#include "speculative.h" #include "log.h" #include "common.h" #include "sampling.h" struct common_speculative { struct common_speculative_params params; llama_batch batch_dft; struct common_sampler * smpl; llama_tokens prompt_last; }; struct common_speculative * common_speculative_init(struct common_speculative_params params) { auto * result = new common_speculative { /* .params = */ params, /* .batch_dft = */ llama_batch_init(llama_n_batch(params.ctx_dft), 0, 1), /* .smpl = */ nullptr, }; // TODO: optimize or pass from outside? #if 1 { common_sampler_params sparams; sparams.no_perf = false; sparams.top_k = 40; sparams.top_p = 0.9; sparams.samplers = { COMMON_SAMPLER_TYPE_TOP_K, COMMON_SAMPLER_TYPE_TOP_P, COMMON_SAMPLER_TYPE_INFILL, }; result->smpl = common_sampler_init(params.model_dft, sparams); } #else { common_sampler_params sparams; sparams.no_perf = false; sparams.top_k = 10; sparams.samplers = { COMMON_SAMPLER_TYPE_TOP_K, }; result->smpl = common_sampler_init(params.model_dft, sparams); } #endif result->batch_dft = llama_batch_init(llama_n_batch(params.ctx_dft), 0, 1); return result; } void common_speculative_free(struct common_speculative * spec) { common_sampler_free(spec->smpl); llama_batch_free(spec->batch_dft); delete spec; } void common_speculative_add_draft( struct common_speculative * spec, struct llama_batch & batch_tgt, const llama_tokens & prompt, llama_token id_last, llama_token n_past_tgt) { int reuse_i = 0; int reuse_n = 0; const int n_ctx = llama_n_ctx(spec->params.ctx_dft) - spec->params.n_draft; const int i_start = std::max(0, (int) prompt.size() - n_ctx); for (int i = 0; i < (int) spec->prompt_last.size(); ++i) { int cur = 0; while (i_start + cur < (int) prompt.size() && i + cur < (int) spec->prompt_last.size() && prompt[i_start + cur] == spec->prompt_last[i + cur]) { cur++; } if ((cur >= spec->params.n_reuse || prompt.size() <= n_ctx) && cur > reuse_n) { reuse_i = i; reuse_n = cur; } } LOG_DBG("%s: reuse_i = %d, reuse_n = %d\n", __func__, reuse_i, reuse_n); if (reuse_n == 0) { llama_kv_cache_clear(spec->params.ctx_dft); spec->prompt_last.clear(); } else { llama_kv_cache_seq_rm (spec->params.ctx_dft, 0, 0, reuse_i); llama_kv_cache_seq_rm (spec->params.ctx_dft, 0, reuse_i + reuse_n, -1); llama_kv_cache_seq_add(spec->params.ctx_dft, 0, reuse_i, -1, -reuse_i); spec->prompt_last.erase(spec->prompt_last.begin(), spec->prompt_last.begin() + reuse_i); spec->prompt_last.erase(spec->prompt_last.begin() + reuse_n, spec->prompt_last.end()); } common_batch_clear(spec->batch_dft); for (int i = i_start + reuse_n; i < (int) prompt.size(); ++i) { //LOG_DBG("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt[i]); common_batch_add(spec->batch_dft, prompt[i], i - i_start, { 0 }, false); spec->prompt_last.push_back(prompt[i]); } const llama_pos n_past = prompt.size() - i_start; LOG_DBG("%s: n_past = %d\n", __func__, n_past); if (spec->batch_dft.n_tokens > 0) { LOG_DBG("%s: draft batch: %s\n", __func__, string_from(spec->params.ctx_dft, spec->batch_dft).c_str()); llama_decode(spec->params.ctx_dft, spec->batch_dft); } common_batch_clear(spec->batch_dft); common_batch_add (spec->batch_dft, id_last, n_past, { 0 }, true); spec->prompt_last.push_back(id_last); LOG_DBG("%s: prompt_last: %s\n", __func__, string_from(spec->params.ctx_dft, spec->prompt_last).c_str()); llama_decode(spec->params.ctx_dft, spec->batch_dft); common_sampler_reset(spec->smpl); // sample n_draft tokens from the draft model for (int i = 0; i < spec->params.n_draft; ++i) { common_batch_clear(spec->batch_dft); common_sampler_sample(spec->smpl, spec->params.ctx_dft, 0, true); const auto * cur_p = common_sampler_get_candidates(spec->smpl); for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) { LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n", k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(spec->params.ctx_dft, cur_p->data[k].id).c_str()); } // add drafted token for each sequence const llama_token id = cur_p->data[0].id; // only collect very high-confidence draft tokens if (cur_p->data[0].p < spec->params.p_min) { break; } common_sampler_accept(spec->smpl, id, true); common_batch_add(batch_tgt, id, n_past_tgt + i, { 0 }, true); if (batch_tgt.n_tokens > spec->params.n_draft) { break; } common_batch_add(spec->batch_dft, id, n_past + i + 1, { 0 }, true); // evaluate the drafted tokens on the draft model llama_decode(spec->params.ctx_dft, spec->batch_dft); spec->prompt_last.push_back(id); } // don't waste time on small batches // TODO: do not evaluate the draft model for that many rounds if (batch_tgt.n_tokens < spec->params.n_min) { batch_tgt.n_tokens = 1; } }