#include "ggml.h" #include "ggml-alloc.h" #include "common.h" #include "llama.h" #include #include #include #include #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif struct random_normal_distribution { std::mt19937 gen; std::normal_distribution rd; float min; float max; }; struct random_uniform_distribution { std::mt19937 gen; std::uniform_real_distribution rd; }; void init_random_normal_distribution(struct random_normal_distribution * rnd, int seed, float mean, float std, float min, float max) { rnd->gen = std::mt19937(seed); rnd->rd = std::normal_distribution{mean, std}; rnd->min = min; rnd->max = max; } void init_random_uniform_distribution(struct random_uniform_distribution * rnd, int seed, float min, float max) { rnd->gen = std::mt19937(seed); rnd->rd = std::uniform_real_distribution{min, max}; } int clamp(const int v, const int min, const int max) { return ((v < min) ? (min) : (v > max) ? (max) : v); } float fclamp(const float v, const float min, const float max) { return ((v < min) ? (min) : (v > max) ? (max) : v); } float frand() { return (float)rand()/(float)RAND_MAX; } float frand_normal(struct random_normal_distribution * rnd) { return fclamp(rnd->rd(rnd->gen), rnd->min, rnd->max); } float frand_uniform(struct random_uniform_distribution * rnd) { return rnd->rd(rnd->gen); } struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct random_normal_distribution * rnd) { float scale = 1.0f; // xavier switch (tensor->n_dims) { case 1: scale /= sqrtf(tensor->ne[0]); for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]); *dst = scale * frand_normal(rnd); } break; case 2: scale /= sqrtf(tensor->ne[0]+tensor->ne[1]); for (int i1 = 0; i1 < tensor->ne[1]; i1++) { for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); *dst = scale * frand_normal(rnd); } } break; case 3: scale /= sqrtf(tensor->ne[0]+tensor->ne[1]); for (int i2 = 0; i2 < tensor->ne[2]; i2++) { for (int i1 = 0; i1 < tensor->ne[1]; i1++) { for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); *dst = scale * frand_normal(rnd); } } } break; case 4: scale /= sqrtf(tensor->ne[0]+tensor->ne[1]); for (int i3 = 0; i3 < tensor->ne[3]; i3++) { for (int i2 = 0; i2 < tensor->ne[2]; i2++) { for (int i1 = 0; i1 < tensor->ne[1]; i1++) { for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]); *dst = scale * frand_normal(rnd); } } } } break; default: assert(false); }; return tensor; } struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd) { switch (tensor->n_dims) { case 1: for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]); *dst = frand_uniform(rnd); } break; case 2: for (int i1 = 0; i1 < tensor->ne[1]; i1++) { for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); *dst = frand_uniform(rnd); } } break; case 3: for (int i2 = 0; i2 < tensor->ne[2]; i2++) { for (int i1 = 0; i1 < tensor->ne[1]; i1++) { for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); *dst = frand_uniform(rnd); } } } break; case 4: for (int i3 = 0; i3 < tensor->ne[3]; i3++) { for (int i2 = 0; i2 < tensor->ne[2]; i2++) { for (int i1 = 0; i1 < tensor->ne[1]; i1++) { for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]); *dst = frand_uniform(rnd); } } } } break; default: assert(false); }; return tensor; } struct my_llama_hparams { uint32_t n_vocab = 32000; uint32_t n_ctx = 512; uint32_t n_embd = 4096; uint32_t n_head = 32; uint32_t n_layer = 32; uint32_t n_rot = 64; uint32_t n_ff = 11008; // float f_norm_eps = 1e-5; // falcon float f_norm_rms_eps = 1e-5; // llama float rope_freq_base = 10000.0f; float rope_freq_scale = 1.0f; }; struct my_llama_layer { // normalization struct ggml_tensor * attention_norm; // attention struct ggml_tensor * wq; struct ggml_tensor * wk; struct ggml_tensor * wv; struct ggml_tensor * wo; // normalization struct ggml_tensor * ffn_norm; // ff struct ggml_tensor * w1; struct ggml_tensor * w2; struct ggml_tensor * w3; }; struct my_llama_model { struct ggml_context * ctx = NULL; my_llama_hparams hparams; struct ggml_tensor * tok_embeddings; struct ggml_tensor * norm; struct ggml_tensor * output; std::vector layers; uint32_t train_its = 0; uint32_t train_samples = 0; uint32_t train_tokens = 0; }; // gguf constants const char * LLM_KV_OPTIMIZER_TYPE = "optimizer.type"; const char * LLM_KV_OPTIMIZER_TYPE_ADAM = "adam"; const char * LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs"; const char * LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version"; const char * LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count"; const char * LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count"; const char * LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count"; const char * LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized"; const char * LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss"; const char * LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss"; const char * LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count"; const char * LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count"; const char * LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss"; const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step"; const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j"; const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k"; const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end"; const char * LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count"; const char * LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments"; const char * LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments"; const char * LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values"; const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters"; const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters"; const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients"; const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients"; const char * LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction"; const char * LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values"; const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha"; const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys"; const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"; const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"; const char * LLM_KV_TRAINING_FILE_VERSION = "training.file_version"; const char * LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"; const char * LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"; const char * LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"; // gguf constants (sync with gguf.py) const char * LLM_KV_GENERAL_ARCHITECTURE = "general.architecture"; const char * LLM_KV_GENERAL_FILE_TYPE = "general.file_type"; const char * LLM_KV_CONTEXT_LENGTH = "%s.context_length"; const char * LLM_KV_EMBEDDING_LENGTH = "%s.embedding_length"; const char * LLM_KV_BLOCK_COUNT = "%s.block_count"; const char * LLM_KV_FEED_FORWARD_LENGTH = "%s.feed_forward_length"; const char * LLM_KV_ATTENTION_HEAD_COUNT = "%s.attention.head_count"; const char * LLM_KV_ATTENTION_LAYERNORM_RMS_EPS = "%s.attention.layer_norm_rms_epsilon"; const char * LLM_KV_ROPE_DIMENSION_COUNT = "%s.rope.dimension_count"; const char * LLM_KV_ROPE_FREQ_BASE = "%s.rope.freq_base"; // TODO load in llama.cpp const char * LLM_KV_ROPE_SCALE_LINEAR = "%s.rope.scale_linear"; const char * LLM_KV_TOKENIZER_MODEL = "tokenizer.ggml.model"; const char * LLM_KV_TOKENIZER_LIST = "tokenizer.ggml.tokens"; const char * LLM_KV_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type"; const char * LLM_KV_TOKENIZER_SCORES = "tokenizer.ggml.scores"; const char * LLM_KV_TOKENIZER_MERGES = "tokenizer.ggml.merges"; const char * LLM_KV_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id"; const char * LLM_KV_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id"; const char * LLM_KV_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id"; const char * LLM_KV_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id"; const char * LLM_KV_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id"; const char * LLM_TENSOR_TOKEN_EMBD = "token_embd"; const char * LLM_TENSOR_OUTPUT_NORM = "output_norm"; const char * LLM_TENSOR_OUTPUT = "output"; const char * LLM_TENSOR_ATTN_NORM = "blk.%d.attn_norm"; const char * LLM_TENSOR_ATTN_Q = "blk.%d.attn_q"; const char * LLM_TENSOR_ATTN_K = "blk.%d.attn_k"; const char * LLM_TENSOR_ATTN_V = "blk.%d.attn_v"; const char * LLM_TENSOR_ATTN_OUT = "blk.%d.attn_output"; const char * LLM_TENSOR_FFN_NORM = "blk.%d.ffn_norm"; const char * LLM_TENSOR_FFN_GATE = "blk.%d.ffn_gate"; const char * LLM_TENSOR_FFN_DOWN = "blk.%d.ffn_down"; const char * LLM_TENSOR_FFN_UP = "blk.%d.ffn_up"; void print_params(struct my_llama_hparams * params) { printf("%s: n_vocab: %d\n", __func__, params->n_vocab); printf("%s: n_ctx: %d\n", __func__, params->n_ctx); printf("%s: n_embd: %d\n", __func__, params->n_embd); printf("%s: n_head: %d\n", __func__, params->n_head); printf("%s: n_ff: %d\n", __func__, params->n_ff); printf("%s: n_layer: %d\n", __func__, params->n_layer); printf("%s: n_rot: %d\n", __func__, params->n_rot); } void init_model(struct my_llama_model * model) { const auto & hparams = model->hparams; const uint32_t n_embd = hparams.n_embd; const uint32_t n_layer = hparams.n_layer; const uint32_t n_vocab = hparams.n_vocab; const uint32_t n_ff = hparams.n_ff; struct ggml_context * ctx = model->ctx; model->train_its = 0; model->train_samples = 0; model->train_tokens = 0; std::vector tn_buf; tn_buf.resize(GGML_MAX_NAME); auto tn = [&tn_buf](const char * key) -> const char * { snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key); return tn_buf.data(); }; auto tni = [&tn_buf](const char * key, int bid) -> const char * { snprintf(tn_buf.data(), tn_buf.size(), key, bid); std::string s = tn_buf.data(); snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str()); return tn_buf.data(); }; model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); ggml_set_name(model->tok_embeddings, tn(LLM_TENSOR_TOKEN_EMBD)); ggml_set_name(model->norm, tn(LLM_TENSOR_OUTPUT_NORM)); ggml_set_name(model->output, tn(LLM_TENSOR_OUTPUT)); model->layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { auto & layer = model->layers[i]; layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd); layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); ggml_set_name(layer.attention_norm, tni(LLM_TENSOR_ATTN_NORM, i)); ggml_set_name(layer.wq, tni(LLM_TENSOR_ATTN_Q, i)); ggml_set_name(layer.wk, tni(LLM_TENSOR_ATTN_K, i)); ggml_set_name(layer.wv, tni(LLM_TENSOR_ATTN_V, i)); ggml_set_name(layer.wo, tni(LLM_TENSOR_ATTN_OUT, i)); ggml_set_name(layer.ffn_norm, tni(LLM_TENSOR_FFN_NORM, i)); ggml_set_name(layer.w1, tni(LLM_TENSOR_FFN_GATE, i)); ggml_set_name(layer.w2, tni(LLM_TENSOR_FFN_DOWN, i)); ggml_set_name(layer.w3, tni(LLM_TENSOR_FFN_UP, i)); } } void set_param_model(struct my_llama_model * model) { const auto& hparams = model->hparams; const uint32_t n_layer = hparams.n_layer; struct ggml_context* ctx = model->ctx; ggml_set_param(ctx, model->tok_embeddings); ggml_set_param(ctx, model->norm); ggml_set_param(ctx, model->output); for (uint32_t i = 0; i < n_layer; ++i) { auto & layer = model->layers[i]; ggml_set_param(ctx, layer.attention_norm); ggml_set_param(ctx, layer.wq); ggml_set_param(ctx, layer.wk); ggml_set_param(ctx, layer.wv); ggml_set_param(ctx, layer.wo); ggml_set_param(ctx, layer.ffn_norm); ggml_set_param(ctx, layer.w1); ggml_set_param(ctx, layer.w2); ggml_set_param(ctx, layer.w3); } } void randomize_model(struct my_llama_model * model, int seed, float mean, float std, float min, float max) { const auto & hparams = model->hparams; const uint32_t n_layer = hparams.n_layer; struct random_normal_distribution rnd; init_random_normal_distribution(&rnd, seed, mean, std, min, max); randomize_tensor_normal(model->tok_embeddings, &rnd); randomize_tensor_normal(model->norm, &rnd); randomize_tensor_normal(model->output, &rnd); for (uint32_t i = 0; i < n_layer; ++i) { auto & layer = model->layers[i]; randomize_tensor_normal(layer.attention_norm, &rnd); randomize_tensor_normal(layer.wq, &rnd); randomize_tensor_normal(layer.wk, &rnd); randomize_tensor_normal(layer.wv, &rnd); randomize_tensor_normal(layer.wo, &rnd); randomize_tensor_normal(layer.ffn_norm, &rnd); randomize_tensor_normal(layer.w1, &rnd); randomize_tensor_normal(layer.w2, &rnd); randomize_tensor_normal(layer.w3, &rnd); } } void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) { GGML_ASSERT(tensor->n_dims == 1); GGML_ASSERT(tensor->ne[0] == ne0); } void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) { GGML_ASSERT(tensor->n_dims == 2); GGML_ASSERT(tensor->ne[0] == ne0); GGML_ASSERT(tensor->ne[1] == ne1); } void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) { GGML_ASSERT(tensor->n_dims == 3); GGML_ASSERT(tensor->ne[0] == ne0); GGML_ASSERT(tensor->ne[1] == ne1); GGML_ASSERT(tensor->ne[2] == ne2); } void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) { GGML_ASSERT(tensor->n_dims == 4); GGML_ASSERT(tensor->ne[0] == ne0); GGML_ASSERT(tensor->ne[1] == ne1); GGML_ASSERT(tensor->ne[2] == ne2); GGML_ASSERT(tensor->ne[3] == ne3); } static size_t hash(void * p) { return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE; } static size_t hash_find(void * hash_table[], void * p) { size_t h = hash(p); // linear probing size_t i = h; while (hash_table[i] != NULL && hash_table[i] != p) { i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE; if (i == h) { // visited all hash table entries -> not found return GGML_GRAPH_HASHTABLE_SIZE; } } return i; } static bool hash_insert(void * hash_table[], void * p) { //size_t h = hash(p); size_t i = hash_find(hash_table, p); GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full if (hash_table[i] == p) { return true; } // insert GGML_ASSERT(hash_table[i] == NULL); hash_table[i] = p; return false; } static bool hash_contains(void * hash_table[], void * p) { size_t i = hash_find(hash_table, p); return (i < GGML_GRAPH_HASHTABLE_SIZE) && (hash_table[i] == p); } struct hash_map { void * keys[GGML_GRAPH_HASHTABLE_SIZE]; void * vals[GGML_GRAPH_HASHTABLE_SIZE]; }; //static const size_t HASH_MAP_SIZE = sizeof(struct hash_map); struct hash_map * new_hash_map() { struct hash_map * result = new struct hash_map; for (int i=0; ikeys[i] = NULL; result->vals[i] = NULL; } return result; }; void free_hash_map(struct hash_map * map) { delete map; } static bool ggml_is_view(struct ggml_tensor * t) { return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE || t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY; } static struct ggml_tensor * get_view_parent(struct ggml_tensor * t) { switch (t->op) { case GGML_OP_PERMUTE: case GGML_OP_RESHAPE: case GGML_OP_TRANSPOSE: case GGML_OP_VIEW: return t->src[0]; case GGML_OP_CPY: return t->src[1]; default: return NULL; } } static struct ggml_tensor * get_view_source(struct ggml_tensor * t) { struct ggml_tensor * parent = t; do { parent = get_view_parent(parent); } while (ggml_is_view(parent)); return parent; } struct ggml_tensor * ggml_recompute_graph_node( struct ggml_context * ctx, struct ggml_cgraph * graph, struct hash_map * replacements, struct ggml_tensor * node) { if (node == NULL) { return NULL; } if (node->is_param) { return node; } if (!hash_contains(graph->visited_hash_table, node)) { return node; } int count_children = 0; for (int k = 0; k < GGML_MAX_SRC; ++k) { if (node->src[k]) { ++count_children; } } if (count_children == 0) { return node; } size_t i = hash_find(replacements->keys, node); GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full if (replacements->keys[i] == node) { return (struct ggml_tensor *) replacements->vals[i]; } struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, node->n_dims, node->ne); // insert clone into replacements GGML_ASSERT(replacements->keys[i] == NULL); // assert that we don't overwrite replacements->keys[i] = node; replacements->vals[i] = clone; clone->op = node->op; clone->grad = node->grad; clone->is_param = node->is_param; clone->extra = node->extra; for (int k = 0; k < GGML_MAX_DIMS; ++k) { clone->nb[k] = node->nb[k]; } for (int k = 0; k < GGML_MAX_SRC; ++k) { clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]); } if (ggml_is_view(clone)) { struct ggml_tensor * source = get_view_source(clone); GGML_ASSERT(source != NULL); clone->data = source->data; } GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t))); GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME); memcpy(clone->op_params, node->op_params, sizeof(node->op_params)); ggml_format_name(clone, "%s (clone)", ggml_get_name(node)); return clone; }; void ggml_build_backward_gradient_checkpointing( struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, struct ggml_cgraph * gb_tmp, struct ggml_tensor * * checkpoints, int n_checkpoints) { *gb_tmp = *gf; ggml_build_backward_expand(ctx, gf, gb_tmp, true); if (n_checkpoints <= 0) { *gb = *gb_tmp; return; } struct hash_map * replacements = new_hash_map(); // insert checkpoints in replacements for (int i = 0; i < n_checkpoints; ++i) { size_t k = hash_find(replacements->keys, checkpoints[i]); GGML_ASSERT(k < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full GGML_ASSERT(replacements->keys[k] == NULL); // assert that we don't overwrite replacements->keys[k] = checkpoints[i]; replacements->vals[k] = checkpoints[i]; } *gb = *gf; // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes], // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]), // by recomputing them from checkpoints for (int i = gf->n_nodes; in_nodes; ++i) { struct ggml_tensor * node = gb_tmp->nodes[i]; for (int k = 0; k < GGML_MAX_SRC; ++k) { // insert new tensors recomputing src, reusing already made replacements, // remember replacements: remember new tensors with mapping from corresponding gf nodes // recurse for input tensors, // unless (i.e. terminating when) input tensors are checkpoints node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]); } // insert rewritten backward node with replacements made into resulting backward graph gb ggml_build_forward_expand(gb, node); } free_hash_map(replacements); } struct ggml_tensor * llama_build_train_graphs( struct my_llama_model * model, struct ggml_allocr * alloc, struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, struct ggml_cgraph * gb_tmp, struct ggml_tensor * * logits, struct ggml_tensor * tokens_input, struct ggml_tensor * targets, const int n_tokens, const int n_batch, const bool enable_flash_attn, const bool enable_checkpointing) { ggml_set_scratch(ctx, { 0, 0, nullptr, }); const int n_past = 0; const int N = n_tokens; const auto & hparams = model->hparams; const int n_ctx = hparams.n_ctx; const int n_vocab = hparams.n_vocab; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_head = hparams.n_head; const int n_rot = hparams.n_rot; const int n_ff = hparams.n_ff; const float f_norm_rms_eps = hparams.f_norm_rms_eps; const float rope_freq_base = hparams.rope_freq_base; const float rope_freq_scale = hparams.rope_freq_scale; auto set_name = [](struct ggml_tensor * t, const char * n) { ggml_set_name(t, n); if (t->grad) { ggml_format_name(t->grad, "%s->grad", n); } }; // KQ_pos - contains the positions struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N); { int * data = (int *) KQ_pos->data; for (int i = 0; i < N; ++i) { data[i] = n_past + i; } } // rope has so much parameters that we make a custom function for it auto rope = [ctx, KQ_pos, n_rot, n_ctx, rope_freq_base, rope_freq_scale] (struct ggml_tensor * t) -> struct ggml_tensor * { // not capturing these, to silcence warnings const int rope_mode = 0; return ggml_rope_custom(ctx, t, KQ_pos, n_rot, rope_mode, n_ctx, rope_freq_base, rope_freq_scale); }; set_name(tokens_input, "tokens_input"); set_name(targets, "targets"); GGML_ASSERT(tokens_input->type == GGML_TYPE_I32); struct ggml_tensor * t00 = ggml_reshape_1d(ctx, tokens_input, N*n_batch); set_name(t00, "t00"); assert_shape_1d(t00, N*n_batch); struct ggml_tensor * t01 = ggml_get_rows(ctx, model->tok_embeddings, t00); set_name(t01, "t01"); assert_shape_2d(t01, n_embd, N*n_batch); struct ggml_tensor * cur = t01; std::vector checkpoints; checkpoints.push_back(tokens_input); checkpoints.push_back(targets); checkpoints.push_back(t00); checkpoints.push_back(t01); struct ggml_tensor * kv_scale; if (!enable_flash_attn) { kv_scale = ggml_new_f32(ctx, 1.0f/sqrtf(float(n_embd)/n_head)); } for (int il = 0; il < n_layer; ++il) { struct my_llama_layer & layer = model->layers[il]; struct ggml_tensor * t02 = ggml_rms_norm (ctx, cur, f_norm_rms_eps); set_name(t02, "t02"); assert_shape_2d(t02, n_embd, N*n_batch); struct ggml_tensor * t03 = ggml_repeat (ctx, layer.attention_norm, t02); set_name(t03, "t03"); assert_shape_2d(t03, n_embd, N*n_batch); struct ggml_tensor * t04 = ggml_mul (ctx, t03, t02); set_name(t04, "t04"); assert_shape_2d(t04, n_embd, N*n_batch); struct ggml_tensor * t05 = ggml_mul_mat (ctx, layer.wq, t04); set_name(t05, "t05"); assert_shape_2d(t05, n_embd, N*n_batch); struct ggml_tensor * t06 = ggml_reshape_4d (ctx, t05, n_embd/n_head, n_head, N, n_batch); set_name(t06, "t06"); assert_shape_4d(t06, n_embd/n_head, n_head, N, n_batch); struct ggml_tensor * t07 = rope (t06); set_name(t07, "t07"); assert_shape_4d(t07, n_embd/n_head, n_head, N, n_batch); struct ggml_tensor * t08 = ggml_mul_mat (ctx, layer.wk, t04); set_name(t08, "t08"); assert_shape_2d(t08, n_embd, N*n_batch); struct ggml_tensor * t09 = ggml_reshape_4d (ctx, t08, n_embd/n_head, n_head, N, n_batch); set_name(t09, "t09"); assert_shape_4d(t09, n_embd/n_head, n_head, N, n_batch); struct ggml_tensor * t10 = rope (t09); set_name(t10, "t10"); assert_shape_4d(t10, n_embd/n_head, n_head, N, n_batch); struct ggml_tensor * t11 = ggml_mul_mat (ctx, t04, layer.wv); set_name(t11, "t11"); assert_shape_2d(t11, N*n_batch, n_embd); struct ggml_tensor * t12 = ggml_reshape_4d (ctx, t11, N, n_batch, n_embd/n_head, n_head); set_name(t12, "t12"); assert_shape_4d(t12, N, n_batch, n_embd/n_head, n_head); struct ggml_tensor * t13 = ggml_permute (ctx, t07, 0, 2, 1, 3); set_name(t13, "t13"); assert_shape_4d(t13, n_embd/n_head, N, n_head, n_batch); struct ggml_tensor * t14 = ggml_permute (ctx, t10, 0, 2, 1, 3); set_name(t14, "t14"); assert_shape_4d(t14, n_embd/n_head, N, n_head, n_batch); struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd/n_head, n_head, n_batch); struct ggml_tensor * t16; if (enable_flash_attn) { t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch); } else { struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch); struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch); struct ggml_tensor * t16_2 = ggml_diag_mask_inf_inplace(ctx, t16_1, n_past); set_name(t16_2, "t16_2"); assert_shape_4d(t16_2, N, N, n_head, n_batch); struct ggml_tensor * t16_3 = ggml_soft_max_inplace (ctx, t16_2); set_name(t16_3, "t16_3"); assert_shape_4d(t16_3, N, N, n_head, n_batch); t16 = ggml_mul_mat(ctx, t15, t16_3); set_name(t16, "t16"); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch); } struct ggml_tensor * t17 = ggml_permute (ctx, t16, 0, 2, 1, 3); set_name(t17, "t17"); assert_shape_4d(t17, n_embd/n_head, n_head, N, n_batch); struct ggml_tensor * t18 = ggml_cont (ctx, t17); set_name(t18, "t18"); assert_shape_4d(t18, n_embd/n_head, n_head, N, n_batch); struct ggml_tensor * t19 = ggml_reshape_2d (ctx, t18, n_embd, N*n_batch); set_name(t19, "t19"); assert_shape_2d(t19, n_embd, N*n_batch); struct ggml_tensor * t20 = ggml_mul_mat (ctx, layer.wo, t19); set_name(t20, "t20"); assert_shape_2d(t20, n_embd, N*n_batch); struct ggml_tensor * t21 = ggml_add (ctx, t20, cur); set_name(t21, "t21"); assert_shape_2d(t21, n_embd, N*n_batch); struct ggml_tensor * t22 = ggml_rms_norm (ctx, t21, f_norm_rms_eps); set_name(t22, "t22"); assert_shape_2d(t22, n_embd, N*n_batch); struct ggml_tensor * t23 = ggml_repeat (ctx, layer.ffn_norm, t22); set_name(t23, "t23"); assert_shape_2d(t23, n_embd, N*n_batch); struct ggml_tensor * t24 = ggml_mul (ctx, t23, t22); set_name(t24, "t24"); assert_shape_2d(t24, n_embd, N*n_batch); struct ggml_tensor * t25 = ggml_mul_mat (ctx, layer.w3, t24); set_name(t25, "t25"); assert_shape_2d(t25, n_ff, N*n_batch); struct ggml_tensor * t26 = ggml_mul_mat (ctx, layer.w1, t24); set_name(t26, "t26"); assert_shape_2d(t26, n_ff, N*n_batch); struct ggml_tensor * t27 = ggml_silu (ctx, t26); set_name(t27, "t27"); assert_shape_2d(t27, n_ff, N*n_batch); struct ggml_tensor * t28 = ggml_mul (ctx, t27, t25); set_name(t28, "t28"); assert_shape_2d(t28, n_ff, N*n_batch); struct ggml_tensor * t29 = ggml_mul_mat (ctx, layer.w2, t28); set_name(t29, "t29"); assert_shape_2d(t29, n_embd, N*n_batch); struct ggml_tensor * t30 = ggml_add (ctx, t29, t21); set_name(t30, "t30"); assert_shape_2d(t30, n_embd, N*n_batch); cur = t30; checkpoints.push_back(cur); } struct ggml_tensor * t31 = ggml_rms_norm (ctx, cur, f_norm_rms_eps); set_name(t31, "t31"); assert_shape_2d(t31, n_embd, N*n_batch); struct ggml_tensor * t32 = ggml_repeat (ctx, model->norm, t31); set_name(t32, "t32"); assert_shape_2d(t32, n_embd, N*n_batch); struct ggml_tensor * t33 = ggml_mul (ctx, t32, t31); set_name(t33, "t33"); assert_shape_2d(t33, n_embd, N*n_batch); struct ggml_tensor * t34 = ggml_mul_mat (ctx, model->output, t33); set_name(t34, "t34"); assert_shape_2d(t34, n_vocab, N*n_batch); struct ggml_tensor * t35 = ggml_reshape_3d (ctx, t34, n_vocab, N, n_batch); set_name(t35, "t35"); assert_shape_3d(t35, n_vocab, N, n_batch); struct ggml_tensor * t36 = ggml_cross_entropy_loss(ctx, t35, targets); set_name(t36, "t36"); assert_shape_1d(t36, 1); checkpoints.push_back(t31); checkpoints.push_back(t32); checkpoints.push_back(t33); checkpoints.push_back(t34); checkpoints.push_back(t35); checkpoints.push_back(t36); ggml_build_forward_expand(gf, t36); if (enable_checkpointing) { ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size()); } else { *gb = *gf; ggml_build_backward_expand(ctx, gf, gb, true); } if (alloc) { // make sure some tensors are not reallocated by inserting new temporary nodes depending on them int n_leafs_before = gb->n_leafs; int n_nodes_before = gb->n_nodes; struct ggml_tensor * one = ggml_new_f32(ctx, 1.0f); // output tensors ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, one)); ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, one)); // input gradient ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, one)); GGML_ASSERT(t36->grad->data == NULL && !ggml_is_view(t36->grad)); ggml_allocr_alloc(alloc, t36->grad); // gradient tensors (will be set to zero by ggml_graph_reset) // pinning these produces large unnecessary memory overhead, which will be resolved by PR 2632 for (int i = 0; i < gf->n_nodes; ++i) { if (!gf->grads[i]) continue; if (gf->grads[i]->data == NULL && !ggml_is_view(gf->grads[i])) { ggml_allocr_alloc(alloc, gf->grads[i]); } ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, gf->grads[i], one)); } // allocating checkpoints in one block to reduce memory fragmentation // note: they will be freed in reverse order for (int i = 0; i < (int) checkpoints.size(); ++i) { if (checkpoints[i]->data == NULL && !ggml_is_view(checkpoints[i])) { ggml_allocr_alloc(alloc, checkpoints[i]); } } //int n_leafs_after = gb->n_leafs; //int n_nodes_after = gb->n_nodes; ggml_allocr_alloc_graph(alloc, gb); // remove the additional nodes and leafs for (int i = n_leafs_before; i < gb->n_leafs; ++i) { gb->leafs[i] = NULL; } for (int i = n_nodes_before; i < gb->n_nodes; ++i) { gb->nodes[i] = NULL; } gb->n_leafs = n_leafs_before; gb->n_nodes = n_nodes_before; } *logits = t35; return t36; } void set_f32_3d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, int64_t i2, float value) { float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); *ptr = value; } void set_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, float value) { float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); *ptr = value; } void set_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, int32_t value) { int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); *ptr = value; } float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); return *ptr; } int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); return *ptr; } void print_row(struct ggml_tensor * probs, int i) { for (int k = 0; k < probs->ne[0]; ++k) { float p = get_f32_2d(probs, k, i); printf(" %.2f", p); } printf("\n"); } void print_matrix(struct ggml_tensor * probs) { assert(probs->n_dims == 2); for (int i = 0; i < probs->ne[1]; ++i) { for (int k = 0; k < probs->ne[0]; ++k) { float p = get_f32_2d(probs, k, i); printf(" %.2f", p); } printf("\n"); } } void get_example_targets(struct llama_context * lctx, const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) { int n_tokens = tokens_input->ne[0]; int n_vocab = target_logits->ne[0]; size_t sample = train_samples[example_id % n_train_samples]; GGML_ASSERT(sample+n_tokens-1 < n_train_data); ggml_set_f32(target_logits, -1.0f/n_vocab); ggml_set_f32(target_probs, 0.0f); ggml_set_i32_1d(tokens_input, 0, llama_token_bos(lctx)); for (int i=1; in_dims == 2); GGML_ASSERT(target_logits->n_dims == 3); GGML_ASSERT(target_probs->n_dims == 3); int n_vocab = target_logits->ne[0]; int n_tokens = tokens_input->ne[0]; int n_batch = tokens_input->ne[1]; GGML_ASSERT(n_tokens == target_logits->ne[1]); GGML_ASSERT(n_batch == target_logits->ne[2]); GGML_ASSERT(n_vocab == target_probs->ne[0]); GGML_ASSERT(n_tokens == target_probs->ne[1]); GGML_ASSERT(n_batch == target_probs->ne[2]); ggml_set_f32(target_logits, -1.0f/n_vocab); ggml_set_f32(target_probs, 0.0f); // printf("%s: example_id=%d n_batch=%d n_train_samples=%zu\n", __func__, example_id, n_batch, n_train_samples); for (int k=0; k& out) { FILE * fp = std::fopen(filename, "rb"); if (fp == NULL) { return 0; } #ifdef _WIN32 GGML_ASSERT(_fseeki64(fp, (__int64) 0, SEEK_END) == 0); #else GGML_ASSERT(std::fseek(fp, (long) 0, SEEK_END) == 0); #endif size_t size = 0; #ifdef _WIN32 __int64 ret = _ftelli64(fp); size = ret; #else long ret = std::ftell(fp); size = ret; #endif #ifdef _WIN32 GGML_ASSERT(_fseeki64(fp, (__int64) 0, SEEK_SET) == 0); #else GGML_ASSERT(std::fseek(fp, (long) 0, SEEK_SET) == 0); #endif std::vector buf; buf.resize(size+1); out.resize(size+1); if (std::fread(buf.data(), size, 1, fp) != 1) { die("unexpectedly reached end of file"); } if (ferror(fp)) { die_fmt("fread failed: %s", strerror(errno)); } buf[size] = '\0'; int n_tokens = llama_tokenize(lctx, buf.data(), buf.size(), out.data(), out.size(), false); if (n_tokens < 0) { out.resize(-n_tokens); n_tokens = llama_tokenize(lctx, buf.data(), buf.size(), out.data(), out.size(), false); } GGML_ASSERT(n_tokens >= 0); out.resize(n_tokens); bool verify = false; if (verify) { const char * in = buf.data(); const char * end = buf.data() + buf.size(); for (int i = 0; i < (int) out.size(); ++i) { std::string s = llama_token_to_piece(lctx, out[i]); int len = s.length(); if (in >= end) { printf("%s: unexpected end of original text.\n", __func__); break; } const bool matches = (strncmp(in, s.c_str(), len) == 0); if (matches) { in += len; } else { printf("%s: mismatch: expected '%s', but got '%s'\n", __func__, std::string(in, len).c_str(), s.c_str()); } } } return n_tokens; } void shuffle_ints(int * begin, int * end) { if (end <= begin) return; int max=begin[0]; for (int i=1; i max) { max = begin[i]; } } std::vector vals; vals.resize(max+1); for (int i=0; i= 0) { \ enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \ if (ktype != (type)) { \ die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \ } \ (dst) = func(ctx, kid); \ } else if (req) { \ die_fmt("key not found in model: %s", skey.c_str()); \ } \ } bool are_same_layout(struct ggml_tensor * a, struct ggml_tensor * b) { GGML_ASSERT(a != NULL); GGML_ASSERT(b != NULL); GGML_ASSERT(a->type == b->type); GGML_ASSERT(ggml_are_same_shape(a, b)); GGML_ASSERT(ggml_is_contiguous(a) && ggml_is_contiguous(b)); return true; } void read_tensor_by_name(struct ggml_tensor * dst, struct ggml_context * ctx, const char * name) { if (dst == NULL) { return; } struct ggml_tensor * t = ggml_get_tensor(ctx, name); GGML_ASSERT(are_same_layout(dst, t)); memcpy(dst->data, t->data, ggml_nbytes(t)); if (strlen(ggml_get_name(dst)) == 0) { ggml_set_name(dst, name); } } void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct ggml_opt_context * opt) { // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read uint32_t file_version; GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_FILE_VERSION); GGML_ASSERT(file_version == 0); GGUF_GET_KEY(fctx, opt->params.past, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT); GGUF_GET_KEY(fctx, opt->iter, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ITERATION_COUNT); GGUF_GET_KEY(fctx, opt->just_initialized, gguf_get_val_bool, GGUF_TYPE_BOOL, true, LLM_KV_OPTIMIZER_JUST_INITIALIZED); uint64_t nx; GGUF_GET_KEY(fctx, nx, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_OPTIMIZER_PARAMETER_COUNT); opt->nx = (size_t) nx; // don't call ggml_opt_init until optimizer type and optimizer specific parameters are know std::string opt_type; GGUF_GET_KEY(fctx, opt_type, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_OPTIMIZER_TYPE); if (opt_type == LLM_KV_OPTIMIZER_TYPE_ADAM) { opt->params.type = GGML_OPT_ADAM; GGUF_GET_KEY(fctx, opt->adam.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS); GGUF_GET_KEY(fctx, opt->adam.fx_prev, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS); GGUF_GET_KEY(fctx, opt->adam.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT); GGML_ASSERT(opt->ctx != NULL); ggml_opt_init(opt->ctx, opt, opt->params, opt->nx); read_tensor_by_name(opt->adam.m, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS); read_tensor_by_name(opt->adam.v, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS); read_tensor_by_name(opt->adam.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES); } else if (opt_type == LLM_KV_OPTIMIZER_TYPE_LBFGS) { opt->params.type = GGML_OPT_LBFGS; GGUF_GET_KEY(fctx, opt->params.lbfgs.m, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT); GGUF_GET_KEY(fctx, opt->lbfgs.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS); GGUF_GET_KEY(fctx, opt->lbfgs.step, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP); GGUF_GET_KEY(fctx, opt->lbfgs.j, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J); GGUF_GET_KEY(fctx, opt->lbfgs.k, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K); GGUF_GET_KEY(fctx, opt->lbfgs.end, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END); GGUF_GET_KEY(fctx, opt->lbfgs.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT); GGML_ASSERT(opt->ctx != NULL); ggml_opt_init(opt->ctx, opt, opt->params, opt->nx); read_tensor_by_name(opt->lbfgs.x, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS); read_tensor_by_name(opt->lbfgs.xp, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS); read_tensor_by_name(opt->lbfgs.g, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS); read_tensor_by_name(opt->lbfgs.gp, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS); read_tensor_by_name(opt->lbfgs.d, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION); read_tensor_by_name(opt->lbfgs.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES); read_tensor_by_name(opt->lbfgs.lmal, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA); read_tensor_by_name(opt->lbfgs.lmys, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS); read_tensor_by_name(opt->lbfgs.lms, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S); read_tensor_by_name(opt->lbfgs.lmy, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y); } else { die("unknown optimizer type"); } } void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * opt) { gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_FILE_VERSION, 0); gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, opt->params.past); gguf_set_val_u64(fctx, LLM_KV_OPTIMIZER_PARAMETER_COUNT, (uint64_t) opt->nx); gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ITERATION_COUNT, opt->iter); gguf_set_val_bool(fctx, LLM_KV_OPTIMIZER_JUST_INITIALIZED, opt->just_initialized); switch (opt->params.type) { case GGML_OPT_ADAM: { gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM); gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, opt->adam.fx_best); gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, opt->adam.fx_prev); gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, opt->adam.n_no_improvement); ggml_set_name(opt->adam.m, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS); ggml_set_name(opt->adam.v, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS); if (opt->adam.pf) { ggml_set_name(opt->adam.pf, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES); } gguf_add_tensor(fctx, opt->adam.m); gguf_add_tensor(fctx, opt->adam.v); if (opt->adam.pf) { gguf_add_tensor(fctx, opt->adam.pf); } } break; case GGML_OPT_LBFGS: { gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS); gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, opt->params.lbfgs.m); gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, opt->lbfgs.fx_best); gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, opt->lbfgs.step); gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, opt->lbfgs.j); gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, opt->lbfgs.k); gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, opt->lbfgs.end); gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, opt->lbfgs.n_no_improvement); ggml_set_name(opt->lbfgs.x, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS); ggml_set_name(opt->lbfgs.xp, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS); ggml_set_name(opt->lbfgs.g, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS); ggml_set_name(opt->lbfgs.gp, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS); ggml_set_name(opt->lbfgs.d, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION); if (opt->lbfgs.pf) { ggml_set_name(opt->lbfgs.pf, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES); } ggml_set_name(opt->lbfgs.lmal, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA); ggml_set_name(opt->lbfgs.lmys, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS); ggml_set_name(opt->lbfgs.lms, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S); ggml_set_name(opt->lbfgs.lmy, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y); gguf_add_tensor(fctx, opt->lbfgs.x); gguf_add_tensor(fctx, opt->lbfgs.xp); gguf_add_tensor(fctx, opt->lbfgs.g); gguf_add_tensor(fctx, opt->lbfgs.gp); gguf_add_tensor(fctx, opt->lbfgs.d); if (opt->lbfgs.pf) { gguf_add_tensor(fctx, opt->lbfgs.pf); } gguf_add_tensor(fctx, opt->lbfgs.lmal); gguf_add_tensor(fctx, opt->lbfgs.lmys); gguf_add_tensor(fctx, opt->lbfgs.lms); gguf_add_tensor(fctx, opt->lbfgs.lmy); } break; } } void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model) { // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read std::string arch; std::vector keybuf; keybuf.resize(512); auto kv = [&arch, &keybuf](const char * key) -> const char * { snprintf(keybuf.data(), keybuf.size(), key, arch.c_str()); return keybuf.data(); }; std::vector tn_buf; tn_buf.resize(GGML_MAX_NAME); auto tn = [&tn_buf](const char * key) -> const char * { snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key); return tn_buf.data(); }; auto tni = [&tn_buf](const char * key, int bid) -> const char * { snprintf(tn_buf.data(), tn_buf.size(), key, bid); std::string s = tn_buf.data(); snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str()); return tn_buf.data(); }; GGUF_GET_KEY(fctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE); GGML_ASSERT(arch == "llama"); uint32_t ftype_u; GGUF_GET_KEY(fctx, ftype_u, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_GENERAL_FILE_TYPE); GGML_ASSERT((enum llama_ftype) ftype_u == LLAMA_FTYPE_ALL_F32); // n_ctx was not saved in earlier checkpoint file versions, so we make it optional here GGUF_GET_KEY(fctx, model->hparams.n_ctx, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_CONTEXT_LENGTH)); GGUF_GET_KEY(fctx, model->hparams.n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH)); GGUF_GET_KEY(fctx, model->hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH)); GGUF_GET_KEY(fctx, model->hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT)); GGUF_GET_KEY(fctx, model->hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT)); model->hparams.n_rot = model->hparams.n_embd / model->hparams.n_head; GGUF_GET_KEY(fctx, model->hparams.n_rot, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT)); float rope_freq_scale = 1.0f; GGUF_GET_KEY(fctx, model->hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS)); GGUF_GET_KEY(fctx, model->hparams.rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE)); GGUF_GET_KEY(fctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR)); if (rope_freq_scale != 1.0f) { model->hparams.rope_freq_scale = 1.0f / rope_freq_scale; } init_model(model); read_tensor_by_name(model->tok_embeddings, f_ggml_ctx, tn(LLM_TENSOR_TOKEN_EMBD)); read_tensor_by_name(model->norm, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT_NORM)); read_tensor_by_name(model->output, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT)); for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { auto & layer = model->layers[i]; read_tensor_by_name(layer.attention_norm, f_ggml_ctx, tni(LLM_TENSOR_ATTN_NORM, i)); read_tensor_by_name(layer.wq, f_ggml_ctx, tni(LLM_TENSOR_ATTN_Q, i)); read_tensor_by_name(layer.wk, f_ggml_ctx, tni(LLM_TENSOR_ATTN_K, i)); read_tensor_by_name(layer.wv, f_ggml_ctx, tni(LLM_TENSOR_ATTN_V, i)); read_tensor_by_name(layer.wo, f_ggml_ctx, tni(LLM_TENSOR_ATTN_OUT, i)); read_tensor_by_name(layer.ffn_norm, f_ggml_ctx, tni(LLM_TENSOR_FFN_NORM, i)); read_tensor_by_name(layer.w1, f_ggml_ctx, tni(LLM_TENSOR_FFN_GATE, i)); read_tensor_by_name(layer.w2, f_ggml_ctx, tni(LLM_TENSOR_FFN_DOWN, i)); read_tensor_by_name(layer.w3, f_ggml_ctx, tni(LLM_TENSOR_FFN_UP, i)); } } void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model) { const char * arch = "llama"; enum llama_ftype ftype = LLAMA_FTYPE_ALL_F32; std::vector keybuf; keybuf.resize(512); auto kv = [arch, &keybuf](const char * key) -> const char * { snprintf(keybuf.data(), keybuf.size(), key, arch); return keybuf.data(); }; // set arch gguf_set_val_str(fctx, LLM_KV_GENERAL_ARCHITECTURE, arch); gguf_set_val_u32(fctx, LLM_KV_GENERAL_FILE_TYPE, ftype); // set hparams gguf_set_val_u32(fctx, kv(LLM_KV_CONTEXT_LENGTH), model->hparams.n_ctx ); gguf_set_val_u32(fctx, kv(LLM_KV_EMBEDDING_LENGTH), model->hparams.n_embd ); gguf_set_val_u32(fctx, kv(LLM_KV_FEED_FORWARD_LENGTH), model->hparams.n_ff ); gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT), model->hparams.n_head ); gguf_set_val_u32(fctx, kv(LLM_KV_BLOCK_COUNT), model->hparams.n_layer ); gguf_set_val_u32(fctx, kv(LLM_KV_ROPE_DIMENSION_COUNT), model->hparams.n_rot ); gguf_set_val_f32(fctx, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS), model->hparams.f_norm_rms_eps ); gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_FREQ_BASE), model->hparams.rope_freq_base ); // TODO load in llama.cpp gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_SCALE_LINEAR), 1.0f / model->hparams.rope_freq_scale ); // set vocab by copying from vocab_model gguf file { struct gguf_init_params params = { /*.no_alloc = */ false, /*.ctx = */ NULL, }; struct gguf_context * vctx = gguf_init_from_file(fn_vocab_model, params); const int token_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_LIST)); if (token_idx == -1) { die("cannot find tokenizer vocab in model file"); } const uint32_t n_vocab = gguf_get_arr_n(vctx, token_idx); const int score_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_SCORES)); if (score_idx == -1) { die("cannot find tokenizer scores in model file"); } const float * scores = (const float * ) gguf_get_arr_data(vctx, score_idx); const int toktype_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE)); if (toktype_idx == -1) { die("cannot find token type list in GGUF file"); } const int * toktypes = (const int * ) gguf_get_arr_data(vctx, toktype_idx); std::string tokenizer_name; GGUF_GET_KEY(vctx, tokenizer_name, gguf_get_val_str, GGUF_TYPE_STRING, true, kv(LLM_KV_TOKENIZER_MODEL)); gguf_set_val_str(fctx, kv(LLM_KV_TOKENIZER_MODEL), tokenizer_name.c_str()); gguf_set_arr_data(fctx, kv(LLM_KV_TOKENIZER_SCORES), GGUF_TYPE_FLOAT32, scores, n_vocab); gguf_set_arr_data(fctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE), GGUF_TYPE_INT32, toktypes, n_vocab); int32_t special_bos_id = 1; int32_t special_eos_id = 2; int32_t special_unk_id = 0; int32_t special_sep_id = -1; int32_t special_pad_id = -1; if (tokenizer_name == "llama") { // default special tokens special_bos_id = 1; special_eos_id = 2; special_unk_id = 0; special_sep_id = -1; special_pad_id = -1; } else if (tokenizer_name == "gpt2") { // read and copy bpe merges const int merges_keyidx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_MERGES)); if (merges_keyidx == -1) { die("cannot find tokenizer merges in model file"); } const int n_merges = gguf_get_arr_n(vctx, merges_keyidx); std::vector merges; merges.resize(n_merges); for (int i = 0; i < n_merges; i++) { merges[i] = gguf_get_arr_str(vctx, merges_keyidx, i); } gguf_set_arr_str(fctx, kv(LLM_KV_TOKENIZER_MERGES), merges.data(), n_merges); // default special tokens special_bos_id = 11; special_eos_id = 11; special_unk_id = -1; special_sep_id = -1; special_pad_id = -1; } else { fprintf(stderr, "%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str()); fprintf(stderr, "%s: using default tokenizer: 'llama'", __func__); } std::vector tokens; tokens.resize(n_vocab); for (uint32_t i = 0; i < n_vocab; i++) { tokens[i] = gguf_get_arr_str(vctx, token_idx, i); } gguf_set_arr_str(fctx, kv(LLM_KV_TOKENIZER_LIST), tokens.data(), n_vocab); GGUF_GET_KEY(vctx, special_bos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_BOS_ID)); GGUF_GET_KEY(vctx, special_eos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_EOS_ID)); GGUF_GET_KEY(vctx, special_unk_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_UNK_ID)); GGUF_GET_KEY(vctx, special_sep_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_SEP_ID)); GGUF_GET_KEY(vctx, special_pad_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_PAD_ID)); gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_BOS_ID), special_bos_id); gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_EOS_ID), special_eos_id); gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_UNK_ID), special_unk_id); gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_SEP_ID), special_sep_id); gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_PAD_ID), special_pad_id); gguf_free(vctx); } // add tensors gguf_add_tensor(fctx, model->tok_embeddings); gguf_add_tensor(fctx, model->norm); gguf_add_tensor(fctx, model->output); for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { auto & layer = model->layers[i]; gguf_add_tensor(fctx, layer.attention_norm); gguf_add_tensor(fctx, layer.wq); gguf_add_tensor(fctx, layer.wk); gguf_add_tensor(fctx, layer.wv); gguf_add_tensor(fctx, layer.wo); gguf_add_tensor(fctx, layer.ffn_norm); gguf_add_tensor(fctx, layer.w1); gguf_add_tensor(fctx, layer.w2); gguf_add_tensor(fctx, layer.w3); } } void save_llama_model_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model) { struct gguf_context * fctx = gguf_init_empty(); save_llama_model_gguf(fctx, fn_vocab_model, model); // write file const bool only_meta = false; gguf_write_to_file(fctx, filename, only_meta); gguf_free(fctx); } void load_checkpoint_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct ggml_opt_context * opt) { load_llama_model_gguf(fctx, f_ggml_ctx, model); uint32_t file_version; GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_FILE_VERSION); GGML_ASSERT(file_version == 0); GGUF_GET_KEY(fctx, model->train_its, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_ITERATION_COUNT); GGUF_GET_KEY(fctx, model->train_samples, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_SAMPLE_COUNT); GGUF_GET_KEY(fctx, model->train_tokens, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_TOKEN_COUNT); load_opt_context_gguf(fctx, f_ggml_ctx, opt); } void save_checkpoint_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model, struct ggml_opt_context * opt) { save_llama_model_gguf(fctx, fn_vocab_model, model); gguf_set_val_u32(fctx, LLM_KV_TRAINING_FILE_VERSION, 0); gguf_set_val_u32(fctx, LLM_KV_TRAINING_ITERATION_COUNT, model->train_its); gguf_set_val_u32(fctx, LLM_KV_TRAINING_SAMPLE_COUNT, model->train_samples); gguf_set_val_u32(fctx, LLM_KV_TRAINING_TOKEN_COUNT, model->train_tokens); save_opt_context_gguf(fctx, opt); } bool load_checkpoint_file(const char * filename, struct my_llama_model * model, struct ggml_opt_context * opt) { struct ggml_context * f_ggml_ctx; struct gguf_init_params params; params.no_alloc = false; params.ctx = &f_ggml_ctx; struct gguf_context * fctx = gguf_init_from_file(filename, params); if (fctx == NULL) { return false; } load_checkpoint_gguf(fctx, f_ggml_ctx, model, opt); return true; } void save_checkpoint_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model, struct ggml_opt_context * opt) { struct gguf_context * fctx = gguf_init_empty(); save_checkpoint_gguf(fctx, fn_vocab_model, model, opt); // write file const bool only_meta = false; gguf_write_to_file(fctx, filename, only_meta); gguf_free(fctx); } float cosine_decay(const int decay_steps, const float minimum, int step) { if (step > decay_steps) { step = decay_steps; } const float cosine_decay = 0.50f*(1.0f + cosf(3.14159265359f*step/decay_steps)); const float decay = (1 - minimum)*cosine_decay + minimum; return decay; } float cosine_decay_restart(int decay_steps, const float minimum, int step, float restart_step_mult, bool enable_restart) { if (enable_restart) { while (step > decay_steps) { step -= decay_steps; decay_steps = (int) restart_step_mult * decay_steps; } } return cosine_decay(decay_steps, minimum, step); } struct train_params { const char * fn_vocab_model; const char * fn_train_data; const char * fn_checkpoint_in; const char * fn_checkpoint_out; const char * fn_model_out; uint32_t seed; int n_ctx; int n_embd; int n_head; int n_layer; int n_ff; int n_threads; int n_batch; int n_examples; float f_norm_rms_eps; float rope_freq_base; float rope_freq_scale; int print_info_interval; bool samples_start_after_nl; bool use_adam; bool use_flash; bool use_checkpointing; bool use_alloc; // only adam int warmup; int cos_decay_steps; float cos_decay_restart; float cos_decay_min; bool enable_restart; int opt_past; float opt_delta; int opt_max_no_improvement; int lbfgs_n_iter; int adam_n_iter; float adam_alpha; float adam_min_alpha; float adam_decay; int adam_decay_min_ndim; float adam_beta1; float adam_beta2; float adam_gclip; float adam_eps_f; int mem_model_gb; int mem_compute_gb; int mem_compute0_gb; }; struct train_params get_default_train_params() { struct train_params params; params.fn_vocab_model = "ggml-vic7b-uncensored-q4_0.bin"; params.fn_train_data = "shakespeare.txt"; params.fn_checkpoint_in = "checkpoint.bin"; params.fn_checkpoint_out = "checkpoint.bin"; params.fn_model_out = "ggml-checkpoint-f32.bin"; params.seed = -1; params.n_ctx = 128; params.n_embd = 256; params.n_head = 8; params.n_layer = 16; params.n_ff = 768; params.n_threads = 6; params.n_batch = 8; params.n_examples = 1; params.f_norm_rms_eps = 1e-5; params.rope_freq_base = 10000.0f; params.rope_freq_scale = 1.0f; params.print_info_interval = 1; params.samples_start_after_nl = false; params.use_adam = true; params.use_flash = true; params.use_checkpointing = true; params.use_alloc = true; params.opt_past = 0; params.opt_delta = 1e-5f; params.opt_max_no_improvement = 0; // only adam params.warmup = 100; params.cos_decay_steps = 1000; params.cos_decay_restart = 1.1f; params.cos_decay_min = 0.1f; params.enable_restart = false; params.lbfgs_n_iter = 256; params.adam_n_iter = 256; params.adam_alpha = 1e-3f; params.adam_min_alpha = 0; params.adam_decay = 1e-1f; params.adam_decay_min_ndim = 2; params.adam_beta1 = 0.9f; params.adam_beta2 = 0.999f; params.adam_gclip = 1.0f; params.adam_eps_f = 0.0f; params.mem_model_gb = 2; params.mem_compute_gb = 24; params.mem_compute0_gb = 8; return params; } void train_print_usage(int /*argc*/, char ** argv, const struct train_params * params) { fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help show this help message and exit\n"); fprintf(stderr, " --vocab-model FNAME model path from which to load vocab (default '%s')\n", params->fn_vocab_model); fprintf(stderr, " --train-data FNAME path from which to load training data (default '%s')\n", params->fn_train_data); fprintf(stderr, " --checkpoint-in FNAME path from which to load training checkpoint (default '%s')\n", params->fn_checkpoint_in); fprintf(stderr, " --checkpoint-out FNAME path to save training checkpoint (default '%s')\n", params->fn_checkpoint_out); fprintf(stderr, " --model-out FNAME path to save ggml model (default '%s')\n", params->fn_model_out); fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for -1)\n"); fprintf(stderr, " -c N, --ctx N Context size used during training (default %d)\n", params->n_ctx); fprintf(stderr, " --embd N Embedding size used for new models (default %d)\n", params->n_embd); fprintf(stderr, " --ff N Feedforward size used for new models. (default %d)\n", params->n_ff); fprintf(stderr, " --head N Number of heads for new models (default %d)\n", params->n_head); fprintf(stderr, " --layer N Number of layers for new models (default %d)\n", params->n_layer); fprintf(stderr, " --norm-rms-eps F RMS-Norm epsilon value (default %f)\n", params->f_norm_rms_eps); fprintf(stderr, " --rope-freq-base F Frequency base for ROPE (default %f)\n", params->rope_freq_base); fprintf(stderr, " --rope-freq-scale F Frequency scale for ROPE (default %f)\n", params->rope_freq_scale); fprintf(stderr, " -t N, --threads N Number of threads (default %d)\n", params->n_threads); fprintf(stderr, " -b N, --batch N Parallel batch size (default %d)\n", params->n_batch); fprintf(stderr, " -n N, --examples N Number of examples to train (default %d)\n", params->n_examples); fprintf(stderr, " --print-info-interval N Print infos during training each N examples (default %d)\n", params->print_info_interval); fprintf(stderr, " --samples-after-nl Training samples start after newlines. (default %s)\n", params->samples_start_after_nl ? "on" : "off"); fprintf(stderr, " --use-lbfgs Use LBFGS optimizer instead of default Adam\n"); fprintf(stderr, " --use-adam Use Adam optimizer (default)\n"); fprintf(stderr, " --no-flash Don't use flash attention \n"); fprintf(stderr, " --use-flash Use flash attention (default)\n"); fprintf(stderr, " --no-checkpointing Don't use gradient checkpointing\n"); fprintf(stderr, " --use-checkpointing Use gradient checkpointing (default)\n"); fprintf(stderr, " --no-alloc Don't use allocator\n"); fprintf(stderr, " --use-alloc Use allocator (default)\n"); fprintf(stderr, " --warmup N Only for Adam optimizer. Number of warmup steps (default %d)\n", params->warmup); fprintf(stderr, " --cos-decay-steps N Only for Adam optimizer. Number of cosine decay steps (default %d)\n", params->cos_decay_steps); fprintf(stderr, " --cos-decay-restart N Only for Adam optimizer. Increase of cosine decay steps after restart (default %f)\n", params->cos_decay_restart); fprintf(stderr, " --cos-decay-min N Only for Adam optimizer. Cosine decay minimum (default %f)\n", params->cos_decay_min); fprintf(stderr, " --enable-restart N Only for Adam optimizer. Enable restarts of cos-decay %s\n", params->enable_restart ? "(default)" : ""); fprintf(stderr, " --disable-restart N Only for Adam optimizer. Disable restarts of cos-decay %s\n", !params->enable_restart ? "(default)" : ""); fprintf(stderr, " --opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero. (default %d)\n", params->opt_past); fprintf(stderr, " --opt-delta N Maximum delta for delta convergence test. Disabled when <= zero. (default %f)\n", params->opt_delta); fprintf(stderr, " --opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero. (default %d)\n", params->opt_max_no_improvement); fprintf(stderr, " --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. (default %f)\n", params->adam_eps_f); fprintf(stderr, " --adam-iter N Maximum number of Adam optimization iterations for each batch (default %d)\n", params->adam_n_iter); fprintf(stderr, " --adam-alpha N Adam learning rate alpha (default %f)\n", params->adam_alpha); fprintf(stderr, " --adam-min-alpha N Adam minimum learning rate alpha - including warmup phase (default %f)\n", params->adam_min_alpha); fprintf(stderr, " --adam-decay N AdamW weight decay. Values greater zero enable AdamW instead of regular Adam. (default %f)\n", params->adam_decay); fprintf(stderr, " --adam-decay-min-ndim N Minimum number of tensor dimensions to apply AdamW weight decay. Weight decay is not applied to tensors with less n_dims. (default %d)\n", params->adam_decay_min_ndim); fprintf(stderr, " --adam-beta1 N AdamW beta1 in interval [0,1). How much to smooth the first moment of gradients. (default %f)\n", params->adam_beta1); fprintf(stderr, " --adam-beta2 N AdamW beta2 in interval [0,1). How much to smooth the second moment of gradients. (default %f)\n", params->adam_beta2); fprintf(stderr, " --adam-gclip N AdamW gradient clipping. Disabled when zero. (default %f)\n", params->adam_gclip); fprintf(stderr, " --lbfgs-iter N Maximum number of LBFGS optimization iterations for each batch (default %d)\n", params->lbfgs_n_iter); fprintf(stderr, " --mem-model N Memory to allocate for model and cache in gigabytes. (default %d)\n", params->mem_model_gb); fprintf(stderr, " --mem-compute N Memory to allocate for compute in gigabytes. (default %d)\n", params->mem_compute_gb); fprintf(stderr, " --mem-compute0 N Memory to allocate for automatic memory allocator in gigabytes. (default %d)\n", params->mem_compute0_gb); fprintf(stderr, "\n"); } bool train_params_parse(int argc, char ** argv, struct train_params * params) { bool invalid_param = false; std::string arg; struct train_params default_params = get_default_train_params(); const std::string arg_prefix = "--"; for (int i = 1; i < argc; i++) { arg = argv[i]; if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { std::replace(arg.begin(), arg.end(), '_', '-'); } if (arg == "--vocab-model") { if (++i >= argc) { invalid_param = true; break; } params->fn_vocab_model = argv[i]; } else if (arg == "--train-data") { if (++i >= argc) { invalid_param = true; break; } params->fn_train_data = argv[i]; } else if (arg == "--checkpoint-in") { if (++i >= argc) { invalid_param = true; break; } params->fn_checkpoint_in = argv[i]; } else if (arg == "--checkpoint-out") { if (++i >= argc) { invalid_param = true; break; } params->fn_checkpoint_out = argv[i]; } else if (arg == "--model-out") { if (++i >= argc) { invalid_param = true; break; } params->fn_model_out = argv[i]; } else if (arg == "-s" || arg == "--seed") { if (++i >= argc) { invalid_param = true; break; } params->seed = std::stoi(argv[i]); } else if (arg == "-c" || arg == "--ctx") { if (++i >= argc) { invalid_param = true; break; } params->n_ctx = std::stoi(argv[i]); } else if (arg == "--embd") { if (++i >= argc) { invalid_param = true; break; } params->n_embd = std::stoi(argv[i]); } else if (arg == "--ff") { if (++i >= argc) { invalid_param = true; break; } params->n_ff = std::stoi(argv[i]); } else if (arg == "--head") { if (++i >= argc) { invalid_param = true; break; } params->n_head = std::stoi(argv[i]); } else if (arg == "--layer") { if (++i >= argc) { invalid_param = true; break; } params->n_layer = std::stoi(argv[i]); } else if (arg == "--norm-rms-eps") { if (++i >= argc) { invalid_param = true; break; } params->f_norm_rms_eps = std::stof(argv[i]); } else if (arg == "--rope-freq-base") { if (++i >= argc) { invalid_param = true; break; } params->rope_freq_base = std::stof(argv[i]); } else if (arg == "--rope-freq-scale") { if (++i >= argc) { invalid_param = true; break; } params->rope_freq_scale = std::stof(argv[i]); } else if (arg == "-t" || arg == "--threads") { if (++i >= argc) { invalid_param = true; break; } params->n_threads = std::stoi(argv[i]); } else if (arg == "-b" || arg == "--batch") { if (++i >= argc) { invalid_param = true; break; } params->n_batch = std::stoi(argv[i]); } else if (arg == "-n" || arg == "--examples") { if (++i >= argc) { invalid_param = true; break; } params->n_examples = std::stoi(argv[i]); } else if (arg == "--print-info-interval") { if (++i >= argc) { invalid_param = true; break; } params->print_info_interval = std::stoi(argv[i]); } else if (arg == "--samples-after-nl") { params->samples_start_after_nl = true; } else if (arg == "--use-lbfgs") { params->use_adam = false; } else if (arg == "--use-adam") { params->use_adam = true; } else if (arg == "--no-flash") { params->use_flash = false; } else if (arg == "--use-flash") { params->use_flash = true; } else if (arg == "--no-checkpointing") { params->use_checkpointing = false; } else if (arg == "--use-checkpointing") { params->use_checkpointing = true; } else if (arg == "--no-alloc") { params->use_alloc = false; } else if (arg == "--use-alloc") { params->use_alloc = true; } else if (arg == "--warmup") { if (++i >= argc) { invalid_param = true; break; } params->warmup = std::stoi(argv[i]); } else if (arg == "--cos-decay-steps") { if (++i >= argc) { invalid_param = true; break; } params->cos_decay_steps = std::stof(argv[i]); } else if (arg == "--cos-decay-restart") { if (++i >= argc) { invalid_param = true; break; } params->cos_decay_restart = std::stof(argv[i]); } else if (arg == "--cos-decay-min") { if (++i >= argc) { invalid_param = true; break; } params->cos_decay_min = std::stof(argv[i]); } else if (arg == "--enable-restart") { params->enable_restart = true; } else if (arg == "--disable-restart") { params->enable_restart = false; } else if (arg == "--opt-past") { if (++i >= argc) { invalid_param = true; break; } params->opt_past = std::stoi(argv[i]); } else if (arg == "--opt-delta") { if (++i >= argc) { invalid_param = true; break; } params->opt_delta = std::stof(argv[i]); } else if (arg == "--opt-max-no-improvement") { if (++i >= argc) { invalid_param = true; break; } params->opt_max_no_improvement = std::stoi(argv[i]); } else if (arg == "--adam-epsf") { if (++i >= argc) { invalid_param = true; break; } params->adam_eps_f = std::stof(argv[i]); } else if (arg == "--adam-iter") { if (++i >= argc) { invalid_param = true; break; } params->adam_n_iter = std::stoi(argv[i]); } else if (arg == "--adam-alpha") { if (++i >= argc) { invalid_param = true; break; } params->adam_alpha = std::stof(argv[i]); } else if (arg == "--adam-min-alpha") { if (++i >= argc) { invalid_param = true; break; } params->adam_min_alpha = std::stof(argv[i]); } else if (arg == "--adam-decay") { if (++i >= argc) { invalid_param = true; break; } params->adam_decay = std::stof(argv[i]); } else if (arg == "--adam-decay-min-ndim") { if (++i >= argc) { invalid_param = true; break; } params->adam_decay_min_ndim = std::stoi(argv[i]); } else if (arg == "--adam-beta1") { if (++i >= argc) { invalid_param = true; break; } params->adam_beta1 = std::stof(argv[i]); } else if (arg == "--adam-beta2") { if (++i >= argc) { invalid_param = true; break; } params->adam_beta2 = std::stof(argv[i]); } else if (arg == "--adam-gclip") { if (++i >= argc) { invalid_param = true; break; } params->adam_gclip = std::stof(argv[i]); } else if (arg == "--lbfgs-iter") { if (++i >= argc) { invalid_param = true; break; } params->lbfgs_n_iter = std::stoi(argv[i]); } else if (arg == "--mem-model") { if (++i >= argc) { invalid_param = true; break; } params->mem_model_gb = std::stoi(argv[i]); } else if (arg == "--mem-compute") { if (++i >= argc) { invalid_param = true; break; } params->mem_compute_gb = std::stoi(argv[i]); } else if (arg == "--mem-compute0") { if (++i >= argc) { invalid_param = true; break; } params->mem_compute0_gb = std::stoi(argv[i]); } else if (arg == "-h" || arg == "--help") { train_print_usage(argc, argv, &default_params); exit(0); } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); train_print_usage(argc, argv, &default_params); exit(1); } } if (invalid_param) { fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); train_print_usage(argc, argv, &default_params); exit(1); } return true; } struct opt_callback_data { struct train_params * params; struct ggml_opt_context * opt; struct llama_context * lctx; llama_token * tokens_data; size_t tokens_size; int * samples_data; size_t samples_size; int shuffle_countdown; struct ggml_tensor * tokens_input; struct ggml_tensor * target_logits; struct ggml_tensor * target_probs; }; void opt_callback(void * vdata, float * sched) { struct opt_callback_data * data = (struct opt_callback_data *) vdata; struct train_params * params = data->params; struct ggml_opt_context * opt = data->opt; int n_batch = params->n_batch; *sched = (opt->iter < params->warmup) ? (float) opt->iter / (float) params->warmup : cosine_decay_restart( params->cos_decay_steps, params->cos_decay_min, opt->iter - params->warmup, params->cos_decay_restart, params->enable_restart); float min_sched = params->adam_min_alpha / params->adam_alpha; *sched = min_sched + *sched * (1.0f - min_sched); int impr_plot = std::isnan(opt->loss_after) ? 0 : -std::lround(1 + (opt->loss_before - opt->loss_after) * 10.0f); printf("%s: iter=%*d, sched=%f loss0=%f loss=%f | improvement: %*d>\n", __func__, 6, opt->iter, *sched, opt->loss_before, opt->loss_after, impr_plot, (int)0); if (data->shuffle_countdown < n_batch) { printf("%s: reshuffle samples\n", __func__); shuffle_ints(data->samples_data, data->samples_data + data->samples_size); for (int i = 0; i < (int) data->samples_size; ++i) { GGML_ASSERT(data->samples_data[i]+params->n_ctx-1 < (int) data->tokens_size); } data->shuffle_countdown = data->samples_size; } get_example_targets_batch( data->lctx, data->samples_data, data->samples_size, data->tokens_data, data->tokens_size, opt->iter, data->tokens_input, data->target_logits, data->target_probs); data->shuffle_countdown -= n_batch; } int main(int argc, char ** argv) { struct train_params params = get_default_train_params(); if (!train_params_parse(argc, argv, ¶ms)) { return 1; } if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); } printf("%s: seed: %u\n", __func__, params.seed); srand(params.seed); struct llama_context_params llama_params = llama_context_default_params(); llama_params.vocab_only = true; struct llama_model * lmodel = llama_load_model_from_file(params.fn_vocab_model, llama_params); struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params); printf("%s: tokenize training data\n", __func__); std::vector train_tokens; if (tokenize_file(lctx, params.fn_train_data, train_tokens) < 0) { fprintf(stderr, "%s: failed to tokenize file '%s'\n", __func__, params.fn_train_data); } printf("%s: number of training tokens: %d\n", __func__, (int) train_tokens.size()); struct my_llama_model model; model.hparams.n_vocab = llama_n_vocab(lctx); model.hparams.n_ctx = params.n_ctx; model.hparams.n_embd = params.n_embd; model.hparams.n_head = params.n_head; model.hparams.n_layer = params.n_layer; model.hparams.n_ff = params.n_ff; // llama.cpp requires n_rot to be exactly n_embd / n_head model.hparams.n_rot = model.hparams.n_embd / model.hparams.n_head; model.hparams.f_norm_rms_eps = params.f_norm_rms_eps; model.hparams.rope_freq_base = params.rope_freq_base; model.hparams.rope_freq_scale = params.rope_freq_scale; print_params(&model.hparams); std::vector token_noccurs; std::vector token_notavail; token_noccurs.resize(model.hparams.n_vocab, 0); token_notavail.resize(model.hparams.n_vocab, true); for (int i = 0; i < (int) train_tokens.size(); ++i) { ++token_noccurs[train_tokens[i]]; token_notavail[train_tokens[i]] = false; } std::vector token_freq; token_freq.resize(model.hparams.n_vocab, 0); int n_unique_tokens = 0; for (int i = 0; i < (int) token_noccurs.size(); ++i) { token_freq[i] = (float) token_noccurs[i] / (float) train_tokens.size(); n_unique_tokens += (token_noccurs[i] > 0) ? 1 : 0; } printf("%s: number of unique tokens: %d\n", __func__, n_unique_tokens); struct ggml_init_params lcparams; lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb); lcparams.mem_buffer = NULL; lcparams.no_alloc = false; model.ctx = ggml_init(lcparams); int n_tokens = model.hparams.n_ctx; int n_vocab = model.hparams.n_vocab; int n_batch = params.n_batch; struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context)); memset(opt, 0, sizeof(struct ggml_opt_context)); struct ggml_opt_params opt_params_adam = ggml_opt_default_params(GGML_OPT_ADAM); struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS); opt_params_adam.print_forward_graph = false; opt_params_adam.print_backward_graph = false; opt_params_adam.n_threads = params.n_threads; opt_params_adam.past = params.opt_past; opt_params_adam.delta = params.opt_delta; opt_params_adam.max_no_improvement = params.opt_max_no_improvement; opt_params_adam.adam.n_iter = params.adam_n_iter; opt_params_adam.adam.sched = 1.0f; opt_params_adam.adam.alpha = params.adam_alpha; opt_params_adam.adam.decay = params.adam_decay; opt_params_adam.adam.decay_min_ndim = params.adam_decay_min_ndim; opt_params_adam.adam.beta1 = params.adam_beta1; opt_params_adam.adam.beta2 = params.adam_beta2; opt_params_adam.adam.gclip = params.adam_gclip; opt_params_adam.adam.eps_f = params.adam_eps_f; opt_params_lbfgs.print_forward_graph = false; opt_params_lbfgs.print_backward_graph = false; opt_params_lbfgs.n_threads = params.n_threads; opt_params_adam.past = params.opt_past; opt_params_adam.delta = params.opt_delta; opt_params_adam.max_no_improvement = params.opt_max_no_improvement; opt_params_lbfgs.lbfgs.n_iter = params.lbfgs_n_iter; opt->ctx = model.ctx; opt->params = params.use_adam ? opt_params_adam : opt_params_lbfgs; printf("%s: init model\n", __func__); bool existed = load_checkpoint_file(params.fn_checkpoint_in, &model, opt); if (!existed) { init_model(&model); } set_param_model(&model); opt->params = params.use_adam ? opt_params_adam : opt_params_lbfgs; opt->iter = model.train_its; printf("%s: opt iter %d\n", __func__, opt->iter); bool from_scratch = !existed; if (from_scratch) { randomize_model(&model, params.seed, 0.0f, 1.0f, -1.0f, +1.0f); } printf("used_mem model: %zu bytes\n", ggml_used_mem(model.ctx)); // ggml_print_tensor_objects(model.ctx); // TODO: use std::vector intead of "new" size_t compute_size = 1024ll*1024ll*1024ll*((size_t) params.mem_compute_gb); uint8_t * compute_addr = new uint8_t[compute_size]; size_t size_buf_0 = 1024ll*1024ll*1024ll*((size_t) params.mem_compute0_gb); uint8_t * compute_buf_0 = new uint8_t[size_buf_0]; ggml_allocr * alloc = NULL; if (params.use_alloc) { static const size_t tensor_alignment = 32; alloc = ggml_allocr_new(compute_buf_0, size_buf_0, tensor_alignment); } GGML_ASSERT(n_tokens < (int) train_tokens.size()); std::vector train_samples; train_samples.push_back(0); for (int i = 1; i < (int) train_tokens.size() - n_tokens; ++i) { if (!params.samples_start_after_nl || (train_tokens[i-1] == llama_token_nl(lctx))) { train_samples.push_back(i); } } shuffle_ints(train_samples.data(), train_samples.data() + train_samples.size()); for (int i = 0; i < (int) train_samples.size(); ++i) { GGML_ASSERT(train_samples[i]+n_tokens-1 < (int) train_tokens.size()); } printf("%s: begin training\n", __func__); struct opt_callback_data opt_cb_data; opt_cb_data.params = ¶ms; opt_cb_data.opt = opt; opt_cb_data.lctx = lctx; opt_cb_data.tokens_data = train_tokens.data(); opt_cb_data.tokens_size = train_tokens.size(); opt_cb_data.samples_data = train_samples.data(); opt_cb_data.samples_size = train_samples.size(); opt_cb_data.shuffle_countdown = train_samples.size(); opt_cb_data.tokens_input = NULL; opt_cb_data.target_logits = NULL; opt_cb_data.target_probs = NULL; int64_t t0 = ggml_time_ms(); for (int ex = 0; ex < params.n_examples; ++ex) { if (ex*n_batch >= (int) train_samples.size()) { shuffle_ints(train_samples.data(), train_samples.data() + train_samples.size()); for (int i = 0; i < (int) train_samples.size(); ++i) { GGML_ASSERT(train_samples[i]+n_tokens-1 < (int) train_tokens.size()); } } struct ggml_init_params cparams = { compute_size, // mem_size compute_addr, // mem_buffer false, // no_alloc }; struct ggml_context * ctx0 = ggml_init(cparams); ggml_set_no_alloc(ctx0, false); // don't use alloc for input tensors, so we can safely fill them with data //struct ggml_tensor * after_opt_best_samples = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch); //struct ggml_tensor * after_opt_probs = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch); struct ggml_tensor * target_logits = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); ggml_set_no_alloc(ctx0, (alloc != NULL)); if (alloc) { ggml_allocr_reset(alloc); } opt_cb_data.tokens_input = tokens_input; opt_cb_data.target_logits = target_logits; opt_cb_data.target_probs = target_probs; int n_past = 0; struct ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_cgraph * gb = ggml_new_graph(ctx0); struct ggml_cgraph * gb_tmp = params.use_checkpointing ? ggml_new_graph(ctx0) : NULL; GGML_ASSERT(n_past == 0); struct ggml_tensor * loss = NULL; struct ggml_tensor * logits = NULL; loss = llama_build_train_graphs( &model, alloc, ctx0, gf, gb, gb_tmp, &logits, tokens_input, target_probs, n_tokens, n_batch, params.use_flash, params.use_checkpointing ); size_t used_mem_before_opt = ggml_used_mem(ctx0); opt->params.adam.sched = (opt->iter < params.warmup) ? (float) opt->iter / (float) params.warmup : cosine_decay_restart( params.cos_decay_steps, params.cos_decay_min, opt->iter - params.warmup, params.cos_decay_restart, params.enable_restart); float min_sched = params.adam_min_alpha / params.adam_alpha; opt->params.adam.sched = min_sched + opt->params.adam.sched * (1.0f - min_sched); printf("%s: opt->params.adam.sched %.5f\n", __func__, opt->params.adam.sched); ggml_opt_resume_g(ctx0, opt, loss, gf, gb, &opt_callback, (void *) &opt_cb_data); size_t used_mem_after_opt = ggml_used_mem(ctx0); int n_iter = params.use_adam ? params.adam_n_iter : params.lbfgs_n_iter; model.train_its = opt->iter; model.train_samples += n_batch * n_iter; model.train_tokens += n_batch * n_tokens * n_iter; if (params.print_info_interval > 0 && ex % params.print_info_interval == 0) { printf("Example %d, opt iter %d\n", ex, opt->iter); printf("error_before_opt: %.6f\n", opt->loss_before); printf("error_after_opt: %.6f\n", opt->loss_after); printf("used_mem_before_opt: %zu bytes\n", used_mem_before_opt); printf("used_mem_after_opt: %zu bytes\n", used_mem_after_opt); } ggml_free(ctx0); } int64_t t1 = ggml_time_ms(); int64_t d = t1-t0; double dd = (double) d * 1e-3; printf("%s: total training time=%f seconds\n", __func__, dd); if (params.n_examples > 0) { save_checkpoint_file(params.fn_checkpoint_out, params.fn_vocab_model, &model, opt); } if (strlen(params.fn_model_out) > 0) { save_llama_model_file(params.fn_model_out, params.fn_vocab_model, &model); } if (alloc) { ggml_allocr_free(alloc); } delete[] compute_addr; delete[] compute_buf_0; ggml_free(model.ctx); llama_free(lctx); llama_free_model(lmodel); return 0; }