, n_embd/n_head, n_head, 1] // V shape [n_past + N, n_embd/n_head, n_head, 1] == kv_self.v[:,:(n_past+N),il,1] struct ggml_tensor * V = ggml_view_3d(ctx0, vc, n_past + N, n_embd/n_head, n_head, n_ctx*ggml_element_size(vc), n_ctx*ggml_element_size(vc)*n_embd/n_head, il*n_ctx*ggml_element_size(vc)*n_embd); // KQV shape [n_embd/n_head, N, n_head, 1] struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); // KQV_merged = KQV.permute(0, 2, 1, 3) // KQV_merged shape [n_embd/n_head, n_head, N, 1] struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); // KQV_merged shape // cur = KQV_merged.contiguous().view(n_embd, N) // cur shape [n_embd,N,1,1] cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N); // cur = ggml_cpy(ctx0, // KQV_merged, // ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); // projection (no bias) // cur shape [n_embd,N,1,1] cur = ggml_mul_mat(ctx0, model->layers[il].woa, ggml_mul_mat(ctx0, model->layers[il].wob, cur)); } // inpFF shape [n_embd,N,1,1] struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA); // feed-forward network { // norm { // cur shape [n_embd,N,1,1] cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps); // cur = ffn_norm*cur // cur shape [n_embd,N,1,1] cur = ggml_mul(ctx0, ggml_repeat(ctx0, model->layers[il].ffn_norm, cur), cur); } // tmp shape [n_ff,N,1,1] struct ggml_tensor * tmp = ggml_mul_mat(ctx0, model->layers[il].w3, cur); // cur shape [n_ff,N,1,1] cur = ggml_mul_mat(ctx0, model->layers[il].w1, cur); // SILU activation // cur shape [n_ff,N,1,1] cur = ggml_silu(ctx0, cur); // cur shape [n_ff,N,1,1] cur = ggml_mul(ctx0, cur, tmp); // cur shape [n_embd,N,1,1] cur = ggml_mul_mat(ctx0, model->layers[il].w2, cur); } // cur shape [n_embd,N,1,1] cur = ggml_add(ctx0, cur, inpFF); // input for next layer // inpL shape [n_embd,N,1,1] inpL = cur; } // norm { // inpL shape [n_embd,N,1,1] inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps); // inpL = norm*inpL // inpL shape [n_embd,N,1,1] inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model->norm, inpL), inpL); //embeddings = inpL; } // lm_head // inpL shape [n_vocab,N,1,1] inpL = ggml_mul_mat(ctx0, model->outputa, ggml_mul_mat(ctx0, model->outputb, inpL)); // ggml_set_scratch(ctx0, { 0, 0, nullptr, }); // run the computation ggml_build_forward_expand(gf, inpL); return inpL; } static void sample_softmax(struct ggml_tensor * logits, struct ggml_tensor * probs, struct ggml_tensor * best_samples) { assert(logits->n_dims == 2); assert(probs->n_dims == 2); assert(best_samples->n_dims == 1); assert(logits->ne[1] == best_samples->ne[0]); assert(logits->ne[0] == probs->ne[0]); assert(logits->ne[1] == probs->ne[1]); for (int i = 0; i < logits->ne[1]; ++i) { float max_logit = ggml_get_f32_1d(logits, i * logits->ne[0]); ggml_set_i32_1d(best_samples, i, 0); for (int k = 0; k < logits->ne[0]; ++k) { float logit = ggml_get_f32_1d(logits, i * logits->ne[0] + k); if (logit > max_logit) { max_logit = logit; ggml_set_i32_1d(best_samples, i, k); } } float psum = 0; for (int k = 0; k < logits->ne[0]; ++k) { float logit = ggml_get_f32_1d(logits, i * logits->ne[0] + k); float p = (logit == -INFINITY) ? 0 : expf(logit - max_logit); psum += p; ggml_set_f32_1d(probs, i * probs->ne[0] + k, p); } for (int k = 0; k < logits->ne[0]; ++k) { float p = ggml_get_f32_1d(probs, i*probs->ne[0] + k); ggml_set_f32_1d(probs, i * probs->ne[0] + k, p / psum); } } } static void sample_softmax_batch( struct ggml_context * ctx, struct ggml_tensor * logits, struct ggml_tensor * probs, struct ggml_tensor * best_samples ) { GGML_ASSERT(best_samples->n_dims == 2); GGML_ASSERT(logits->n_dims == 3); GGML_ASSERT(probs->n_dims == 3); int n_tokens = best_samples->ne[0]; int n_batch = best_samples->ne[1]; int n_vocab = logits->ne[0]; GGML_ASSERT(n_tokens == logits->ne[1]); GGML_ASSERT(n_batch == logits->ne[2]); GGML_ASSERT(n_vocab == probs->ne[0]); GGML_ASSERT(n_tokens == probs->ne[1]); GGML_ASSERT(n_batch == probs->ne[2]); for (int k = 0; k < n_batch; ++k) { struct ggml_tensor * best_samples_k = ggml_view_1d(ctx, best_samples, best_samples->ne[0], k*best_samples->nb[1]); struct ggml_tensor * logits_k = ggml_view_2d(ctx, logits, logits->ne[0], logits->ne[1], logits->nb[1], k*logits->nb[2]); struct ggml_tensor * probs_k = ggml_view_2d(ctx, probs, probs->ne[0], probs->ne[1], probs->nb[1], k*probs->nb[2]); sample_softmax(logits_k, probs_k, best_samples_k); } } static void print_row(struct ggml_tensor * probs, int i) { for (int k = 0; k < probs->ne[0]; ++k) { float p = ggml_get_f32_1d(probs, i*probs->ne[0] + k); printf(" %.2f", p); } printf("\n"); } static void print_matrix(struct ggml_tensor * probs) { assert(probs->n_dims == 2); for (int i = 0; i < probs->ne[1]; ++i) { for (int k = 0; k < probs->ne[0]; ++k) { float p = ggml_get_f32_1d(probs, i*probs->ne[0] + k); printf(" %.2f", p); } printf("\n"); } } static void print_token(int token, int n_vocab) { for (int k = 0; k < token; ++k) { printf(" "); } printf("X"); for (int k = token+1; k < n_vocab; ++k) { printf(" "); } printf("\n"); } static void print_tokens(struct ggml_tensor * tokens, int n_vocab) { for (int i=0; ine[0]; ++i) { int token = ggml_get_i32_1d(tokens, i); print_token(token, n_vocab); } } static void get_example_targets(int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets) { int n_tokens = tokens_input->ne[0]; int n_vocab = targets->ne[0]; float randomness = 0.0f; // ggml_set_zero(targets); ggml_set_f32(targets, -1.0f); ggml_set_i32_1d(tokens_input, 0, 0); for (int i=1; i 1.0f) ? 1.0f : z; // clamp to [0..1] int token = std::max(1,std::min(1+(int)(z*(float)(n_vocab-1)), n_vocab-1)); ggml_set_f32_1d(targets, (i-1)*n_vocab + token, +1.0f); if (in_dims == 2); GGML_ASSERT( targets->n_dims == 3); int n_tokens = tokens_input->ne[0]; int n_batch = tokens_input->ne[1]; GGML_ASSERT(n_tokens == targets->ne[1]); GGML_ASSERT(n_batch == targets->ne[2]); for (int k=0; kne[0], k*tokens_input->nb[1]); struct ggml_tensor * targets_k = ggml_view_2d(ctx, targets, targets->ne[0], targets->ne[1], targets->nb[1], k*targets->nb[2]); get_example_targets(example_id*n_batch + k, tokens_input_k, targets_k); } } static void lshift_examples(struct ggml_tensor * tokens_input, struct ggml_tensor * targets, int n_shift) { int n_tokens = tokens_input->ne[0]; int n_vocab = targets->ne[0]; for (int i=0; i work_buffer; for (int ex=0; ex