#pragma once #include "ggml.h" #ifdef __cplusplus extern "C" { #endif typedef void * ggml_graph_plan_t; typedef void * ggml_backend_context_t; typedef void * ggml_backend_buffer_t; struct ggml_backend; // buffers have space for the tensor structs in host memory, and tensor data in backend-specific memory struct ggml_buffer { // host memory size_t mem_size; void * mem_buffer; // tensor data struct ggml_backend * backend; ggml_backend_buffer_t backend_buffer; // backend-specific data }; struct ggml_backend_interface { const char * (*get_name)(ggml_backend_context_t ctx); void (*free_context)(ggml_backend_context_t ctx); // buffers ggml_backend_buffer_t (*alloc_buffer)(ggml_backend_context_t ctx, size_t size); void (*free_buffer) (ggml_backend_context_t ctx, ggml_backend_buffer_t buffer); void (*reset_buffer)(ggml_backend_context_t ctx, ggml_backend_buffer_t buffer); void (*alloc_tensor)(ggml_backend_context_t ctx, ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // TODO: pinned buffers for faster transfers between host and device // tensor data access // these functions can be asynchronous. helper functions are provided for synchronous access that automatically call synchronize void (*set_tensor_async)(ggml_backend_context_t ctx, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); void (*get_tensor_async)(ggml_backend_context_t ctx, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); void (*synchronize)(ggml_backend_context_t ctx); // (optional) copy tensor between different backends, allow for single-copy tranfers void (*cpy_tensor_from)(ggml_backend_context_t ctx, struct ggml_tensor * src, struct ggml_tensor * dst); void (*cpy_tensor_to) (ggml_backend_context_t ctx, struct ggml_tensor * src, struct ggml_tensor * dst); // compute graph with a plan ggml_graph_plan_t (*graph_plan_create) (ggml_backend_context_t ctx, struct ggml_cgraph * cgraph); void (*graph_plan_free) (ggml_backend_context_t ctx, ggml_graph_plan_t plan); void (*graph_plan_compute)(ggml_backend_context_t ctx, ggml_graph_plan_t plan); // compute graph without a plan void (*graph_compute) (ggml_backend_context_t ctx, struct ggml_cgraph * cgraph); // check if a backend supports a given operation // this could be used to fallback automatically to the CPU backend if a backend doesn't support an operation // bool (*supports_op)(ggml_backend_context_t ctx, struct ggml_tensor * op); }; struct ggml_backend { struct ggml_backend_interface * interface; ggml_backend_context_t context; }; // backend helper functions static inline const char * ggml_backend_name(struct ggml_backend * backend) { return backend->interface->get_name(backend->context); } static inline void ggml_backend_free_context(struct ggml_backend * backend) { backend->interface->free_context(backend->context); } static inline void ggml_backend_set_tensor_async(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { tensor->backend->interface->set_tensor_async(tensor->backend->context, tensor, data, offset, size); } static inline void ggml_backend_get_tensor_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { tensor->backend->interface->get_tensor_async(tensor->backend->context, tensor, data, offset, size); } static inline void ggml_backend_set_tensor(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { tensor->backend->interface->set_tensor_async(tensor->backend->context, tensor, data, offset, size); tensor->backend->interface->synchronize(tensor->backend->context); } static inline void ggml_backend_get_tensor(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { tensor->backend->interface->get_tensor_async(tensor->backend->context, tensor, data, offset, size); tensor->backend->interface->synchronize(tensor->backend->context); } static inline void ggml_backend_synchronize(struct ggml_backend * backend) { backend->interface->synchronize(backend->context); } static inline ggml_graph_plan_t ggml_backend_graph_plan_create(struct ggml_backend * backend, struct ggml_cgraph * cgraph) { return backend->interface->graph_plan_create(backend->context, cgraph); } static inline void ggml_backend_graph_plan_free(struct ggml_backend * backend, ggml_graph_plan_t plan) { backend->interface->graph_plan_free(backend->context, plan); } static inline void ggml_backend_graph_plan_compute(struct ggml_backend * backend, ggml_graph_plan_t plan) { backend->interface->graph_plan_compute(backend->context, plan); } static inline void ggml_backend_graph_compute(struct ggml_backend * backend, struct ggml_cgraph * cgraph) { backend->interface->graph_compute(backend->context, cgraph); } // buffer and tensor allocation GGML_API struct ggml_buffer ggml_backend_alloc_buffer(struct ggml_backend * backend, size_t size, size_t max_tensors); GGML_API void ggml_backend_free_buffer(struct ggml_buffer * buffer); static inline void ggml_backend_reset_buffer(struct ggml_buffer * buffer) { buffer->backend->interface->reset_buffer(buffer->backend->context, buffer->backend_buffer); } static inline void ggml_backend_alloc_tensor(struct ggml_buffer * buffer, struct ggml_tensor * tensor) { buffer->backend->interface->alloc_tensor(buffer->backend->context, buffer->backend_buffer, tensor); } // tensor copy between different backends GGML_API void ggml_backend_cpy_tensor(struct ggml_tensor * dst, struct ggml_tensor * src); // CPU backend GGML_API struct ggml_backend ggml_backend_cpu_init(void); GGML_API void ggml_backend_cpu_set_n_threads(struct ggml_backend * backend_cpu, int n_threads); /////////////////////////// // graph splitting #define GGML_MAX_SPLITS 200 #define GGML_MAX_SPLIT_INPUTS 4 struct ggml_graph_split { char name[GGML_MAX_NAME]; struct ggml_tensor * src_inputs[GGML_MAX_SPLIT_INPUTS + 1]; struct ggml_tensor * dst_inputs[GGML_MAX_SPLIT_INPUTS + 1]; struct ggml_cgraph * graph; }; // TODO: this shouldn't be fixed size, allocate from ggml_context struct ggml_graph_splits { int n_splits; struct ggml_graph_split splits[GGML_MAX_SPLITS]; }; // TODO: allocate in ggml_context struct ggml_graph_splits ggml_graph_split_init(void); // this won't be needed once we can allocate graphs from a ggml_context GGML_API void ggml_graph_splits_free(struct ggml_graph_splits * splits); // add a split to the graph - single and multiple inputs versions GGML_API void ggml_graph_splits_add(struct ggml_graph_splits * splits, struct ggml_tensor ** input, struct ggml_context * ctx, const char * fmt, ...); GGML_API void ggml_graph_splits_add_n(struct ggml_graph_splits * splits, struct ggml_tensor *** inputs, struct ggml_context * ctx, const char * fmt, ...); // build graphs for all splits GGML_API void ggml_graph_splits_build_forward(struct ggml_graph_splits * splits, struct ggml_tensor * output); // compute GGML_API void ggml_graph_splits_compute(struct ggml_graph_splits * splits); #ifdef __cplusplus } #endif