#include "llama.h" #include #include #include static void print_usage(int, char ** argv) { printf("\nexample usage:\n"); printf("\n %s [prompt]\n", argv[0]); printf("\n"); } int main(int argc, char ** argv) { std::string model_path; std::string prompt = "Hello my name is"; int n_predict = 32; if (argc < 2) { print_usage(argc, argv); return 1; } model_path = argv[1]; if (argc > 2) { prompt = argv[2]; for (int i = 3; i < argc; i++) { prompt += " "; prompt += argv[i]; } } // initialize the model llama_model_params model_params = llama_model_default_params(); model_params.n_gpu_layers = 99; // offload all layers to GPU llama_model * model = llama_load_model_from_file(model_path.c_str(), model_params); if (model == NULL) { fprintf(stderr , "%s: error: unable to load model\n" , __func__); return 1; } // initialize the context llama_context_params ctx_params = llama_context_default_params(); ctx_params.n_ctx = 512; // maximum context size ctx_params.no_perf = false; llama_context * ctx = llama_new_context_with_model(model, ctx_params); if (ctx == NULL) { fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); return 1; } auto sparams = llama_sampler_chain_default_params(); sparams.no_perf = false; llama_sampler * smpl = llama_sampler_chain_init(sparams); llama_sampler_chain_add(smpl, llama_sampler_init_greedy()); // tokenize the prompt std::vector tokens_list; int n_tokens = llama_tokenize(model, prompt.c_str(), prompt.size(), NULL, 0, true, true); tokens_list.resize(-n_tokens); if (llama_tokenize(model, prompt.c_str(), prompt.size(), tokens_list.data(), tokens_list.size(), true, true) < 0) { fprintf(stderr, "%s: error: failed to tokenize the prompt\n", __func__); return 1; } const int n_ctx = llama_n_ctx(ctx); const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size()); fprintf(stderr, "%s: n_predict = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, n_kv_req); // make sure the KV cache is big enough to hold all the prompt and generated tokens if (n_kv_req > n_ctx) { fprintf(stderr, "%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__); fprintf(stderr, "%s: either reduce n_predict or increase n_ctx\n", __func__); return 1; } // print the prompt token-by-token fprintf(stderr, "\n"); for (auto id : tokens_list) { char buf[128]; int n = llama_token_to_piece(model, id, buf, sizeof(buf), 0, true); if (n < 0) { fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__); return 1; } std::string s(buf, n); printf("%s", s.c_str()); } // create a llama_batch with size 512 // we use this object to submit token data for decoding llama_batch batch = llama_batch_get_one(tokens_list.data(), tokens_list.size(), 0, 0); // evaluate the initial prompt if (llama_decode(ctx, batch) != 0) { fprintf(stderr, "%s: llama_decode() failed\n", __func__); return 1; } // main loop int n_cur = batch.n_tokens; int n_decode = 0; const auto t_main_start = ggml_time_us(); while (n_cur <= n_predict) { // sample the next token llama_token new_token_id = llama_sampler_sample(smpl, ctx, -1); { // is it an end of generation? if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) { fprintf(stderr, "\n"); break; } char buf[128]; int n = llama_token_to_piece(model, new_token_id, buf, sizeof(buf), 0, true); if (n < 0) { fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__); return 1; } std::string s(buf, n); printf("%s", s.c_str()); fflush(stdout); // prepare the next batch batch = llama_batch_get_one(&new_token_id, 1, n_cur, 0); n_decode += 1; } n_cur += 1; // evaluate the current batch with the transformer model if (llama_decode(ctx, batch)) { fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1); return 1; } } fprintf(stderr, "\n"); const auto t_main_end = ggml_time_us(); fprintf(stderr, "%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n", __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f)); fprintf(stderr, "\n"); llama_perf_sampler_print(smpl); llama_perf_context_print(ctx); fprintf(stderr, "\n"); llama_sampler_free(smpl); llama_free(ctx); llama_free_model(model); return 0; }