#include "ggml-threading.h" #include "ggml.h" #include #include #include #include // Purposes: // 1. general overview of the threading behaviors. // 2. race (dead lock) detection. // # build // cd build // // # build release: // cmake .. && cmake --build . --config Release // // # build with sanitize: // cmake .. -DLLAMA_SANITIZE_THREAD=ON && cmake --build . --config Release // // # run: // ./bin/test-ggml-threading // How to turn off the warning on Apple: malloc: nano zone abandoned due to // inability to reserve vm space? // ==> export MallocNanoZone=0, no need to rebuild. // See `nano_init()` from // https://opensource.apple.com/source/libmalloc/libmalloc-140.40.1/src/nano_malloc.c.auto.html // How to view the threading debug: // ==> uncomment `#define GGML_THREADING_DEBUG 1` from file ggml-threading.c #define UNUSED(x) (void)(x) #define MAX_N_THREADS 16 static const int n_repeat = 10; // It's frustrating to use atomic with c11 on Windows, let's replace atomic // counter with array. static int work_done_arr[MAX_N_THREADS]; static enum ggml_compute_error mock_task_runner(struct ggml_compute_params *params, struct ggml_tensor *node) { int64_t loops = node->task_profile.dev_flags[1] * 1000 * 1000; if (node->task_profile.stages[params->type].parallel) { loops /= params->nth; } volatile int64_t j = 0; for (int i = 0; i < loops; i++) { j++; } UNUSED(j); work_done_arr[params->ith]++; return GGML_COMPUTE_OK; } int test_driver(int id, struct ggml_tensor *node, int n_threads) { uint8_t loops = node->task_profile.dev_flags[1]; printf( "\n[test-ggml-threading] #%02d, workload: %2d million(s), n_threads: " "%2d\n", id, loops, n_threads); for (int i = 0; i < n_threads; i++) { work_done_arr[i] = 0; } bool wait_on_done = (node->task_profile.dev_flags[0] > 0u); enum ggml_threading_features features = GGML_THREADING_FEATURE_PERF; if (wait_on_done) { features |= GGML_THREADING_FEATURE_WAIT_ON_DONE; } int t0 = (int)ggml_time_us(); struct ggml_threading_context *ctx = ggml_threading_start(n_threads, ggml_threading_graph_compute_thread, mock_task_runner, features, /*stages_time*/ NULL); int t1 = (int)ggml_time_us(); for (int i = 0; i < n_repeat; i++) { enum ggml_compute_error err = ggml_threading_compute_tensor( ctx, node, /*wdata*/ NULL, /*wsize*/ 0); if (err != GGML_COMPUTE_OK) { ggml_threading_stop(ctx); printf("ggml_threading_compute_tensor failed with error: %d.\n", err); return 1; } } int t2 = (int)ggml_time_us(); ggml_threading_stop(ctx); int t3 = (int)ggml_time_us(); const struct ggml_task_stage *stages = node->task_profile.stages; int expect = 0; for (int i = 0; i < 3; i++) { const struct ggml_task_stage *ts = &stages[i]; if (ts->backend != GGML_TASK_BACKEND_NONE) { if (ts->parallel) { expect += n_threads; } else { expect++; } } } expect *= n_repeat; int actual = 0; for (int i = 0; i < n_threads; i++) { actual += work_done_arr[i]; } printf("\tstage-0: parallel: %d, wait: %d\n\tstage-1: parallel: %d, wait: " "%d, wait_on_done: %d %s\n", stages[0].parallel, stages[0].wait, stages[1].parallel, stages[1].wait, wait_on_done, stages[1].wait ? "<--------" : ""); if (actual == expect) { printf("\tthreading: init %6.3f ms, compute %6.3f ms, cleanup %6.3f " "ms, total %6.3f ms\n", 1.0 * (t1 - t0) / 1000, 1.0 * (t2 - t1) / 1000, 1.0 * (t3 - t2) / 1000, 1.0 * (t3 - t0) / 1000); return 0; } printf("\t== failed. expect %d done, actual %d done\n\n", expect, actual); return 2; } static enum ggml_compute_error mock_task_runner_fallback(struct ggml_compute_params *params, struct ggml_tensor *node) { UNUSED(params); if (node->backend == GGML_BACKEND_GPU) { // ... finally failed to compute in GPU. node->backend = GGML_BACKEND_CPU; return GGML_COMPUTE_FALLBACK; } else { return GGML_COMPUTE_OK; } } // By design, fallback should happen when attempt computing tensor in GPU, // thus it is not parallelled. int test_fallback(struct ggml_tensor *node) { struct ggml_threading_context *ctx = ggml_threading_start( 1, ggml_threading_graph_compute_thread, mock_task_runner_fallback, /*features*/ GGML_THREADING_FEATURE_NONE, /*stages_time*/ NULL); enum ggml_compute_error err = ggml_threading_compute_tensor(ctx, node, /*wdata*/ NULL, /*wsize*/ 0); if (err == GGML_COMPUTE_FALLBACK) { err = ggml_threading_compute_tensor(ctx, node, /*wdata*/ NULL, /*wsize*/ 0); } ggml_threading_stop(ctx); if (err != GGML_COMPUTE_OK) { printf("ggml_threading_compute_tensor failed with error: %d.\n", err); return 1; } return 0; } int main(void) { ggml_time_init(); struct ggml_tensor node; memset(&node, 0, sizeof(struct ggml_tensor)); struct ggml_task_stage *stages = node.task_profile.stages; stages[0].backend = GGML_TASK_BACKEND_CPU; stages[1].backend = GGML_TASK_BACKEND_CPU; stages[2].backend = GGML_TASK_BACKEND_NONE; int n_passed = 0; int n_tests = 0; // In github build actions (windows-latest-cmake and ubuntu-latest-cmake): // When n_threads >= 4, the thread init time and compute time suddenly goes // down to 100x ~ 1000x slow -- comparing to n_threads == 2. // // But the tests (n_threads 1, 2, 4, 6) looks sound on my devices: // - MacBook air 2013, ubuntu 22.04 // - MacBook pro 2018, macOS 13.4 // // So I assume the github build host has limited multi-cpu quota. // Will skip computing when threading init time is too slow. // // NOTE: it's observed that when workload is 0 and n_threads >= number of // physical cores: // - the wait/wakeup time varies much: can be up to tens or hundreds of the // average time, thus greatly punishes those small workloads. // - wait_on_done is general faster than wait_now, can be 10x faster. int threads_arr[] = {1, 2, 4, 6, 8, 16}; int threads_arr_len = sizeof(threads_arr) / sizeof(threads_arr[0]); // millions of loops. uint8_t workload_arr[] = {0u, 1u, 10u}; int workload_arr_len = sizeof(workload_arr) / sizeof(workload_arr[0]); // skip slow/big n_threads. int n_slow = 0; for (int i = 0; i < threads_arr_len; i++) { int n_threads = threads_arr[i]; // At github, Windows can take more than 20 seconds to start 15 threads. // Let's silently ignore when we saw two adjacent slowness. if (n_slow >= 2) { threads_arr[i] = 0; continue; } if (n_threads == 1) { continue; } else if (n_threads > MAX_N_THREADS) { printf("[test-ggml-threading] warning: the n_threads (%d) is too " "big, allow at most %d, skip.\n", n_threads, MAX_N_THREADS); threads_arr[i] = 0; continue; } // skip this n_threads when too slow. int t0 = (int)ggml_time_us(); struct ggml_threading_context *ctx = ggml_threading_start(n_threads, ggml_threading_graph_compute_thread, mock_task_runner, 0, /*stages_time*/ NULL); int t1 = (int)ggml_time_us(); ggml_threading_stop(ctx); int elapsed_us = t1 - t0; if (elapsed_us > 500 * n_threads) { printf("[test-ggml-threading] warning: it took took %7.3f " "ms to start %2d worker thread(s). Too slow, skip.\n", 1.0 * elapsed_us / 1000, n_threads - 1); threads_arr[i] = 0; ++n_slow; } else { // clear. n_slow = 0; } } // node.task_profile.dev_flags: byte 0 for wait_on_done, byte 1 for loops. for (int x = 0; x < workload_arr_len; x++) { node.task_profile.dev_flags[1] = workload_arr[x]; for (int i = 0; i < threads_arr_len; i++) { int n_threads = threads_arr[i]; if (n_threads <= 0) { continue; } printf("\n[test-ggml-threading] ==== workload: %2d million(s), " "n_threads: %2d ====\n", workload_arr[x], n_threads); // multi-threads: parallel + wait_now/wait_on_done if (n_threads == 1) { stages[0].parallel = false; stages[1].parallel = false; stages[0].wait = false; stages[1].wait = false; node.task_profile.dev_flags[0] = 0u; n_tests++; if (test_driver(n_tests, &node, n_threads) == 0) { n_passed++; } continue; } { // no parallel, no wait stages[0].parallel = false; stages[1].parallel = false; stages[0].wait = false; stages[1].wait = false; node.task_profile.dev_flags[0] = 0u; n_tests++; if (test_driver(n_tests, &node, n_threads) == 0) { n_passed++; } } { // both parallel, no wait stages[0].parallel = true; stages[1].parallel = true; stages[0].wait = false; stages[1].wait = false; node.task_profile.dev_flags[0] = 0u; n_tests++; if (test_driver(n_tests, &node, n_threads) == 0) { n_passed++; } } { // stage 0 parallel, stage 1 may wait stages[0].parallel = true; stages[1].parallel = false; stages[0].wait = false; { // stage 1 no wait stages[1].wait = false; node.task_profile.dev_flags[0] = 0u; n_tests++; if (test_driver(n_tests, &node, n_threads) == 0) { n_passed++; } } { // stage 1 wait stages[1].wait = true; if (stages[1].parallel) { abort(); } { // disable wait_on_done node.task_profile.dev_flags[0] = 0u; // wait now. n_tests++; if (test_driver(n_tests, &node, n_threads) == 0) { n_passed++; } } { // enable wait_on_done node.task_profile.dev_flags[0] = 1u; // wait on done n_tests++; if (test_driver(n_tests, &node, n_threads) == 0) { n_passed++; } } } } } } { ++n_tests; // required by getting task profiles. node.op = GGML_OP_MUL_MAT; struct ggml_tensor src0 = { .type = GGML_TYPE_Q4_0, }; struct ggml_tensor src1 = { .type = GGML_TYPE_F32, }; node.src0 = &src0; node.src1 = &src1; node.backend = GGML_BACKEND_GPU; if (test_fallback(&node) == 0) { ++n_passed; printf("\n[test-ggml-threading] test fallback: ok\n\n"); } } printf("[test-ggml-threading] %d/%d passed.\n", n_passed, n_tests); return (n_passed == n_tests) ? 0 : 1; }