#include "build-info.h" #include "common.h" #include "llama.h" #include #include #include #include struct seq_draft { bool active = false; bool drafting = false; bool skip = false; int i_batch_dft = 0; std::vector i_batch_tgt; std::vector tokens; struct llama_sampling_context * ctx_sampling; }; int main(int argc, char ** argv) { gpt_params params; if (gpt_params_parse(argc, argv, params) == false) { return 1; } if (params.model_draft.empty()) { fprintf(stderr, "%s: error: --model-draft is required\n", __func__); return 1; } // max number of parallel drafting sequences (i.e. tree branches) const int n_seq_dft = params.n_parallel; // TODO: make this configurable const float p_accept = 0.4f; const float p_split = 0.3f; #ifndef LOG_DISABLE_LOGS log_set_target(log_filename_generator("speculative", "log")); LOG_TEE("Log start\n"); log_dump_cmdline(argc, argv); #endif // LOG_DISABLE_LOGS // init llama.cpp llama_backend_init(params.numa); llama_model * model_tgt = NULL; llama_model * model_dft = NULL; llama_context * ctx_tgt = NULL; llama_context * ctx_dft = NULL; // load the target model params.logits_all = true; std::tie(model_tgt, ctx_tgt) = llama_init_from_gpt_params(params); // load the draft model params.model = params.model_draft; params.n_gpu_layers = params.n_gpu_layers_draft; std::tie(model_dft, ctx_dft) = llama_init_from_gpt_params(params); // tokenize the prompt std::vector inp; inp = ::llama_tokenize(ctx_tgt, params.prompt, true); const int max_context_size = llama_n_ctx(ctx_tgt); const int max_tokens_list_size = max_context_size - 4; if ((int) inp.size() > max_tokens_list_size) { fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size); return 1; } fprintf(stderr, "\n\n"); for (auto id : inp) { fprintf(stderr, "%s", llama_token_to_piece(ctx_tgt, id).c_str()); } fflush(stderr); const int n_input = inp.size(); const auto t_enc_start = ggml_time_us(); // eval the prompt with both models llama_decode(ctx_tgt, llama_batch_get_one( inp.data(), n_input - 1, 0, 0)); llama_decode(ctx_tgt, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0)); llama_decode(ctx_dft, llama_batch_get_one( inp.data(), n_input, 0, 0)); const auto t_enc_end = ggml_time_us(); // the 2 models should have the same vocab //GGML_ASSERT(n_vocab == llama_n_vocab(model_dft)); // how many tokens to draft each time int n_draft = params.n_draft; int n_predict = 0; int n_drafted = 0; int n_accept = 0; int n_past_tgt = inp.size(); int n_past_dft = inp.size(); // used to determine end of generation bool has_eos = false; // target model sampling context struct llama_sampling_context * ctx_sampling = llama_sampling_init(params); // draft sequence data std::vector drafts(n_seq_dft); params.grammar.clear(); // the draft samplers will copy the target sampler's grammar params.sampling_params.temp = 1.0f; // the draft samplers use default temperature for (int s = 0; s < n_seq_dft; ++s) { drafts[s].ctx_sampling = llama_sampling_init(params); } llama_batch batch_dft = llama_batch_init(params.n_ctx, 0, 1); llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, n_seq_dft); const auto t_dec_start = ggml_time_us(); // sample from the last token of the prompt drafts[0].i_batch_tgt.resize(1); drafts[0].i_batch_tgt[0] = 0; while (true) { // print current draft sequences for (int s = 0; s < n_seq_dft; ++s) { if (!drafts[s].active) { continue; } const auto & tokens = drafts[s].tokens; LOG("draft %d: %s\n", s, LOG_TOKENS_TOSTR_PRETTY(ctx_dft, tokens).c_str()); } int i_dft = 0; int s_keep = 0; while (true) { LOG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]); // sample from the target model llama_token id = llama_sampling_sample(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft]); llama_sampling_accept(ctx_sampling, ctx_tgt, id); //LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, last_tokens)); const std::string token_str = llama_token_to_piece(ctx_tgt, id); printf("%s", token_str.c_str()); fflush(stdout); if (id == llama_token_eos(ctx_tgt)) { has_eos = true; } ++n_predict; // check if the target token matches any of the drafts { bool matches = false; for (int s = 0; s < n_seq_dft; ++s) { if (!drafts[s].active) { continue; } if (i_dft < (int) drafts[s].tokens.size() && id == drafts[s].tokens[i_dft]) { LOG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, id, token_str.c_str()); s_keep = s; matches = true; } else { drafts[s].active = false; } } if (matches) { ++n_accept; ++n_past_tgt; ++n_past_dft; ++i_dft; continue; } } LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str()); // TODO: simplify { LOG("keeping sequence %d\n", s_keep); llama_kv_cache_seq_keep(ctx_dft, s_keep); llama_kv_cache_seq_cp (ctx_dft, s_keep, 0, -1, -1); llama_kv_cache_seq_keep(ctx_dft, 0); llama_kv_cache_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1); llama_kv_cache_seq_keep(ctx_tgt, s_keep); llama_kv_cache_seq_cp (ctx_tgt, s_keep, 0, -1, -1); llama_kv_cache_seq_keep(ctx_tgt, 0); } for (int s = 0; s < n_seq_dft; ++s) { drafts[s].active = false; drafts[s].tokens.clear(); drafts[s].i_batch_tgt.clear(); } // note: will be erased after the speculation phase drafts[0].tokens.push_back(id); drafts[0].i_batch_tgt.push_back(0); llama_batch_clear(batch_dft); llama_batch_add (batch_dft, id, n_past_dft, { 0 }, true); llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1); llama_decode (ctx_dft, batch_dft); ++n_past_dft; break; } if (n_predict > params.n_predict || has_eos) { break; } llama_sampling_cp(ctx_sampling, drafts[0].ctx_sampling); int n_seq_cur = 1; int n_past_cur = n_past_dft; for (int s = 0; s < n_seq_dft; ++s) { drafts[s].active = false; drafts[s].drafting = false; } drafts[0].active = true; drafts[0].drafting = true; drafts[0].i_batch_dft = 0; llama_batch_clear(batch_tgt); llama_batch_add (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true); // sample n_draft tokens from the draft model using tree-based sampling for (int i = 0; i < n_draft; ++i) { batch_dft.n_tokens = 0; for (int s = 0; s < n_seq_dft; ++s) { drafts[s].skip = false; } for (int s = 0; s < n_seq_dft; ++s) { if (!drafts[s].drafting || drafts[s].skip) { continue; } llama_sampling_sample(drafts[s].ctx_sampling, ctx_dft, NULL, drafts[s].i_batch_dft); const auto & cur_p = drafts[s].ctx_sampling->cur; for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p.size()); ++k) { LOG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n", k, s, i, cur_p[k].id, cur_p[k].p, llama_token_to_piece(ctx_dft, cur_p[k].id).c_str()); } if (cur_p[0].p < p_accept) { LOG("stopping drafting for seq %3d, probability too low: %.3f < 2*%.3f\n", s, cur_p[0].p, cur_p[1].p); drafts[s].drafting = false; continue; } std::vector sa(1, s); // attempt to split the branch if the probability is high enough for (int f = 1; f < 8; ++f) { if (n_seq_cur < n_seq_dft && cur_p[f].p > p_split) { LOG("splitting seq %3d into %3d\n", s, n_seq_cur); llama_kv_cache_seq_rm(ctx_dft, n_seq_cur, -1, -1); llama_kv_cache_seq_cp(ctx_dft, s, n_seq_cur, -1, -1); // all previous tokens from this branch are now also part of the new branch for (int t = 0; t < batch_tgt.n_tokens; ++t) { for (int p = 0; p < batch_tgt.n_seq_id[t]; ++p) { if (batch_tgt.seq_id[t][p] == s) { batch_tgt.seq_id[t][batch_tgt.n_seq_id[t]] = n_seq_cur; batch_tgt.n_seq_id[t]++; break; } } } // copy the draft state drafts[n_seq_cur].active = true; drafts[n_seq_cur].drafting = true; drafts[n_seq_cur].skip = true; drafts[n_seq_cur].tokens = drafts[s].tokens; drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft; drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt; llama_sampling_cp(drafts[s].ctx_sampling, drafts[n_seq_cur].ctx_sampling); sa.push_back(n_seq_cur); n_seq_cur++; } else { break; } } // add drafted token for each sequence for (int is = 0; is < (int) sa.size(); ++is) { const llama_token id = cur_p[is].id; const int s = sa[is]; llama_sampling_accept(drafts[s].ctx_sampling, ctx_dft, id); drafts[s].tokens.push_back(id); // add unique drafted tokens to the target batch drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens); llama_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true); // no need to evaluate the last drafted token, since we won't use the result if (batch_tgt.n_tokens > n_draft) { drafts[s].drafting = false; continue; } // add the token to the batch for batched decoding with the draft model drafts[s].i_batch_dft = batch_dft.n_tokens; llama_batch_add(batch_dft, id, n_past_cur, { s }, true); } } // no sequence is drafting anymore if (batch_dft.n_tokens == 0) { break; } // evaluate the drafted tokens on the draft model llama_decode(ctx_dft, batch_dft); ++n_past_cur; ++n_drafted; if (batch_tgt.n_tokens > n_draft) { break; } } // account for the last drafted token that we didn't evaluate if (batch_tgt.n_tokens > n_draft) { ++n_drafted; } // evaluate the target model on the drafted tokens { llama_kv_cache_seq_keep(ctx_tgt, 0); for (int s = 1; s < n_seq_dft; ++s) { llama_kv_cache_seq_cp(ctx_tgt, 0, s, -1, -1); } //LOG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt)); llama_decode(ctx_tgt, batch_tgt); ++n_past_tgt; } // the first token is always proposed by the traget model before the speculation loop so we erase it here for (int s = 0; s < n_seq_dft; ++s) { if (!drafts[s].active) { continue; } drafts[s].tokens.erase(drafts[s].tokens.begin()); } } auto t_dec_end = ggml_time_us(); LOG_TEE("\n\n"); LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f)); LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f)); LOG_TEE("\n"); LOG_TEE("n_draft = %d\n", n_draft); LOG_TEE("n_predict = %d\n", n_predict); LOG_TEE("n_drafted = %d\n", n_drafted); LOG_TEE("n_accept = %d\n", n_accept); LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted); LOG_TEE("\ndraft:\n"); llama_print_timings(ctx_dft); LOG_TEE("\ntarget:\n"); llama_print_timings(ctx_tgt); llama_sampling_free(ctx_sampling); for (int s = 0; s < n_seq_dft; ++s) { llama_sampling_free(drafts[s].ctx_sampling); } llama_batch_free(batch_dft); llama_free(ctx_tgt); llama_free_model(model_tgt); llama_free(ctx_dft); llama_free_model(model_dft); llama_backend_free(); fprintf(stderr, "\n\n"); return 0; }