#include "utils.hpp" #include "arg.h" #include "common.h" #include "log.h" #include "sampling.h" #include "json-schema-to-grammar.h" #include "llama.h" // Change JSON_ASSERT from assert() to GGML_ASSERT: #define JSON_ASSERT GGML_ASSERT #include "json.hpp" // mime type for sending response #define MIMETYPE_JSON "application/json; charset=utf-8" // auto generated files (update with ./deps.sh) #include "colorthemes.css.hpp" #include "style.css.hpp" #include "theme-beeninorder.css.hpp" #include "theme-ketivah.css.hpp" #include "theme-mangotango.css.hpp" #include "theme-playground.css.hpp" #include "theme-polarnight.css.hpp" #include "theme-snowstorm.css.hpp" #include "index.html.hpp" #include "index-new.html.hpp" #include "index.js.hpp" #include "completion.js.hpp" #include "system-prompts.js.hpp" #include "prompt-formats.js.hpp" #include "json-schema-to-grammar.mjs.hpp" #include "loading.html.hpp" #include #include #include #include #include #include #include #include #include #include #include #define SLT_INF(slot, fmt, ...) LOG_INF("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__) #define SLT_WRN(slot, fmt, ...) LOG_WRN("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__) #define SLT_ERR(slot, fmt, ...) LOG_ERR("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__) #define SLT_DBG(slot, fmt, ...) LOG_DBG("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__) #define SRV_INF(fmt, ...) LOG_INF("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__) #define SRV_WRN(fmt, ...) LOG_WRN("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__) #define SRV_ERR(fmt, ...) LOG_ERR("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__) #define SRV_DBG(fmt, ...) LOG_DBG("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__) #define QUE_INF(fmt, ...) LOG_INF("que %12.*s: " fmt, 12, __func__, __VA_ARGS__) #define QUE_WRN(fmt, ...) LOG_WRN("que %12.*s: " fmt, 12, __func__, __VA_ARGS__) #define QUE_ERR(fmt, ...) LOG_ERR("que %12.*s: " fmt, 12, __func__, __VA_ARGS__) #define QUE_DBG(fmt, ...) LOG_DBG("que %12.*s: " fmt, 12, __func__, __VA_ARGS__) using json = nlohmann::ordered_json; enum stop_type { STOP_TYPE_FULL, STOP_TYPE_PARTIAL, }; // state diagram: https://github.com/ggerganov/llama.cpp/pull/9283 enum slot_state { SLOT_STATE_IDLE, SLOT_STATE_PROCESSING_PROMPT, SLOT_STATE_DONE_PROMPT, SLOT_STATE_GENERATING, }; enum server_state { SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet SERVER_STATE_READY, // Server is ready and model is loaded }; enum server_task_type { SERVER_TASK_TYPE_COMPLETION, SERVER_TASK_TYPE_CANCEL, SERVER_TASK_TYPE_NEXT_RESPONSE, SERVER_TASK_TYPE_METRICS, SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE, SERVER_TASK_TYPE_SET_LORA, }; enum server_task_cmpl_type { SERVER_TASK_CMPL_TYPE_NORMAL, SERVER_TASK_CMPL_TYPE_EMBEDDING, SERVER_TASK_CMPL_TYPE_RERANK, SERVER_TASK_CMPL_TYPE_INFILL, }; struct server_task { int id = -1; // to be filled by server_queue int id_target = -1; // used by SERVER_TASK_TYPE_CANCEL server_task_type type; json data; server_task_cmpl_type cmpl_type = SERVER_TASK_CMPL_TYPE_NORMAL; // utility function static std::unordered_set get_list_id(const std::vector & tasks) { std::unordered_set ids(tasks.size()); for (size_t i = 0; i < tasks.size(); i++) { ids.insert(tasks[i].id); } return ids; } }; struct server_task_result { int id = -1; json data; bool stop; bool error; }; struct slot_params { bool stream = true; bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt int32_t n_keep = 0; // number of tokens to keep from initial prompt int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half int32_t n_predict = -1; // new tokens to predict std::vector antiprompt; json input_prefix; json input_suffix; }; struct server_slot { int id; int id_task = -1; // the index relative to completion multi-task request size_t index = 0; struct slot_params params; slot_state state = SLOT_STATE_IDLE; // used to determine the slot that has been used the longest int64_t t_last_used = -1; // generation props int32_t n_ctx = 0; // context size per slot int32_t n_past = 0; int32_t n_decoded = 0; int32_t n_remaining = -1; int32_t i_batch = -1; int32_t n_predict = -1; // TODO: disambiguate from params.n_predict int32_t n_prompt_tokens = 0; int32_t n_prompt_tokens_processed = 0; json prompt; // can be either a string, array of strings or array of token ids // when a task is submitted, we first tokenize the prompt and store it here std::vector prompt_tokens; std::string generated_text; std::vector cache_tokens; std::vector generated_token_probs; server_task_cmpl_type cmpl_type = SERVER_TASK_CMPL_TYPE_NORMAL; bool has_next_token = true; bool truncated = false; bool stopped_eos = false; bool stopped_word = false; bool stopped_limit = false; bool oaicompat = false; std::string oaicompat_model; std::string stopping_word; // sampling json json_schema; struct gpt_sampler_params sparams; struct gpt_sampler * smpl = nullptr; llama_token sampled; int32_t ga_i = 0; // group-attention state int32_t ga_n = 1; // group-attention factor int32_t ga_w = 512; // group-attention width int32_t n_past_se = 0; // self-extend // stats size_t n_sent_text = 0; // number of sent text character size_t n_sent_token_probs = 0; int64_t t_start_process_prompt; int64_t t_start_generation; double t_prompt_processing; // ms double t_token_generation; // ms std::function callback_on_release; void reset() { SLT_DBG(*this, "%s", "\n"); n_prompt_tokens = 0; generated_text = ""; truncated = false; stopped_eos = false; stopped_word = false; stopped_limit = false; stopping_word = ""; n_past = 0; n_sent_text = 0; n_sent_token_probs = 0; cmpl_type = SERVER_TASK_CMPL_TYPE_NORMAL; ga_i = 0; n_past_se = 0; generated_token_probs.clear(); } bool has_budget(gpt_params &global_params) { if (params.n_predict == -1 && global_params.n_predict == -1) { return true; // limitless } n_remaining = -1; if (params.n_predict != -1) { n_remaining = params.n_predict - n_decoded; } else if (global_params.n_predict != -1) { n_remaining = global_params.n_predict - n_decoded; } return n_remaining > 0; // no budget } bool is_processing() const { return state != SLOT_STATE_IDLE; } void add_token(const completion_token_output & token) { if (!is_processing()) { SLT_WRN(*this, "%s", "slot is not processing\n"); return; } generated_token_probs.push_back(token); } void release() { if (is_processing()) { SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated); t_token_generation = (ggml_time_us() - t_start_generation) / 1e3; state = SLOT_STATE_IDLE; callback_on_release(id); } } json get_formated_timings() const { return json { {"prompt_n", n_prompt_tokens_processed}, {"prompt_ms", t_prompt_processing}, {"prompt_per_token_ms", t_prompt_processing / n_prompt_tokens_processed}, {"prompt_per_second", 1e3 / t_prompt_processing * n_prompt_tokens_processed}, {"predicted_n", n_decoded}, {"predicted_ms", t_token_generation}, {"predicted_per_token_ms", t_token_generation / n_decoded}, {"predicted_per_second", 1e3 / t_token_generation * n_decoded}, }; } size_t find_stopping_strings(const std::string & text, const size_t last_token_size, const stop_type type) { size_t stop_pos = std::string::npos; for (const std::string & word : params.antiprompt) { size_t pos; if (type == STOP_TYPE_FULL) { const size_t tmp = word.size() + last_token_size; const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0; pos = text.find(word, from_pos); } else { pos = find_partial_stop_string(word, text); } if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) { if (type == STOP_TYPE_FULL) { stopped_word = true; stopping_word = word; has_next_token = false; } stop_pos = pos; } } return stop_pos; } void print_timings() const { const double t_prompt = t_prompt_processing / n_prompt_tokens_processed; const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed; const double t_gen = t_token_generation / n_decoded; const double n_gen_second = 1e3 / t_token_generation * n_decoded; SLT_INF(*this, "\n" "\rprompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n" "\r eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n" "\r total time = %10.2f ms / %5d tokens\n", t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second, t_token_generation, n_decoded, t_gen, n_gen_second, t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded); } }; struct server_metrics { int64_t t_start = 0; uint64_t n_prompt_tokens_processed_total = 0; uint64_t t_prompt_processing_total = 0; uint64_t n_tokens_predicted_total = 0; uint64_t t_tokens_generation_total = 0; uint64_t n_prompt_tokens_processed = 0; uint64_t t_prompt_processing = 0; uint64_t n_tokens_predicted = 0; uint64_t t_tokens_generation = 0; uint64_t n_decode_total = 0; uint64_t n_busy_slots_total = 0; void init() { t_start = ggml_time_us(); } void on_prompt_eval(const server_slot & slot) { n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed; n_prompt_tokens_processed += slot.n_prompt_tokens_processed; t_prompt_processing += slot.t_prompt_processing; t_prompt_processing_total += slot.t_prompt_processing; } void on_prediction(const server_slot & slot) { n_tokens_predicted_total += slot.n_decoded; n_tokens_predicted += slot.n_decoded; t_tokens_generation += slot.t_token_generation; t_tokens_generation_total += slot.t_token_generation; } void on_decoded(const std::vector & slots) { n_decode_total++; for (const auto & slot : slots) { if (slot.is_processing()) { n_busy_slots_total++; } } } void reset_bucket() { n_prompt_tokens_processed = 0; t_prompt_processing = 0; n_tokens_predicted = 0; t_tokens_generation = 0; } }; struct server_queue { int id = 0; bool running; // queues std::deque queue_tasks; std::deque queue_tasks_deferred; std::mutex mutex_tasks; std::condition_variable condition_tasks; // callback functions std::function callback_new_task; std::function callback_update_slots; // Add a new task to the end of the queue int post(server_task task, bool front = false) { std::unique_lock lock(mutex_tasks); if (task.id == -1) { task.id = id++; } QUE_DBG("new task, id = %d, front = %d\n", task.id, front); if (front) { queue_tasks.push_front(std::move(task)); } else { queue_tasks.push_back(std::move(task)); } condition_tasks.notify_one(); return task.id; } // multi-task version of post() int post(std::vector & tasks, bool front = false) { std::unique_lock lock(mutex_tasks); for (auto & task : tasks) { if (task.id == -1) { task.id = id++; } QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front); if (front) { queue_tasks.push_front(std::move(task)); } else { queue_tasks.push_back(std::move(task)); } } condition_tasks.notify_one(); return 0; } // Add a new task, but defer until one slot is available void defer(server_task task) { std::unique_lock lock(mutex_tasks); QUE_DBG("defer task, id = %d\n", task.id); queue_tasks_deferred.push_back(std::move(task)); condition_tasks.notify_one(); } // Get the next id for creating a new task int get_new_id() { std::unique_lock lock(mutex_tasks); int new_id = id++; return new_id; } // Register function to process a new task void on_new_task(std::function callback) { callback_new_task = std::move(callback); } // Register the function to be called when all slots data is ready to be processed void on_update_slots(std::function callback) { callback_update_slots = std::move(callback); } // Call when the state of one slot is changed, it will move one task from deferred to main queue void pop_deferred_task() { std::unique_lock lock(mutex_tasks); if (!queue_tasks_deferred.empty()) { queue_tasks.emplace_back(std::move(queue_tasks_deferred.front())); queue_tasks_deferred.pop_front(); } condition_tasks.notify_one(); } // end the start_loop routine void terminate() { std::unique_lock lock(mutex_tasks); running = false; condition_tasks.notify_all(); } /** * Main loop consists of these steps: * - Wait until a new task arrives * - Process the task (i.e. maybe copy data into slot) * - Check if multitask is finished * - Update all slots */ void start_loop() { running = true; while (true) { QUE_DBG("%s", "processing new tasks\n"); while (true) { std::unique_lock lock(mutex_tasks); if (queue_tasks.empty()) { lock.unlock(); break; } server_task task = queue_tasks.front(); queue_tasks.pop_front(); lock.unlock(); QUE_DBG("processing task, id = %d\n", task.id); callback_new_task(task); } // all tasks in the current loop is processed, slots data is now ready QUE_DBG("%s", "update slots\n"); callback_update_slots(); QUE_DBG("%s", "waiting for new tasks\n"); { std::unique_lock lock(mutex_tasks); if (queue_tasks.empty()) { if (!running) { QUE_DBG("%s", "terminate\n"); return; } condition_tasks.wait(lock, [&]{ return (!queue_tasks.empty() || !running); }); } } } } }; struct server_response { // for keeping track of all tasks waiting for the result std::unordered_set waiting_task_ids; // the main result queue std::vector queue_results; std::mutex mutex_results; std::condition_variable condition_results; // add the id_task to the list of tasks waiting for response void add_waiting_task_id(int id_task) { SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size()); std::unique_lock lock(mutex_results); waiting_task_ids.insert(id_task); } void add_waiting_tasks(const std::vector & tasks) { std::unique_lock lock(mutex_results); for (const auto & task : tasks) { SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size()); waiting_task_ids.insert(task.id); } } // when the request is finished, we can remove task associated with it void remove_waiting_task_id(int id_task) { SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size()); std::unique_lock lock(mutex_results); waiting_task_ids.erase(id_task); } void remove_waiting_task_ids(const std::unordered_set & id_tasks) { std::unique_lock lock(mutex_results); for (const auto & id_task : id_tasks) { SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size()); waiting_task_ids.erase(id_task); } } // This function blocks the thread until there is a response for one of the id_tasks server_task_result recv(const std::unordered_set & id_tasks) { while (true) { std::unique_lock lock(mutex_results); condition_results.wait(lock, [&]{ return !queue_results.empty(); }); for (int i = 0; i < (int) queue_results.size(); i++) { if (id_tasks.find(queue_results[i].id) != id_tasks.end()) { server_task_result res = queue_results[i]; queue_results.erase(queue_results.begin() + i); return res; } } } // should never reach here } // single-task version of recv() server_task_result recv(int id_task) { std::unordered_set id_tasks = {id_task}; return recv(id_tasks); } // Send a new result to a waiting id_task void send(server_task_result & result) { SRV_DBG("sending result for task id = %d\n", result.id); std::unique_lock lock(mutex_results); for (const auto & id_task : waiting_task_ids) { if (result.id == id_task) { SRV_DBG("task id = %d moved to result queue\n", result.id); queue_results.push_back(std::move(result)); condition_results.notify_all(); return; } } } }; struct server_context { llama_model * model = nullptr; llama_context * ctx = nullptr; std::vector loras; gpt_params params; llama_batch batch = {}; bool clean_kv_cache = true; bool add_bos_token = true; bool has_eos_token = false; int32_t n_ctx; // total context for all clients / slots // system prompt bool system_need_update = false; std::string system_prompt; std::vector system_tokens; // slots / clients std::vector slots; json default_generation_settings_for_props; server_queue queue_tasks; server_response queue_results; server_metrics metrics; // Necessary similarity of prompt for slot selection float slot_prompt_similarity = 0.0f; ~server_context() { if (ctx) { llama_free(ctx); ctx = nullptr; } if (model) { llama_free_model(model); model = nullptr; } // Clear any sampling context for (server_slot & slot : slots) { if (slot.smpl != nullptr) { gpt_sampler_free(slot.smpl); } } llama_batch_free(batch); } bool load_model(const gpt_params & params_) { params = params_; // dedicate one sequence to the system prompt params.n_parallel += 1; llama_init_result llama_init = llama_init_from_gpt_params(params); model = llama_init.model; ctx = llama_init.context; loras = llama_init.lora_adapters; params.n_parallel -= 1; // but be sneaky about it if (model == nullptr) { SRV_ERR("failed to load model, '%s'\n", params.model.c_str()); return false; } n_ctx = llama_n_ctx(ctx); add_bos_token = llama_add_bos_token(model); has_eos_token = !llama_add_eos_token(model); return true; } bool validate_model_chat_template() const { llama_chat_message chat[] = {{"user", "test"}}; const int res = llama_chat_apply_template(model, nullptr, chat, 1, true, nullptr, 0); return res > 0; } void init() { const int32_t n_ctx_slot = n_ctx / params.n_parallel; SRV_INF("initializing slots, n_slots = %d\n", params.n_parallel); for (int i = 0; i < params.n_parallel; i++) { server_slot slot; slot.id = i; slot.n_ctx = n_ctx_slot; slot.n_predict = params.n_predict; SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx); const int ga_n = params.grp_attn_n; const int ga_w = params.grp_attn_w; if (ga_n != 1) { GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); // NOLINT GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT //GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT //GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT SLT_INF(slot, "slot self-extend: ga_n = %d, ga_w = %d\n", ga_n, ga_w); } slot.ga_i = 0; slot.ga_n = ga_n; slot.ga_w = ga_w; slot.sparams = params.sparams; slot.callback_on_release = [this](int) { queue_tasks.pop_deferred_task(); }; slot.reset(); slots.push_back(slot); } default_generation_settings_for_props = get_formated_generation(slots.front()); default_generation_settings_for_props["seed"] = -1; // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used) { const int32_t n_batch = llama_n_batch(ctx); // only a single seq_id per token is needed batch = llama_batch_init(std::max(n_batch, params.n_parallel), 0, 1); } metrics.init(); } std::vector tokenize(const json & json_prompt, bool add_special) const { // TODO: currently, we tokenize using special tokens by default // this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216) // but it's better compared to completely ignoring ChatML and other chat templates const bool TMP_FORCE_SPECIAL = true; // If `add_bos` is true, we only add BOS, when json_prompt is a string, // or the first element of the json_prompt array is a string. std::vector prompt_tokens; if (json_prompt.is_array()) { bool first = true; for (const auto & p : json_prompt) { if (p.is_string()) { auto s = p.template get(); std::vector p; if (first) { p = ::llama_tokenize(ctx, s, add_special, TMP_FORCE_SPECIAL); first = false; } else { p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL); } prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end()); } else { if (first) { first = false; } prompt_tokens.push_back(p.template get()); } } } else { auto s = json_prompt.template get(); prompt_tokens = ::llama_tokenize(ctx, s, add_special, TMP_FORCE_SPECIAL); } return prompt_tokens; } server_slot * get_slot_by_id(int id) { for (server_slot & slot : slots) { if (slot.id == id) { return &slot; } } return nullptr; } server_slot * get_available_slot(const std::string & prompt) { server_slot * ret = nullptr; // find the slot that has at least n% prompt similarity if (ret == nullptr && slot_prompt_similarity != 0.0f && !prompt.empty()) { int max_lcp_len = 0; float similarity = 0; for (server_slot & slot : slots) { // skip the slot if it is not available if (slot.is_processing()) { continue; } // skip the slot if it does not contains prompt if (!slot.prompt.is_string()) { continue; } // current slot's prompt std::string slot_prompt = slot.prompt.get(); // length of the current slot's prompt int slot_prompt_len = slot_prompt.size(); // length of the Longest Common Prefix between the current slot's prompt and the input prompt int lcp_len = common_part(slot_prompt, prompt); // fraction of the common substring length compared to the current slot's prompt length similarity = static_cast(lcp_len) / slot_prompt_len; // select the current slot if the criteria match if (lcp_len > max_lcp_len && similarity > slot_prompt_similarity) { max_lcp_len = lcp_len; ret = &slot; } } if (ret != nullptr) { SLT_DBG(*ret, "selected slot by lcp similarity, max_lcp_len = %d, similarity = %f\n", max_lcp_len, similarity); } } // find the slot that has been least recently used if (ret == nullptr) { int64_t t_last = ggml_time_us(); for (server_slot & slot : slots) { // skip the slot if it is not available if (slot.is_processing()) { continue; } // select the current slot if the criteria match if (slot.t_last_used < t_last) { t_last = slot.t_last_used; ret = &slot; } } if (ret != nullptr) { SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last); } } return ret; } bool launch_slot_with_task(server_slot & slot, const server_task & task) { slot_params default_params; // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them) auto default_sparams = params.sparams; const auto & data = task.data; if (data.count("__oaicompat") != 0) { slot.oaicompat = true; slot.oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL)); } else { slot.oaicompat = false; slot.oaicompat_model = ""; } slot.params.stream = json_value(data, "stream", false); slot.params.cache_prompt = json_value(data, "cache_prompt", false); slot.params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", default_params.n_predict)); slot.sparams.top_k = json_value(data, "top_k", default_sparams.top_k); slot.sparams.top_p = json_value(data, "top_p", default_sparams.top_p); slot.sparams.min_p = json_value(data, "min_p", default_sparams.min_p); slot.sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z); slot.sparams.typ_p = json_value(data, "typical_p", default_sparams.typ_p); slot.sparams.temp = json_value(data, "temperature", default_sparams.temp); slot.sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range); slot.sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent); slot.sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n); slot.sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat); slot.sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq); slot.sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present); slot.sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat); slot.sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau); slot.sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta); slot.sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl); slot.params.n_keep = json_value(data, "n_keep", slot.params.n_keep); slot.params.n_discard = json_value(data, "n_discard", default_params.n_discard); slot.sparams.seed = json_value(data, "seed", default_sparams.seed); slot.sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs); slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep); // process "json_schema" and "grammar" if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) { send_error(task, "Either \"json_schema\" or \"grammar\" can be specified, but not both", ERROR_TYPE_INVALID_REQUEST); return false; } if (data.contains("json_schema") && !data.contains("grammar")) { try { auto schema = json_value(data, "json_schema", json::object()); slot.sparams.grammar = json_schema_to_grammar(schema); } catch (const std::exception & e) { send_error(task, std::string("\"json_schema\": ") + e.what(), ERROR_TYPE_INVALID_REQUEST); return false; } } else { slot.sparams.grammar = json_value(data, "grammar", default_sparams.grammar); } if (slot.params.cache_prompt && slot.ga_n != 1) { slot.params.cache_prompt = false; SLT_WRN(slot, "%s", "group-attention is not supported with prompt caching. disabling cache\n"); } if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) { // Might be better to reject the request with a 400 ? slot.params.n_predict = slot.n_predict; SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.n_predict, slot.n_predict); } // infill slot.params.input_prefix = json_value(data, "input_prefix", default_params.input_prefix); slot.params.input_suffix = json_value(data, "input_suffix", default_params.input_suffix); // get prompt if (task.cmpl_type != SERVER_TASK_CMPL_TYPE_INFILL) { const auto & prompt = data.find("prompt"); if (prompt == data.end()) { send_error(task, "\"prompt\" must be provided", ERROR_TYPE_INVALID_REQUEST); return false; } if ((prompt->is_string()) || (prompt->is_array() && prompt->size() == 1 && prompt->at(0).is_string()) || (prompt->is_array() && !prompt->empty() && prompt->at(0).is_number_integer())) { slot.prompt = *prompt; } else if (prompt->is_array() && prompt->size() == 1 && prompt->at(0).is_array()) { slot.prompt = prompt->at(0); } else if (prompt->is_array() && prompt->size() > 1) { // array of strings for (const auto & el : *prompt) { if (!el.is_string()) { send_error(task, "\"prompt\" must be a string, an array of strings or an array of integers", ERROR_TYPE_INVALID_REQUEST); return false; } } slot.prompt = *prompt; } else { send_error(task, "\"prompt\" must be a string, an array of strings or an array of integers", ERROR_TYPE_INVALID_REQUEST); return false; } } { slot.sparams.logit_bias.clear(); if (json_value(data, "ignore_eos", false) && has_eos_token) { slot.sparams.logit_bias.push_back({llama_token_eos(model), -INFINITY}); } const auto & logit_bias = data.find("logit_bias"); if (logit_bias != data.end() && logit_bias->is_array()) { const int n_vocab = llama_n_vocab(model); for (const auto & el : *logit_bias) { // TODO: we may want to throw errors here, in case "el" is incorrect if (el.is_array() && el.size() == 2) { float bias; if (el[1].is_number()) { bias = el[1].get(); } else if (el[1].is_boolean() && !el[1].get()) { bias = -INFINITY; } else { continue; } if (el[0].is_number_integer()) { llama_token tok = el[0].get(); if (tok >= 0 && tok < n_vocab) { slot.sparams.logit_bias.push_back({tok, bias}); } } else if (el[0].is_string()) { auto toks = llama_tokenize(model, el[0].get(), false); for (auto tok : toks) { slot.sparams.logit_bias.push_back({tok, bias}); } } } } } } { slot.params.antiprompt.clear(); const auto & stop = data.find("stop"); if (stop != data.end() && stop->is_array()) { for (const auto & word : *stop) { if (!word.empty()) { slot.params.antiprompt.push_back(word); } } } } { const auto & samplers = data.find("samplers"); if (samplers != data.end() && samplers->is_array()) { std::vector sampler_names; for (const auto & name : *samplers) { if (name.is_string()) { sampler_names.emplace_back(name); } } slot.sparams.samplers = gpt_sampler_types_from_names(sampler_names, false); } else { slot.sparams.samplers = default_sparams.samplers; } } { if (slot.smpl != nullptr) { gpt_sampler_free(slot.smpl); } slot.smpl = gpt_sampler_init(model, slot.sparams); if (slot.smpl == nullptr) { // for now, the only error that may happen here is invalid grammar send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST); return false; } } slot.state = SLOT_STATE_PROCESSING_PROMPT; slot.prompt_tokens.clear(); SLT_INF(slot, "%s", "processing task\n"); return true; } void kv_cache_clear() { SRV_DBG("%s", "clearing KV cache\n"); // clear the entire KV cache llama_kv_cache_clear(ctx); clean_kv_cache = false; } void system_prompt_update() { SRV_DBG("updating system prompt: '%s'\n", system_prompt.c_str()); kv_cache_clear(); system_tokens.clear(); if (!system_prompt.empty()) { system_tokens = ::llama_tokenize(ctx, system_prompt, true); const int32_t n_batch = llama_n_batch(ctx); const int32_t n_tokens_prompt = system_tokens.size(); for (int32_t i = 0; i < n_tokens_prompt; i += n_batch) { const int32_t n_tokens = std::min(n_batch, n_tokens_prompt - i); llama_batch_clear(batch); for (int32_t j = 0; j < n_tokens; ++j) { llama_batch_add(batch, system_tokens[i + j], i + j, { 0 }, false); } if (llama_decode(ctx, batch) != 0) { SRV_ERR("%s", "llama_decode() failed\n"); return; } } // assign the system KV cache to all parallel sequences for (int32_t i = 1; i <= params.n_parallel; ++i) { llama_kv_cache_seq_cp(ctx, 0, i, -1, -1); } } system_need_update = false; } bool system_prompt_set(const std::string & sys_prompt) { SRV_DBG("system prompt set: '%s'\n", system_prompt.c_str()); system_prompt = sys_prompt; // release all slots for (server_slot & slot : slots) { slot.release(); } system_need_update = true; return true; } bool process_token(completion_token_output & result, server_slot & slot) { // remember which tokens were sampled - used for repetition penalties during sampling const std::string token_str = llama_token_to_piece(ctx, result.tok, params.special); slot.sampled = result.tok; // search stop word and delete it slot.generated_text += token_str; slot.has_next_token = true; // check if there is incomplete UTF-8 character at the end bool incomplete = false; for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i) { unsigned char c = slot.generated_text[slot.generated_text.size() - i]; if ((c & 0xC0) == 0x80) { // continuation byte: 10xxxxxx continue; } if ((c & 0xE0) == 0xC0) { // 2-byte character: 110xxxxx ... incomplete = i < 2; } else if ((c & 0xF0) == 0xE0) { // 3-byte character: 1110xxxx ... incomplete = i < 3; } else if ((c & 0xF8) == 0xF0) { // 4-byte character: 11110xxx ... incomplete = i < 4; } // else 1-byte character or invalid byte break; } if (!incomplete) { size_t pos = std::min(slot.n_sent_text, slot.generated_text.size()); const std::string str_test = slot.generated_text.substr(pos); bool is_stop_full = false; size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_FULL); if (stop_pos != std::string::npos) { is_stop_full = true; slot.generated_text.erase( slot.generated_text.begin() + pos + stop_pos, slot.generated_text.end()); pos = std::min(slot.n_sent_text, slot.generated_text.size()); } else { is_stop_full = false; stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_PARTIAL); } // check if there is any token to predict if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0)) { // no send the stop word in the response result.text_to_send = slot.generated_text.substr(pos, std::string::npos); slot.n_sent_text += result.text_to_send.size(); // add the token to slot queue and cache } slot.add_token(result); if (slot.params.stream) { send_partial_response(slot, result); } } if (incomplete) { slot.has_next_token = true; } // check the limits if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params)) { slot.stopped_limit = true; slot.has_next_token = false; SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict); } // if context shift is disabled, we stop when it reaches the context limit if (slot.n_decoded >= slot.n_ctx) { slot.truncated = true; slot.stopped_limit = true; slot.has_next_token = false; SLT_DBG(slot, "stopped due to running out of context capacity, n_decoded = %d, n_ctx = %d\n", slot.n_decoded, slot.n_ctx); } if (llama_token_is_eog(model, result.tok)) { slot.stopped_eos = true; slot.has_next_token = false; SLT_DBG(slot, "%s", "stopped by EOS\n"); } const auto n_ctx_train = llama_n_ctx_train(model); if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.ga_n == 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) { slot.truncated = true; slot.stopped_limit = true; slot.has_next_token = false; // stop prediction SLT_WRN(slot, "n_predict (%d) is not set and self-context extend is disabled. " "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n", slot.params.n_predict, n_ctx_train); } SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: '%s'\n", slot.n_decoded, slot.n_remaining, token_str.c_str()); return slot.has_next_token; // continue } json get_formated_generation(const server_slot & slot) const { std::vector samplers; samplers.reserve(slot.sparams.samplers.size()); for (const auto & sampler : slot.sparams.samplers) { samplers.emplace_back(gpt_sampler_type_to_str(sampler)); } return json { {"n_ctx", slot.n_ctx}, {"n_predict", slot.n_predict}, // Server configured n_predict {"model", params.model_alias}, {"seed", slot.sparams.seed}, {"seed_cur", slot.smpl ? gpt_sampler_get_seed(slot.smpl) : 0}, {"temperature", slot.sparams.temp}, {"dynatemp_range", slot.sparams.dynatemp_range}, {"dynatemp_exponent", slot.sparams.dynatemp_exponent}, {"top_k", slot.sparams.top_k}, {"top_p", slot.sparams.top_p}, {"min_p", slot.sparams.min_p}, {"tfs_z", slot.sparams.tfs_z}, {"typical_p", slot.sparams.typ_p}, {"repeat_last_n", slot.sparams.penalty_last_n}, {"repeat_penalty", slot.sparams.penalty_repeat}, {"presence_penalty", slot.sparams.penalty_present}, {"frequency_penalty", slot.sparams.penalty_freq}, {"mirostat", slot.sparams.mirostat}, {"mirostat_tau", slot.sparams.mirostat_tau}, {"mirostat_eta", slot.sparams.mirostat_eta}, {"penalize_nl", slot.sparams.penalize_nl}, {"stop", slot.params.antiprompt}, {"max_tokens", slot.params.n_predict}, // User configured n_predict {"n_keep", slot.params.n_keep}, {"n_discard", slot.params.n_discard}, {"ignore_eos", slot.sparams.ignore_eos}, {"stream", slot.params.stream}, //{"logit_bias", slot.sparams.logit_bias}, {"n_probs", slot.sparams.n_probs}, {"min_keep", slot.sparams.min_keep}, {"grammar", slot.sparams.grammar}, {"samplers", samplers}, }; } void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) { send_error(task.id, error, type); } void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) { send_error(slot.id_task, error, type); } void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) { SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str()); server_task_result res; res.id = id_task; res.stop = false; res.error = true; res.data = format_error_response(error, type); queue_results.send(res); } void send_partial_response(server_slot & slot, completion_token_output tkn) { server_task_result res; res.id = slot.id_task; res.error = false; res.stop = false; res.data = json { {"content", tkn.text_to_send}, {"stop", false}, {"id_slot", slot.id}, {"multimodal", false}, {"index", slot.index}, }; if (slot.sparams.n_probs > 0) { const std::vector to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false); const size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size()); const size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size()); std::vector probs_output; if (probs_pos < probs_stop_pos) { probs_output = std::vector( slot.generated_token_probs.begin() + probs_pos, slot.generated_token_probs.begin() + probs_stop_pos); } slot.n_sent_token_probs = probs_stop_pos; res.data["completion_probabilities"] = probs_vector_to_json(ctx, probs_output); } if (slot.oaicompat) { res.data["oaicompat_token_ctr"] = slot.n_decoded; res.data["model"] = slot.oaicompat_model; } queue_results.send(res); } void send_final_response(const server_slot & slot) { server_task_result res; res.id = slot.id_task; res.error = false; res.stop = true; res.data = json { {"content", !slot.params.stream ? slot.generated_text : ""}, {"id_slot", slot.id}, {"stop", true}, {"model", params.model_alias}, {"tokens_predicted", slot.n_decoded}, {"tokens_evaluated", slot.n_prompt_tokens}, {"generation_settings", get_formated_generation(slot)}, {"prompt", slot.prompt}, {"truncated", slot.truncated}, {"stopped_eos", slot.stopped_eos}, {"stopped_word", slot.stopped_word}, {"stopped_limit", slot.stopped_limit}, {"stopping_word", slot.stopping_word}, {"tokens_cached", slot.n_past}, {"timings", slot.get_formated_timings()}, {"index", slot.index}, }; if (slot.sparams.n_probs > 0) { std::vector probs; if (!slot.params.stream && slot.stopped_word) { const std::vector stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false); size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size()); probs = std::vector( slot.generated_token_probs.begin(), slot.generated_token_probs.end() - safe_offset); } else { probs = std::vector( slot.generated_token_probs.begin(), slot.generated_token_probs.end()); } res.data["completion_probabilities"] = probs_vector_to_json(ctx, probs); } if (slot.oaicompat) { res.data["oaicompat_token_ctr"] = slot.n_decoded; res.data["model"] = slot.oaicompat_model; } queue_results.send(res); } void send_embedding(const server_slot & slot, const llama_batch & batch) { server_task_result res; res.id = slot.id_task; res.error = false; res.stop = true; const int n_embd = llama_n_embd(model); std::vector embd_res(n_embd, 0.0f); for (int i = 0; i < batch.n_tokens; ++i) { if (!batch.logits[i] || batch.seq_id[i][0] != slot.id + 1) { continue; } const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]); if (embd == NULL) { embd = llama_get_embeddings_ith(ctx, i); } if (embd == NULL) { SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]); res.data = json { {"embedding", std::vector(n_embd, 0.0f)}, {"index", slot.index}, }; continue; } llama_embd_normalize(embd, embd_res.data(), n_embd); res.data = json { {"embedding", embd_res}, {"index", slot.index}, }; } SLT_DBG(slot, "%s", "sending embeddings\n"); queue_results.send(res); } void send_rerank(const server_slot & slot, const llama_batch & batch) { server_task_result res; res.id = slot.id_task; res.error = false; res.stop = true; for (int i = 0; i < batch.n_tokens; ++i) { if (!batch.logits[i] || batch.seq_id[i][0] != slot.id + 1) { continue; } const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]); if (embd == NULL) { embd = llama_get_embeddings_ith(ctx, i); } if (embd == NULL) { SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]); res.data = json { {"index", slot.index}, {"score", -1e6}, }; continue; } res.data = json { {"index", slot.index}, {"score", embd[0]}, }; } SLT_DBG(slot, "sending rerank result, res = '%s'\n", res.data.dump().c_str()); queue_results.send(res); } // // Functions to create new task(s) and receive result(s) // std::vector create_tasks_cmpl(json data, server_task_cmpl_type cmpl_type) { std::vector tasks; auto create_task = [&](json & task_data, bool replace_prompt, json prompt) { server_task task; task.id = queue_tasks.get_new_id(); task.cmpl_type = cmpl_type; task.type = SERVER_TASK_TYPE_COMPLETION; if (replace_prompt) { task.data = task_data; task.data["prompt"] = std::move(prompt); } else { task.data = std::move(task_data); } tasks.push_back(std::move(task)); }; static constexpr const char * error_msg = "\"prompt\" must be a string, an array of token ids or an array of prompts"; if (!data.contains("prompt")) { throw std::runtime_error(error_msg); } json prompt = data.at("prompt"); // if the prompt is a singleton (i.e. a string or a list of tokens), we only need to create single task if (prompt.is_string() || json_is_array_of_numbers(prompt)) { data["index"] = 0; create_task(data, false, nullptr); } // otherwise, it's a multiple-prompt task, we break it into smaller tasks else if (prompt.is_array()) { std::vector prompts = prompt; if (cmpl_type == SERVER_TASK_CMPL_TYPE_RERANK) { // prompts[0] is the question // the rest are the answers/documents SRV_DBG("creating rerank tasks, n_prompts = %d\n", (int) prompts.size() - 1); for (size_t i = 1; i < prompts.size(); i++) { json qd; qd.push_back(prompts[0]); qd.push_back(prompts[i]); data["index"] = i - 1; create_task(data, true, qd); } } else { SRV_DBG("creating multi-prompt tasks, n_prompts = %d\n", (int) prompts.size()); for (size_t i = 0; i < prompts.size(); i++) { const auto & e = prompts[i]; if (e.is_string() || json_is_array_of_numbers(e)) { data["index"] = i; create_task(data, true, e); } else { throw std::runtime_error(error_msg); } } } } // invalid case else { throw std::runtime_error(error_msg); } return tasks; } void cancel_tasks(const std::unordered_set & id_tasks) { std::vector cancel_tasks; cancel_tasks.reserve(id_tasks.size()); for (const auto & id_task : id_tasks) { SRV_WRN("cancel task, id_task = %d\n", id_task); server_task task; task.type = SERVER_TASK_TYPE_CANCEL; task.id_target = id_task; cancel_tasks.push_back(task); queue_results.remove_waiting_task_id(id_task); } // push to beginning of the queue, so it has highest priority queue_tasks.post(cancel_tasks, true); } // receive the results from task(s) created by create_tasks_cmpl void receive_cmpl_results( const std::unordered_set & id_tasks, const std::function&)> & result_handler, const std::function & error_handler) { // TODO: currently, there is no way to detect the client has cancelled the request std::vector results(id_tasks.size()); for (size_t i = 0; i < id_tasks.size(); i++) { server_task_result result = queue_results.recv(id_tasks); if (result.error) { error_handler(result.data); cancel_tasks(id_tasks); return; } const size_t idx = result.data["index"]; GGML_ASSERT(idx < results.size() && "index out of range"); results[idx] = result; } result_handler(results); } // receive the results from task(s) created by create_tasks_cmpl, in stream mode void receive_cmpl_results_stream( const std::unordered_set & id_tasks, const std::function & result_handler, const std::function & error_handler) { size_t n_finished = 0; while (true) { server_task_result result = queue_results.recv(id_tasks); if (!result_handler(result)) { cancel_tasks(id_tasks); break; } if (result.error) { error_handler(result.data); cancel_tasks(id_tasks); break; } if (result.stop) { if (++n_finished == id_tasks.size()) { break; } } } } // // Functions to process the task // void process_single_task(const server_task & task) { switch (task.type) { case SERVER_TASK_TYPE_COMPLETION: { const int id_slot = json_value(task.data, "id_slot", -1); server_slot * slot; if (id_slot != -1) { slot = get_slot_by_id(id_slot); } else { std::string prompt; if (task.data.contains("prompt") && task.data.at("prompt").is_string()) { prompt = json_value(task.data, "prompt", std::string()); } slot = get_available_slot(prompt); } if (slot == nullptr) { // if no slot is available, we defer this task for processing later SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id); queue_tasks.defer(task); break; } if (slot->is_processing()) { // if requested slot is unavailable, we defer this task for processing later SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id); queue_tasks.defer(task); break; } if (task.data.contains("system_prompt")) { std::string sys_prompt = json_value(task.data, "system_prompt", std::string()); system_prompt_set(sys_prompt); for (server_slot & slot : slots) { slot.n_past = 0; slot.n_past_se = 0; } } slot->reset(); slot->id_task = task.id; slot->cmpl_type = task.cmpl_type; slot->index = json_value(task.data, "index", 0); if (!launch_slot_with_task(*slot, task)) { SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id); break; } } break; case SERVER_TASK_TYPE_CANCEL: { // release slot linked with the task id for (auto & slot : slots) { if (slot.id_task == task.id_target) { slot.release(); break; } } } break; case SERVER_TASK_TYPE_NEXT_RESPONSE: { // do nothing } break; case SERVER_TASK_TYPE_METRICS: { json slots_data = json::array(); int n_idle_slots = 0; int n_processing_slots = 0; for (server_slot & slot : slots) { json slot_data = get_formated_generation(slot); slot_data["id"] = slot.id; slot_data["id_task"] = slot.id_task; slot_data["state"] = slot.state; slot_data["prompt"] = slot.prompt; slot_data["next_token"] = { {"has_next_token", slot.has_next_token}, {"n_remain", slot.n_remaining}, {"n_decoded", slot.n_decoded}, {"stopped_eos", slot.stopped_eos}, {"stopped_word", slot.stopped_word}, {"stopped_limit", slot.stopped_limit}, {"stopping_word", slot.stopping_word}, }; if (slot_data["state"] == SLOT_STATE_IDLE) { n_idle_slots++; } else { n_processing_slots++; } slots_data.push_back(slot_data); } SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots); server_task_result res; res.id = task.id; res.stop = true; res.error = false; res.data = { { "idle", n_idle_slots }, { "processing", n_processing_slots }, { "deferred", queue_tasks.queue_tasks_deferred.size() }, { "t_start", metrics.t_start}, { "n_prompt_tokens_processed_total", metrics.n_prompt_tokens_processed_total}, { "t_tokens_generation_total", metrics.t_tokens_generation_total}, { "n_tokens_predicted_total", metrics.n_tokens_predicted_total}, { "t_prompt_processing_total", metrics.t_prompt_processing_total}, { "n_prompt_tokens_processed", metrics.n_prompt_tokens_processed}, { "t_prompt_processing", metrics.t_prompt_processing}, { "n_tokens_predicted", metrics.n_tokens_predicted}, { "t_tokens_generation", metrics.t_tokens_generation}, { "n_decode_total", metrics.n_decode_total}, { "n_busy_slots_total", metrics.n_busy_slots_total}, { "kv_cache_tokens_count", llama_get_kv_cache_token_count(ctx)}, { "kv_cache_used_cells", llama_get_kv_cache_used_cells(ctx)}, { "slots", slots_data }, }; if (json_value(task.data, "reset_bucket", false)) { metrics.reset_bucket(); } queue_results.send(res); } break; case SERVER_TASK_TYPE_SLOT_SAVE: { int id_slot = task.data.at("id_slot"); server_slot * slot = get_slot_by_id(id_slot); if (slot == nullptr) { send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST); break; } if (slot->is_processing()) { // if requested slot is unavailable, we defer this task for processing later SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id); queue_tasks.defer(task); break; } const size_t token_count = slot->cache_tokens.size(); const int64_t t_start = ggml_time_us(); std::string filename = task.data.at("filename"); std::string filepath = task.data.at("filepath"); const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id + 1, slot->cache_tokens.data(), token_count); const int64_t t_end = ggml_time_us(); const double t_save_ms = (t_end - t_start) / 1000.0; server_task_result result; result.id = task.id; result.stop = true; result.error = false; result.data = json { { "id_slot", id_slot }, { "filename", filename }, { "n_saved", token_count }, // tokens saved { "n_written", nwrite }, // bytes written { "timings", { { "save_ms", t_save_ms } } } }; queue_results.send(result); } break; case SERVER_TASK_TYPE_SLOT_RESTORE: { int id_slot = task.data.at("id_slot"); server_slot * slot = get_slot_by_id(id_slot); if (slot == nullptr) { send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST); break; } if (slot->is_processing()) { // if requested slot is unavailable, we defer this task for processing later SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id); queue_tasks.defer(task); break; } const int64_t t_start = ggml_time_us(); std::string filename = task.data.at("filename"); std::string filepath = task.data.at("filepath"); slot->cache_tokens.resize(slot->n_ctx); size_t token_count = 0; size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id + 1, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count); if (nread == 0) { slot->cache_tokens.resize(0); send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST); break; } slot->cache_tokens.resize(token_count); const int64_t t_end = ggml_time_us(); const double t_restore_ms = (t_end - t_start) / 1000.0; server_task_result result; result.id = task.id; result.stop = true; result.error = false; result.data = json { { "id_slot", id_slot }, { "filename", filename }, { "n_restored", token_count }, // tokens restored { "n_read", nread }, // bytes read { "timings", { { "restore_ms", t_restore_ms } } } }; queue_results.send(result); } break; case SERVER_TASK_TYPE_SLOT_ERASE: { int id_slot = task.data.at("id_slot"); server_slot * slot = get_slot_by_id(id_slot); if (slot == nullptr) { send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST); break; } if (slot->is_processing()) { // if requested slot is unavailable, we defer this task for processing later SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id); queue_tasks.defer(task); break; } // Erase token cache const size_t n_erased = slot->cache_tokens.size(); llama_kv_cache_seq_rm(ctx, slot->id + 1, -1, -1); slot->cache_tokens.clear(); server_task_result result; result.id = task.id; result.stop = true; result.error = false; result.data = json { { "id_slot", id_slot }, { "n_erased", n_erased } }; queue_results.send(result); } break; case SERVER_TASK_TYPE_SET_LORA: { llama_lora_adapters_apply(ctx, loras); server_task_result result; result.id = task.id; result.stop = true; result.error = false; result.data = json{{ "success", true }}; queue_results.send(result); } break; } } void update_slots() { if (system_need_update) { system_prompt_update(); } // check if all slots are idle { bool all_idle = true; for (auto & slot : slots) { if (slot.is_processing()) { all_idle = false; break; } } if (all_idle) { SRV_INF("%s", "all slots are idle\n"); if (system_prompt.empty() && clean_kv_cache) { kv_cache_clear(); } return; } } { SRV_DBG("%s", "posting NEXT_RESPONSE\n"); server_task task; task.type = SERVER_TASK_TYPE_NEXT_RESPONSE; task.id_target = -1; queue_tasks.post(task); } // apply context-shift if needed // TODO: simplify and improve for (server_slot & slot : slots) { if (slot.ga_n == 1) { if (slot.is_processing() && (int) system_tokens.size() + slot.n_past >= slot.n_ctx - 1) { if (!params.ctx_shift) { // this check is redundant (for good) // we should never get here, because generation should already stopped in process_token() slot.release(); send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER); continue; } // Shift context const int n_keep = slot.params.n_keep + add_bos_token; const int n_left = (int) system_tokens.size() + slot.n_past - n_keep; const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2); SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard); llama_kv_cache_seq_rm (ctx, slot.id + 1, n_keep , n_keep + n_discard); llama_kv_cache_seq_add(ctx, slot.id + 1, n_keep + n_discard, system_tokens.size() + slot.n_past, -n_discard); if (slot.params.cache_prompt) { for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) { slot.cache_tokens[i - n_discard] = slot.cache_tokens[i]; } slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard); } slot.n_past -= n_discard; slot.truncated = true; } } } // start populating the batch for this iteration llama_batch_clear(batch); // frist, add sampled tokens from any ongoing sequences for (auto & slot : slots) { if (slot.state != SLOT_STATE_GENERATING) { continue; } slot.i_batch = batch.n_tokens; const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past; // TODO: we always have to take into account the "system_tokens" // this is not great and needs to be improved somehow llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id + 1 }, true); slot.n_past += 1; if (slot.params.cache_prompt) { slot.cache_tokens.push_back(slot.sampled); } SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_system_tokens = %d, n_cache_tokens = %d, truncated = %d\n", slot.n_ctx, slot.n_past, (int) system_tokens.size(), (int) slot.cache_tokens.size(), slot.truncated); } // process in chunks of params.n_batch int32_t n_batch = llama_n_batch(ctx); int32_t n_ubatch = llama_n_ubatch(ctx); // track if this is an embedding or non-embedding batch // if we've added sampled tokens above, we are in non-embedding mode // -1: none, 0: non-embedding, 1: embedding // TODO: make enum int32_t batch_type = batch.n_tokens > 0 ? 0 : -1; // next, batch any pending prompts without exceeding n_batch if (params.cont_batching || batch.n_tokens == 0) { for (auto & slot : slots) { // this slot still has a prompt to be processed if (slot.state == SLOT_STATE_PROCESSING_PROMPT) { auto & prompt_tokens = slot.prompt_tokens; // we haven't tokenized the prompt yet - do it now: if (prompt_tokens.empty()) { SLT_INF(slot, "tokenizing prompt, len = %d\n", (int) slot.prompt.size()); slot.t_start_process_prompt = ggml_time_us(); slot.t_start_generation = 0; if (slot.cmpl_type == SERVER_TASK_CMPL_TYPE_INFILL) { const bool add_bos = llama_add_bos_token(model); bool suff_rm_leading_spc = true; if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) { params.input_suffix.erase(0, 1); suff_rm_leading_spc = false; } auto prefix_tokens = tokenize(slot.params.input_prefix, false); auto suffix_tokens = tokenize(slot.params.input_suffix, false); const int space_token = 29871; // TODO: this should not be hardcoded if (suff_rm_leading_spc && !suffix_tokens.empty() && suffix_tokens[0] == space_token) { suffix_tokens.erase(suffix_tokens.begin()); } prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model)); suffix_tokens.insert(suffix_tokens.begin(), llama_token_suffix(model)); auto embd_inp = params.spm_infill ? suffix_tokens : prefix_tokens; auto embd_end = params.spm_infill ? prefix_tokens : suffix_tokens; if (add_bos) { embd_inp.insert(embd_inp.begin(), llama_token_bos(model)); } embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end()); const llama_token middle_token = llama_token_middle(model); if (middle_token >= 0) { embd_inp.push_back(middle_token); } prompt_tokens = embd_inp; } else if (slot.cmpl_type == SERVER_TASK_CMPL_TYPE_RERANK) { // require slot.prompt to be array of 2 strings if (!slot.prompt.is_array() || slot.prompt.size() != 2) { SLT_ERR(slot, "%s", "invalid prompt for rerank task\n"); slot.release(); send_error(slot, "invalid prompt for rerank task", ERROR_TYPE_INVALID_REQUEST); continue; } // prompt: querydoc prompt_tokens.clear(); prompt_tokens.push_back(llama_token_bos(model)); { const auto part = tokenize(slot.prompt[0], false); prompt_tokens.insert(prompt_tokens.end(), part.begin(), part.end()); } prompt_tokens.push_back(llama_token_eos(model)); prompt_tokens.push_back(llama_token_bos(model)); { const auto part = tokenize(slot.prompt[1], false); prompt_tokens.insert(prompt_tokens.end(), part.begin(), part.end()); } prompt_tokens.push_back(llama_token_eos(model)); } else { prompt_tokens = tokenize(slot.prompt, system_prompt.empty()); // add BOS if there isn't system prompt } slot.n_past = 0; slot.n_prompt_tokens = prompt_tokens.size(); SLT_INF(slot, "prompt tokenized, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens); // empty prompt passed -> release the slot and send empty response if (prompt_tokens.empty()) { SLT_WRN(slot, "%s", "empty prompt - releasing slot\n"); slot.release(); slot.print_timings(); send_final_response(slot); continue; } if (slot.cmpl_type == SERVER_TASK_CMPL_TYPE_EMBEDDING || slot.cmpl_type == SERVER_TASK_CMPL_TYPE_RERANK) { // this prompt is too large to process - discard it if (slot.n_prompt_tokens > n_ubatch) { slot.release(); send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER); continue; } } else { if (!params.ctx_shift) { // if context shift is disabled, we make sure prompt size is smaller than KV size if ((int) system_tokens.size() + slot.n_prompt_tokens >= slot.n_ctx) { slot.release(); send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST); continue; } } if (slot.params.n_keep < 0) { slot.params.n_keep = slot.n_prompt_tokens; } slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep); // if input prompt is too big, truncate it (if group attention self-extend is disabled) if (slot.ga_n == 1 && slot.n_prompt_tokens >= slot.n_ctx) { const int n_left = slot.n_ctx - slot.params.n_keep; const int n_block_size = n_left / 2; const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size; std::vector new_tokens( prompt_tokens.begin(), prompt_tokens.begin() + slot.params.n_keep); new_tokens.insert( new_tokens.end(), prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size, prompt_tokens.end()); prompt_tokens = std::move(new_tokens); slot.truncated = true; slot.n_prompt_tokens = prompt_tokens.size(); SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens); GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx); } gpt_sampler_reset(slot.smpl); if (!slot.params.cache_prompt) { slot.n_past_se = 0; slot.ga_i = 0; } else { GGML_ASSERT(slot.ga_n == 1); // reuse any previously computed tokens that are common with the new prompt slot.n_past = common_part(slot.cache_tokens, prompt_tokens); // push the prompt into the sampling context (do not apply grammar) for (int i = 0; i < slot.n_past; ++i) { gpt_sampler_accept(slot.smpl, slot.cache_tokens[i], false); } } } if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) { // we have to evaluate at least 1 token to generate logits. SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens); slot.n_past--; if (slot.ga_i > 0) { slot.n_past_se--; } } slot.n_prompt_tokens_processed = 0; } // non-causal tasks require to fit the entire prompt in the physical batch if (slot.cmpl_type == SERVER_TASK_CMPL_TYPE_EMBEDDING || slot.cmpl_type == SERVER_TASK_CMPL_TYPE_RERANK) { // cannot fit the prompt in the current batch - will try next iter if (batch.n_tokens + slot.n_prompt_tokens > n_batch) { continue; } } // check that we are in the right batch_type, if not defer the slot const bool slot_type = slot.cmpl_type == SERVER_TASK_CMPL_TYPE_EMBEDDING || slot.cmpl_type == SERVER_TASK_CMPL_TYPE_RERANK ? 1 : 0; if (batch_type == -1) { batch_type = slot_type; } else if (batch_type != slot_type) { continue; } // keep only the common part int p0 = (int) system_tokens.size() + slot.n_past; if (!llama_kv_cache_seq_rm(ctx, slot.id + 1, p0, -1)) { // could not partially delete (likely using a non-Transformer model) llama_kv_cache_seq_rm(ctx, slot.id + 1, -1, -1); p0 = (int) system_tokens.size(); if (p0 != 0) { // copy over the system prompt when there is one llama_kv_cache_seq_cp(ctx, 0, slot.id + 1, -1, -1); } // there is no common part left (except for the system prompt) slot.n_past = 0; slot.n_past_se = 0; slot.ga_i = 0; // TODO: is the system prompt ever in the sampling context? gpt_sampler_reset(slot.smpl); } // remove the non-common part from the cache slot.cache_tokens.resize(slot.n_past); SLT_INF(slot, "kv cache rm [%d, end)\n", p0); int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past; int32_t ga_i = slot.ga_i; int32_t ga_n = slot.ga_n; int32_t ga_w = slot.ga_w; // add prompt tokens for processing in the current batch // TODO: the self-extend stuff here is a mess - simplify and/or abstract it somehow for (; slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch; ++slot.n_past) { if (slot.ga_n != 1) { while (slot_npast >= ga_i + ga_w) { const int bd = (ga_w/ga_n)*(ga_n - 1); slot_npast -= bd; ga_i += ga_w/ga_n; } } llama_batch_add(batch, prompt_tokens[slot.n_past], system_tokens.size() + slot_npast, { slot.id + 1 }, false); if (slot.params.cache_prompt) { slot.cache_tokens.push_back(prompt_tokens[slot.n_past]); } slot.n_prompt_tokens_processed++; slot_npast++; } SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens); // entire prompt has been processed if (slot.n_past == slot.n_prompt_tokens) { slot.state = SLOT_STATE_DONE_PROMPT; GGML_ASSERT(batch.n_tokens > 0); // extract the logits only for the last token batch.logits[batch.n_tokens - 1] = true; slot.n_decoded = 0; slot.i_batch = batch.n_tokens - 1; SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens); } } if (batch.n_tokens >= n_batch) { break; } } } if (batch.n_tokens == 0) { SRV_WRN("%s", "no tokens to decode\n"); return; } SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens); // make sure we're in the right embedding mode llama_set_embeddings(ctx, batch_type == 1); // process the created batch of tokens for (int32_t i = 0; i < batch.n_tokens; i += n_batch) { const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i); for (auto & slot : slots) { if (slot.ga_n != 1) { // context extension via Self-Extend // TODO: simplify and/or abstract this while (slot.n_past_se >= slot.ga_i + slot.ga_w) { const int ib = (slot.ga_n * slot.ga_i) / slot.ga_w; const int bd = (slot.ga_w / slot.ga_n) * (slot.ga_n - 1); const int dd = (slot.ga_w / slot.ga_n) - ib * bd - slot.ga_w; SLT_DBG(slot, "shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd); SLT_DBG(slot, "div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n); SLT_DBG(slot, "shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd); llama_kv_cache_seq_add(ctx, slot.id + 1, slot.ga_i, slot.n_past_se, ib * bd); llama_kv_cache_seq_div(ctx, slot.id + 1, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n); llama_kv_cache_seq_add(ctx, slot.id + 1, slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd); slot.n_past_se -= bd; slot.ga_i += slot.ga_w / slot.ga_n; SLT_DBG(slot, "\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i); } slot.n_past_se += n_tokens; } } llama_batch batch_view = { n_tokens, batch.token + i, nullptr, batch.pos + i, batch.n_seq_id + i, batch.seq_id + i, batch.logits + i, 0, 0, 0, // unused }; const int ret = llama_decode(ctx, batch_view); metrics.on_decoded(slots); if (ret != 0) { if (n_batch == 1 || ret < 0) { // if you get here, it means the KV cache is full - try increasing it via the context size SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret); for (auto & slot : slots) { slot.release(); send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size."); } break; // break loop of n_batch } // retry with half the batch size to try to find a free slot in the KV cache n_batch /= 2; i -= n_batch; SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret); continue; // continue loop of n_batch } for (auto & slot : slots) { if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) { continue; // continue loop of slots } if (slot.state == SLOT_STATE_DONE_PROMPT) { if (slot.cmpl_type == SERVER_TASK_CMPL_TYPE_EMBEDDING) { // prompt evaluated for embedding send_embedding(slot, batch_view); slot.release(); slot.i_batch = -1; continue; // continue loop of slots } if (slot.cmpl_type == SERVER_TASK_CMPL_TYPE_RERANK) { send_rerank(slot, batch_view); slot.release(); slot.i_batch = -1; continue; // continue loop of slots } // prompt evaluated for next-token prediction slot.state = SLOT_STATE_GENERATING; } else if (slot.state != SLOT_STATE_GENERATING) { continue; // continue loop of slots } completion_token_output result; const llama_token id = gpt_sampler_sample(slot.smpl, ctx, slot.i_batch - i); gpt_sampler_accept(slot.smpl, id, true); slot.n_decoded += 1; if (slot.n_decoded == 1) { slot.t_start_generation = ggml_time_us(); slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3; metrics.on_prompt_eval(slot); } result.tok = id; const auto * cur_p = gpt_sampler_get_candidates(slot.smpl); for (size_t i = 0; i < (size_t) slot.sparams.n_probs; ++i) { result.probs.push_back({ cur_p->data[i].id, i >= cur_p->size ? 0.0f : cur_p->data[i].p, }); } if (!process_token(result, slot)) { // release slot because of stop condition slot.release(); slot.print_timings(); send_final_response(slot); metrics.on_prediction(slot); } slot.i_batch = -1; } } SRV_DBG("%s", "run slots completed\n"); } json model_meta() const { return json { {"vocab_type", llama_vocab_type (model)}, {"n_vocab", llama_n_vocab (model)}, {"n_ctx_train", llama_n_ctx_train (model)}, {"n_embd", llama_n_embd (model)}, {"n_params", llama_model_n_params(model)}, {"size", llama_model_size (model)}, }; } }; static void log_server_request(const httplib::Request & req, const httplib::Response & res) { // skip GH copilot requests when using default port if (req.path == "/v1/health" || req.path == "/v1/completions") { return; } LOG_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status); LOG_DBG("request: %s\n", req.body.c_str()); LOG_DBG("response: %s\n", res.body.c_str()); } std::function shutdown_handler; std::atomic_flag is_terminating = ATOMIC_FLAG_INIT; inline void signal_handler(int signal) { if (is_terminating.test_and_set()) { // in case it hangs, we can force terminate the server by hitting Ctrl+C twice // this is for better developer experience, we can remove when the server is stable enough fprintf(stderr, "Received second interrupt, terminating immediately.\n"); exit(1); } shutdown_handler(signal); } int main(int argc, char ** argv) { // own arguments required by this example gpt_params params; if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) { return 1; } gpt_init(); // enabling this will output extra debug information in the HTTP responses from the server // see format_final_response_oaicompat() const bool verbose = params.verbosity > 9; // struct that contains llama context and inference server_context ctx_server; if (!params.system_prompt.empty()) { ctx_server.system_prompt_set(params.system_prompt); } if (params.model_alias == "unknown") { params.model_alias = params.model; } llama_backend_init(); llama_numa_init(params.numa); LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency()); LOG_INF("\n"); LOG_INF("%s\n", gpt_params_get_system_info(params).c_str()); LOG_INF("\n"); std::unique_ptr svr; #ifdef CPPHTTPLIB_OPENSSL_SUPPORT if (params.ssl_file_key != "" && params.ssl_file_cert != "") { LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str()); svr.reset( new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str()) ); } else { LOG_INF("Running without SSL\n"); svr.reset(new httplib::Server()); } #else if (params.ssl_file_key != "" && params.ssl_file_cert != "") { LOG_ERR("Server is built without SSL support\n"); return 1; } svr.reset(new httplib::Server()); #endif std::atomic state{SERVER_STATE_LOADING_MODEL}; svr->set_default_headers({{"Server", "llama.cpp"}}); // CORS preflight svr->Options(R"(.*)", [](const httplib::Request &, httplib::Response & res) { // Access-Control-Allow-Origin is already set by middleware res.set_header("Access-Control-Allow-Credentials", "true"); res.set_header("Access-Control-Allow-Methods", "POST"); res.set_header("Access-Control-Allow-Headers", "*"); return res.set_content("", "text/html"); // blank response, no data }); svr->set_logger(log_server_request); auto res_error = [](httplib::Response & res, const json & error_data) { json final_response {{"error", error_data}}; res.set_content(final_response.dump(-1, ' ', false, json::error_handler_t::replace), MIMETYPE_JSON); res.status = json_value(error_data, "code", 500); }; auto res_ok = [](httplib::Response & res, const json & data) { res.set_content(data.dump(-1, ' ', false, json::error_handler_t::replace), MIMETYPE_JSON); res.status = 200; }; svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, std::exception_ptr ep) { std::string message; try { std::rethrow_exception(ep); } catch (std::exception & e) { message = e.what(); } catch (...) { message = "Unknown Exception"; } json formatted_error = format_error_response(message, ERROR_TYPE_SERVER); LOG_WRN("got exception: %s\n", formatted_error.dump().c_str()); res_error(res, formatted_error); }); svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) { if (res.status == 404) { res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND)); } // for other error codes, we skip processing here because it's already done by res_error() }); // set timeouts and change hostname and port svr->set_read_timeout (params.timeout_read); svr->set_write_timeout(params.timeout_write); std::unordered_map log_data; log_data["hostname"] = params.hostname; log_data["port"] = std::to_string(params.port); if (params.api_keys.size() == 1) { auto key = params.api_keys[0]; log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0)); } else if (params.api_keys.size() > 1) { log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded"; } // Necessary similarity of prompt for slot selection ctx_server.slot_prompt_similarity = params.slot_prompt_similarity; // // Middlewares // auto middleware_validate_api_key = [¶ms, &res_error](const httplib::Request & req, httplib::Response & res) { // TODO: should we apply API key to all endpoints, including "/health" and "/models"? static const std::unordered_set protected_endpoints = { "/props", "/completion", "/completions", "/v1/completions", "/chat/completions", "/v1/chat/completions", "/infill", "/tokenize", "/detokenize", "/embedding", "/embeddings", "/v1/embeddings", }; // If API key is not set, skip validation if (params.api_keys.empty()) { return true; } // If path is not in protected_endpoints list, skip validation if (protected_endpoints.find(req.path) == protected_endpoints.end()) { return true; } // Check for API key in the header auto auth_header = req.get_header_value("Authorization"); std::string prefix = "Bearer "; if (auth_header.substr(0, prefix.size()) == prefix) { std::string received_api_key = auth_header.substr(prefix.size()); if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) { return true; // API key is valid } } // API key is invalid or not provided res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION)); LOG_WRN("Unauthorized: Invalid API Key\n"); return false; }; auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) { server_state current_state = state.load(); if (current_state == SERVER_STATE_LOADING_MODEL) { auto tmp = string_split(req.path, '.'); if (req.path == "/" || tmp.back() == "html") { res.set_content(reinterpret_cast(loading_html), loading_html_len, "text/html; charset=utf-8"); res.status = 503; } else { res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE)); } return false; } return true; }; // register server middlewares svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) { res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin")); if (!middleware_server_state(req, res)) { return httplib::Server::HandlerResponse::Handled; } if (!middleware_validate_api_key(req, res)) { return httplib::Server::HandlerResponse::Handled; } return httplib::Server::HandlerResponse::Unhandled; }); // // Route handlers (or controllers) // const auto handle_health = [&](const httplib::Request &, httplib::Response & res) { // error and loading states are handled by middleware json health = {{"status", "ok"}}; res_ok(res, health); }; const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) { if (!params.endpoint_slots) { res_error(res, format_error_response("This server does not support slots endpoint. Start it without `--no-slots`", ERROR_TYPE_NOT_SUPPORTED)); return; } // request slots data using task queue server_task task; task.id = ctx_server.queue_tasks.get_new_id(); task.type = SERVER_TASK_TYPE_METRICS; ctx_server.queue_results.add_waiting_task_id(task.id); ctx_server.queue_tasks.post(task, true); // high-priority task // get the result server_task_result result = ctx_server.queue_results.recv(task.id); ctx_server.queue_results.remove_waiting_task_id(task.id); // optionally return "fail_on_no_slot" error const int n_idle_slots = result.data.at("idle"); if (req.has_param("fail_on_no_slot")) { if (n_idle_slots == 0) { res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE)); return; } } res_ok(res, result.data.at("slots")); }; const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) { if (!params.endpoint_metrics) { res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED)); return; } // request slots data using task queue server_task task; task.id = ctx_server.queue_tasks.get_new_id(); task.id_target = -1; task.type = SERVER_TASK_TYPE_METRICS; task.data.push_back({{"reset_bucket", true}}); ctx_server.queue_results.add_waiting_task_id(task.id); ctx_server.queue_tasks.post(task, true); // high-priority task // get the result server_task_result result = ctx_server.queue_results.recv(task.id); ctx_server.queue_results.remove_waiting_task_id(task.id); json data = result.data; const uint64_t n_prompt_tokens_processed = data.at("n_prompt_tokens_processed"); const uint64_t t_prompt_processing = data.at("t_prompt_processing"); const uint64_t n_tokens_predicted = data.at("n_tokens_predicted"); const uint64_t t_tokens_generation = data.at("t_tokens_generation"); const uint64_t n_decode_total = data.at("n_decode_total"); const uint64_t n_busy_slots_total = data.at("n_busy_slots_total"); const int32_t kv_cache_used_cells = data.at("kv_cache_used_cells"); // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names json all_metrics_def = json { {"counter", {{ {"name", "prompt_tokens_total"}, {"help", "Number of prompt tokens processed."}, {"value", (uint64_t) data.at("n_prompt_tokens_processed_total")} }, { {"name", "prompt_seconds_total"}, {"help", "Prompt process time"}, {"value", (uint64_t) data.at("t_prompt_processing_total") / 1.e3} }, { {"name", "tokens_predicted_total"}, {"help", "Number of generation tokens processed."}, {"value", (uint64_t) data.at("n_tokens_predicted_total")} }, { {"name", "tokens_predicted_seconds_total"}, {"help", "Predict process time"}, {"value", (uint64_t) data.at("t_tokens_generation_total") / 1.e3} }, { {"name", "n_decode_total"}, {"help", "Total number of llama_decode() calls"}, {"value", n_decode_total} }, { {"name", "n_busy_slots_per_decode"}, {"help", "Average number of busy slots per llama_decode() call"}, {"value", (float) n_busy_slots_total / (float) n_decode_total} }}}, {"gauge", {{ {"name", "prompt_tokens_seconds"}, {"help", "Average prompt throughput in tokens/s."}, {"value", n_prompt_tokens_processed ? 1.e3 / t_prompt_processing * n_prompt_tokens_processed : 0.} },{ {"name", "predicted_tokens_seconds"}, {"help", "Average generation throughput in tokens/s."}, {"value", n_tokens_predicted ? 1.e3 / t_tokens_generation * n_tokens_predicted : 0.} },{ {"name", "kv_cache_usage_ratio"}, {"help", "KV-cache usage. 1 means 100 percent usage."}, {"value", 1. * kv_cache_used_cells / params.n_ctx} },{ {"name", "kv_cache_tokens"}, {"help", "KV-cache tokens."}, {"value", (uint64_t) data.at("kv_cache_tokens_count")} },{ {"name", "requests_processing"}, {"help", "Number of request processing."}, {"value", (uint64_t) data.at("processing")} },{ {"name", "requests_deferred"}, {"help", "Number of request deferred."}, {"value", (uint64_t) data.at("deferred")} }}} }; std::stringstream prometheus; for (const auto & el : all_metrics_def.items()) { const auto & type = el.key(); const auto & metrics_def = el.value(); for (const auto & metric_def : metrics_def) { const std::string name = metric_def.at("name"); const std::string help = metric_def.at("help"); auto value = json_value(metric_def, "value", 0.); prometheus << "# HELP llamacpp:" << name << " " << help << "\n" << "# TYPE llamacpp:" << name << " " << type << "\n" << "llamacpp:" << name << " " << value << "\n"; } } const int64_t t_start = data.at("t_start"); res.set_header("Process-Start-Time-Unix", std::to_string(t_start)); res.set_content(prometheus.str(), "text/plain; version=0.0.4"); res.status = 200; // HTTP OK }; const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, ¶ms](const httplib::Request & req, httplib::Response & res, int id_slot) { json request_data = json::parse(req.body); std::string filename = request_data.at("filename"); if (!fs_validate_filename(filename)) { res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST)); return; } std::string filepath = params.slot_save_path + filename; server_task task; task.type = SERVER_TASK_TYPE_SLOT_SAVE; task.data = { { "id_slot", id_slot }, { "filename", filename }, { "filepath", filepath }, }; const int id_task = ctx_server.queue_tasks.post(task); ctx_server.queue_results.add_waiting_task_id(id_task); server_task_result result = ctx_server.queue_results.recv(id_task); ctx_server.queue_results.remove_waiting_task_id(id_task); if (result.error) { res_error(res, result.data); } else { res_ok(res, result.data); } }; const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, ¶ms](const httplib::Request & req, httplib::Response & res, int id_slot) { json request_data = json::parse(req.body); std::string filename = request_data.at("filename"); if (!fs_validate_filename(filename)) { res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST)); return; } std::string filepath = params.slot_save_path + filename; server_task task; task.type = SERVER_TASK_TYPE_SLOT_RESTORE; task.data = { { "id_slot", id_slot }, { "filename", filename }, { "filepath", filepath }, }; const int id_task = ctx_server.queue_tasks.post(task); ctx_server.queue_results.add_waiting_task_id(id_task); server_task_result result = ctx_server.queue_results.recv(id_task); ctx_server.queue_results.remove_waiting_task_id(id_task); if (result.error) { res_error(res, result.data); } else { res_ok(res, result.data); } }; const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) { server_task task; task.type = SERVER_TASK_TYPE_SLOT_ERASE; task.data = { { "id_slot", id_slot }, }; const int id_task = ctx_server.queue_tasks.post(task); ctx_server.queue_results.add_waiting_task_id(id_task); server_task_result result = ctx_server.queue_results.recv(id_task); ctx_server.queue_results.remove_waiting_task_id(id_task); if (result.error) { res_error(res, result.data); } else { res_ok(res, result.data); } }; const auto handle_slots_action = [¶ms, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) { if (params.slot_save_path.empty()) { res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED)); return; } std::string id_slot_str = req.path_params.at("id_slot"); int id_slot; try { id_slot = std::stoi(id_slot_str); } catch (const std::exception &) { res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST)); return; } std::string action = req.get_param_value("action"); if (action == "save") { handle_slots_save(req, res, id_slot); } else if (action == "restore") { handle_slots_restore(req, res, id_slot); } else if (action == "erase") { handle_slots_erase(req, res, id_slot); } else { res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST)); } }; const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) { std::string template_key = "tokenizer.chat_template", curr_tmpl; int32_t tlen = llama_model_meta_val_str(ctx_server.model, template_key.c_str(), nullptr, 0); if (tlen > 0) { std::vector curr_tmpl_buf(tlen + 1, 0); if (llama_model_meta_val_str(ctx_server.model, template_key.c_str(), curr_tmpl_buf.data(), curr_tmpl_buf.size()) == tlen) { curr_tmpl = std::string(curr_tmpl_buf.data(), tlen); } } json data = { { "system_prompt", ctx_server.system_prompt.c_str() }, { "default_generation_settings", ctx_server.default_generation_settings_for_props }, { "total_slots", ctx_server.params.n_parallel }, { "chat_template", curr_tmpl.c_str() }, }; res_ok(res, data); }; const auto handle_completions_generic = [&ctx_server, &res_error, &res_ok](server_task_cmpl_type cmpl_type, json & data, httplib::Response & res) { if (ctx_server.params.embedding) { res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED)); return; } std::vector tasks = ctx_server.create_tasks_cmpl(data, cmpl_type); ctx_server.queue_results.add_waiting_tasks(tasks); ctx_server.queue_tasks.post(tasks); bool stream = json_value(data, "stream", false); const auto task_ids = server_task::get_list_id(tasks); if (!stream) { ctx_server.receive_cmpl_results(task_ids, [&](std::vector & results) { if (results.size() == 1) { // single result res_ok(res, results[0].data); } else { // multiple results (multitask) json arr = json::array(); for (const auto & res : results) { arr.push_back(res.data); } res_ok(res, arr); } }, [&](const json & error_data) { res_error(res, error_data); }); ctx_server.queue_results.remove_waiting_task_ids(task_ids); } else { const auto chunked_content_provider = [task_ids, &ctx_server](size_t, httplib::DataSink & sink) { ctx_server.receive_cmpl_results_stream(task_ids, [&](const server_task_result & result) -> bool { return server_sent_event(sink, "data", result.data); }, [&](const json & error_data) { server_sent_event(sink, "error", error_data); }); sink.done(); return false; }; auto on_complete = [task_ids, &ctx_server] (bool) { ctx_server.queue_results.remove_waiting_task_ids(task_ids); }; res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete); } }; const auto handle_completions = [&handle_completions_generic](const httplib::Request & req, httplib::Response & res) { json data = json::parse(req.body); return handle_completions_generic(SERVER_TASK_CMPL_TYPE_NORMAL, data, res); }; const auto handle_infill = [&handle_completions_generic](const httplib::Request & req, httplib::Response & res) { json data = json::parse(req.body); return handle_completions_generic(SERVER_TASK_CMPL_TYPE_INFILL, data, res); }; // TODO: maybe merge this function with "handle_completions_generic" const auto handle_chat_completions = [&ctx_server, ¶ms, &res_error, &res_ok, verbose](const httplib::Request & req, httplib::Response & res) { if (ctx_server.params.embedding) { res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED)); return; } json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template); std::vector tasks = ctx_server.create_tasks_cmpl(data, SERVER_TASK_CMPL_TYPE_NORMAL); ctx_server.queue_results.add_waiting_tasks(tasks); ctx_server.queue_tasks.post(tasks); bool stream = json_value(data, "stream", false); const auto task_ids = server_task::get_list_id(tasks); const auto completion_id = gen_chatcmplid(); if (!stream) { ctx_server.receive_cmpl_results(task_ids, [&](const std::vector & results) { // multitask is never support in chat completion, there is only one result json result_oai = format_final_response_oaicompat(data, results[0].data, completion_id, /*.streaming =*/ false, verbose); res_ok(res, result_oai); }, [&](const json & error_data) { res_error(res, error_data); }); ctx_server.queue_results.remove_waiting_task_ids(task_ids); } else { const auto chunked_content_provider = [task_ids, &ctx_server, completion_id](size_t, httplib::DataSink & sink) { ctx_server.receive_cmpl_results_stream(task_ids, [&](const server_task_result & result) -> bool { std::vector result_array = format_partial_response_oaicompat(result.data, completion_id); for (auto & event_data : result_array) { if (event_data.empty()) { continue; // skip the stop token } if (!server_sent_event(sink, "data", event_data)) { return false; // connection is closed } } return true; // ok }, [&](const json & error_data) { server_sent_event(sink, "error", error_data); }); static const std::string ev_done = "data: [DONE]\n\n"; sink.write(ev_done.data(), ev_done.size()); sink.done(); return true; }; auto on_complete = [task_ids, &ctx_server] (bool) { ctx_server.queue_results.remove_waiting_task_ids(task_ids); }; res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete); } }; const auto handle_models = [¶ms, &ctx_server](const httplib::Request &, httplib::Response & res) { json models = { {"object", "list"}, {"data", { { {"id", params.model_alias}, {"object", "model"}, {"created", std::time(0)}, {"owned_by", "llamacpp"}, {"meta", ctx_server.model_meta()} }, }} }; res.set_content(models.dump(), MIMETYPE_JSON); }; const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) { const json body = json::parse(req.body); json tokens_response = json::array(); if (body.count("content") != 0) { const bool add_special = json_value(body, "add_special", false); const bool with_pieces = json_value(body, "with_pieces", false); std::vector tokens = ctx_server.tokenize(body.at("content"), add_special); if (with_pieces) { for (const auto& token : tokens) { std::string piece = llama_token_to_piece(ctx_server.ctx, token); json piece_json; // Check if the piece is valid UTF-8 if (is_valid_utf8(piece)) { piece_json = piece; } else { // If not valid UTF-8, store as array of byte values piece_json = json::array(); for (unsigned char c : piece) { piece_json.push_back(static_cast(c)); } } tokens_response.push_back({ {"id", token}, {"piece", piece_json} }); } } else { tokens_response = tokens; } } const json data = format_tokenizer_response(tokens_response); res_ok(res, data); }; const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) { const json body = json::parse(req.body); std::string content; if (body.count("tokens") != 0) { const std::vector tokens = body.at("tokens"); content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend()); } const json data = format_detokenized_response(content); res_ok(res, data); }; const auto handle_embeddings = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) { const json body = json::parse(req.body); bool is_openai = false; // an input prompt can be a string or a list of tokens (integer) json prompt; if (body.count("input") != 0) { is_openai = true; prompt = body.at("input"); } else if (body.count("content") != 0) { // with "content", we only support single prompt prompt = std::vector{body.at("content")}; } else { res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST)); return; } // create and queue the task json responses = json::array(); bool error = false; { std::vector tasks = ctx_server.create_tasks_cmpl({{"prompt", prompt}}, SERVER_TASK_CMPL_TYPE_EMBEDDING); ctx_server.queue_results.add_waiting_tasks(tasks); ctx_server.queue_tasks.post(tasks); // get the result std::unordered_set task_ids = server_task::get_list_id(tasks); ctx_server.receive_cmpl_results(task_ids, [&](std::vector & results) { for (const auto & res : results) { responses.push_back(res.data); } }, [&](const json & error_data) { res_error(res, error_data); error = true; }); ctx_server.queue_results.remove_waiting_task_ids(task_ids); } if (error) { return; } // write JSON response json root = is_openai ? format_embeddings_response_oaicompat(body, responses) : responses[0]; res_ok(res, root); }; const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) { const json body = json::parse(req.body); // TODO: implement //int top_n = 1; //if (body.count("top_n") != 1) { // top_n = body.at("top_n"); //} else { // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST)); // return; //} json query; if (body.count("query") == 1) { query = body.at("query"); if (!query.is_string()) { res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST)); return; } } else { exit(0); res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST)); return; } json documents; if (body.count("documents") != 0) { documents = body.at("documents"); if (!documents.is_array() || documents.size() == 0) { res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST)); return; } } else { res_error(res, format_error_response("\"documents\" must be provided", ERROR_TYPE_INVALID_REQUEST)); return; } // construct prompt object: array of ["query", "doc0", "doc1", ...] json prompt; prompt.push_back(query); for (const auto & doc : documents) { prompt.push_back(doc); } LOG_DBG("rerank prompt: %s\n", prompt.dump().c_str()); // create and queue the task json responses = json::array(); bool error = false; { std::vector tasks = ctx_server.create_tasks_cmpl({{"prompt", prompt}}, SERVER_TASK_CMPL_TYPE_RERANK); ctx_server.queue_results.add_waiting_tasks(tasks); ctx_server.queue_tasks.post(tasks); // get the result std::unordered_set task_ids = server_task::get_list_id(tasks); ctx_server.receive_cmpl_results(task_ids, [&](std::vector & results) { for (const auto & res : results) { responses.push_back(res.data); } }, [&](const json & error_data) { res_error(res, error_data); error = true; }); } if (error) { return; } // write JSON response json root = format_response_rerank(body, responses); res_ok(res, root); }; const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) { json result = json::array(); for (size_t i = 0; i < ctx_server.loras.size(); ++i) { auto & lora = ctx_server.loras[i]; result.push_back({ {"id", i}, {"path", lora.path}, {"scale", lora.scale}, }); } res_ok(res, result); res.status = 200; // HTTP OK }; const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) { const std::vector body = json::parse(req.body); int max_idx = ctx_server.loras.size(); // clear existing value for (auto & lora : ctx_server.loras) { lora.scale = 0.0f; } // set value for (auto entry : body) { int id = entry.at("id"); float scale = entry.at("scale"); if (0 <= id && id < max_idx) { ctx_server.loras[id].scale = scale; } else { throw std::runtime_error("invalid adapter id"); } } server_task task; task.type = SERVER_TASK_TYPE_SET_LORA; const int id_task = ctx_server.queue_tasks.post(task); ctx_server.queue_results.add_waiting_task_id(id_task); server_task_result result = ctx_server.queue_results.recv(id_task); ctx_server.queue_results.remove_waiting_task_id(id_task); res_ok(res, result.data); res.status = 200; // HTTP OK }; auto handle_static_file = [](unsigned char * content, size_t len, const char * mime_type) { return [content, len, mime_type](const httplib::Request &, httplib::Response & res) { res.set_content(reinterpret_cast(content), len, mime_type); return false; }; }; // // Router // // register static assets routes if (!params.public_path.empty()) { // Set the base directory for serving static files svr->set_base_dir(params.public_path); } // using embedded static files svr->Get("/", handle_static_file(index_html, index_html_len, "text/html; charset=utf-8")); svr->Get("/index.js", handle_static_file(index_js, index_js_len, "text/javascript; charset=utf-8")); svr->Get("/completion.js", handle_static_file(completion_js, completion_js_len, "text/javascript; charset=utf-8")); svr->Get("/json-schema-to-grammar.mjs", handle_static_file(json_schema_to_grammar_mjs, json_schema_to_grammar_mjs_len, "text/javascript; charset=utf-8")); // add new-ui files svr->Get("/colorthemes.css", handle_static_file(colorthemes_css, colorthemes_css_len, "text/css; charset=utf-8")); svr->Get("/style.css", handle_static_file(style_css, style_css_len, "text/css; charset=utf-8")); svr->Get("/theme-beeninorder.css", handle_static_file(theme_beeninorder_css, theme_beeninorder_css_len, "text/css; charset=utf-8")); svr->Get("/theme-ketivah.css", handle_static_file(theme_ketivah_css, theme_ketivah_css_len, "text/css; charset=utf-8")); svr->Get("/theme-mangotango.css", handle_static_file(theme_mangotango_css, theme_mangotango_css_len, "text/css; charset=utf-8")); svr->Get("/theme-playground.css", handle_static_file(theme_playground_css, theme_playground_css_len, "text/css; charset=utf-8")); svr->Get("/theme-polarnight.css", handle_static_file(theme_polarnight_css, theme_polarnight_css_len, "text/css; charset=utf-8")); svr->Get("/theme-snowstorm.css", handle_static_file(theme_snowstorm_css, theme_snowstorm_css_len, "text/css; charset=utf-8")); svr->Get("/index-new.html", handle_static_file(index_new_html, index_new_html_len, "text/html; charset=utf-8")); svr->Get("/system-prompts.js", handle_static_file(system_prompts_js, system_prompts_js_len, "text/javascript; charset=utf-8")); svr->Get("/prompt-formats.js", handle_static_file(prompt_formats_js, prompt_formats_js_len, "text/javascript; charset=utf-8")); // register API routes svr->Get ("/health", handle_health); svr->Get ("/metrics", handle_metrics); svr->Get ("/props", handle_props); svr->Get ("/v1/models", handle_models); svr->Post("/completion", handle_completions); // legacy svr->Post("/completions", handle_completions); svr->Post("/v1/completions", handle_completions); svr->Post("/chat/completions", handle_chat_completions); svr->Post("/v1/chat/completions", handle_chat_completions); svr->Post("/infill", handle_infill); svr->Post("/embedding", handle_embeddings); // legacy svr->Post("/embeddings", handle_embeddings); svr->Post("/v1/embeddings", handle_embeddings); svr->Post("/rerank", handle_rerank); svr->Post("/reranking", handle_rerank); svr->Post("/v1/rerank", handle_rerank); svr->Post("/v1/reranking", handle_rerank); svr->Post("/tokenize", handle_tokenize); svr->Post("/detokenize", handle_detokenize); // LoRA adapters hotswap svr->Get ("/lora-adapters", handle_lora_adapters_list); svr->Post("/lora-adapters", handle_lora_adapters_apply); // Save & load slots svr->Get ("/slots", handle_slots); svr->Post("/slots/:id_slot", handle_slots_action); // // Start the server // if (params.n_threads_http < 1) { // +2 threads for monitoring endpoints params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1); } log_data["n_threads_http"] = std::to_string(params.n_threads_http); svr->new_task_queue = [¶ms] { return new httplib::ThreadPool(params.n_threads_http); }; // clean up function, to be called before exit auto clean_up = [&svr]() { svr->stop(); llama_backend_free(); }; // bind HTTP listen port, run the HTTP server in a thread if (!svr->bind_to_port(params.hostname, params.port)) { //LOG_ERROR("couldn't bind HTTP server socket", { // {"hostname", params.hostname}, // {"port", params.port}, //}); LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port); clean_up(); return 1; } std::thread t([&]() { svr->listen_after_bind(); }); svr->wait_until_ready(); LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http); // load the model LOG_INF("%s: loading model\n", __func__); if (!ctx_server.load_model(params)) { clean_up(); t.join(); LOG_ERR("%s: exiting due to model loading error\n", __func__); return 1; } ctx_server.init(); state.store(SERVER_STATE_READY); LOG_INF("%s: model loaded\n", __func__); // if a custom chat template is not supplied, we will use the one that comes with the model (if any) if (params.chat_template.empty()) { if (!ctx_server.validate_model_chat_template()) { LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__); params.chat_template = "chatml"; } } // print sample chat example to make it clear which template is used LOG_INF("%s: chat template, built_in: %d, chat_example: '%s'\n", __func__, params.chat_template.empty(), llama_chat_format_example(ctx_server.model, params.chat_template).c_str()); ctx_server.queue_tasks.on_new_task(std::bind( &server_context::process_single_task, &ctx_server, std::placeholders::_1)); ctx_server.queue_tasks.on_update_slots(std::bind( &server_context::update_slots, &ctx_server)); shutdown_handler = [&](int) { ctx_server.queue_tasks.terminate(); }; LOG_INF("%s: server is listening on %s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port); ctx_server.queue_tasks.start_loop(); #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) struct sigaction sigint_action; sigint_action.sa_handler = signal_handler; sigemptyset (&sigint_action.sa_mask); sigint_action.sa_flags = 0; sigaction(SIGINT, &sigint_action, NULL); sigaction(SIGTERM, &sigint_action, NULL); #elif defined (_WIN32) auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL { return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false; }; SetConsoleCtrlHandler(reinterpret_cast(console_ctrl_handler), true); #endif clean_up(); t.join(); return 0; }