#include "common.h" #include "llama.h" #include #include #include #include #include #include #include #include struct quant_option { std::string name; llama_ftype ftype; std::string desc; }; static const std::vector QUANT_OPTIONS = { { "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 3.56G, +0.2166 ppl @ LLaMA-v1-7B", }, { "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 3.90G, +0.1585 ppl @ LLaMA-v1-7B", }, { "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 4.33G, +0.0683 ppl @ LLaMA-v1-7B", }, { "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", }, { "IQ2_XXS",LLAMA_FTYPE_MOSTLY_IQ2_XXS," 2.06 bpw quantization", }, { "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", }, { "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", }, { "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", }, { "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" }, { "Q3_K_XS",LLAMA_FTYPE_MOSTLY_Q3_K_XS,"3-bit extra small quantization" , }, { "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", }, { "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.07G, +0.2496 ppl @ LLaMA-v1-7B", }, { "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1764 ppl @ LLaMA-v1-7B", }, { "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", }, { "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 3.59G, +0.0992 ppl @ LLaMA-v1-7B", }, { "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 3.80G, +0.0532 ppl @ LLaMA-v1-7B", }, { "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", }, { "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 4.33G, +0.0400 ppl @ LLaMA-v1-7B", }, { "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0122 ppl @ LLaMA-v1-7B", }, { "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, +0.0008 ppl @ LLaMA-v1-7B", }, { "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", }, { "F16", LLAMA_FTYPE_MOSTLY_F16, "13.00G @ 7B", }, { "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", }, // Note: Ensure COPY comes after F32 to avoid ftype 0 from matching. { "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", }, }; static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) { std::string ftype_str; for (auto ch : ftype_str_in) { ftype_str.push_back(std::toupper(ch)); } for (auto & it : QUANT_OPTIONS) { if (it.name == ftype_str) { ftype = it.ftype; ftype_str_out = it.name; return true; } } try { int ftype_int = std::stoi(ftype_str); for (auto & it : QUANT_OPTIONS) { if (it.ftype == ftype_int) { ftype = it.ftype; ftype_str_out = it.name; return true; } } } catch (...) { // stoi failed } return false; } // usage: // ./quantize [--allow-requantize] [--leave-output-tensor] [--pure] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads] // [[noreturn]] static void usage(const char * executable) { printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable); printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n"); printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n"); printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n"); printf(" --imatrix file_name: use data in file_name as importance matrix for quant optimizations\n"); printf(" --include-weights tensor_name: use importance matrix for this/these tensor(s)\n"); printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n"); printf("Note: --include-weights and --exclude-weights cannot be used together\n"); printf("\nAllowed quantization types:\n"); for (auto & it : QUANT_OPTIONS) { if (it.name != "COPY") { printf(" %2d or ", it.ftype); } else { printf(" "); } printf("%-7s : %s\n", it.name.c_str(), it.desc.c_str()); } exit(1); } static void load_imatrix(const std::string& imatrix_file, std::unordered_map>& imatrix_data) { std::ifstream in(imatrix_file.c_str(), std::ios::binary); if (!in) { printf("%s: failed to open %s\n",__func__,imatrix_file.c_str()); return; } int n_entries; in.read((char*)&n_entries, sizeof(n_entries)); if (in.fail() || n_entries < 1) { printf("%s: no data in file %s\n", __func__, imatrix_file.c_str()); return; } for (int i = 0; i < n_entries; ++i) { int len; in.read((char *)&len, sizeof(len)); std::vector name_as_vec(len+1); in.read((char *)name_as_vec.data(), len); if (in.fail()) { printf("%s: failed reading name for entry %d from %s\n",__func__,i+1,imatrix_file.c_str()); return; } name_as_vec[len] = 0; std::string name{name_as_vec.data()}; auto& e = imatrix_data[std::move(name)]; int ncall; in.read((char*)&ncall, sizeof(ncall)); int nval; in.read((char *)&nval, sizeof(nval)); if (in.fail() || nval < 1) { printf("%s: failed reading number of values for entry %d\n",__func__,i); imatrix_data = {}; return; } e.resize(nval); in.read((char*)e.data(), nval*sizeof(float)); if (in.fail()) { printf("%s: failed reading data for entry %d\n",__func__,i); imatrix_data = {}; return; } if (ncall > 0) { for (auto& v : e) v /= ncall; } } printf("%s: loaded %d importance matrix entries from %s\n",__func__,int(imatrix_data.size()),imatrix_file.c_str()); } static void prepare_imatrix(const std::string& imatrix_file, const std::vector& included_weights, const std::vector& excluded_weights, std::unordered_map>& imatrix_data) { if (!imatrix_file.empty()) { load_imatrix(imatrix_file, imatrix_data); } if (imatrix_data.empty()) { return; } if (!excluded_weights.empty()) { for (auto& name : excluded_weights) { for (auto it = imatrix_data.begin(); it != imatrix_data.end(); ) { auto pos = it->first.find(name); if (pos != std::string::npos) it = imatrix_data.erase(it); else ++it; } } } if (!included_weights.empty()) { std::unordered_map> tmp; for (auto& name : included_weights) { for (auto& e : imatrix_data) { auto pos = e.first.find(name); if (pos != std::string::npos) { tmp.emplace(std::move(e)); } } } imatrix_data = std::move(tmp); } if (!imatrix_data.empty()) { printf("%s: have %d importance matrix entries\n", __func__, int(imatrix_data.size())); } } int main(int argc, char ** argv) { if (argc < 3) { usage(argv[0]); } llama_model_quantize_params params = llama_model_quantize_default_params(); int arg_idx = 1; std::string imatrix_file; std::vector included_weights, excluded_weights; for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) { if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) { params.quantize_output_tensor = false; } else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) { params.allow_requantize = true; } else if (strcmp(argv[arg_idx], "--pure") == 0) { params.pure = true; } else if (strcmp(argv[arg_idx], "--imatrix") == 0) { if (arg_idx < argc-1) { imatrix_file = argv[++arg_idx]; } else { usage(argv[0]); } } else if (strcmp(argv[arg_idx], "--include-weights") == 0) { if (arg_idx < argc-1) { included_weights.push_back(argv[++arg_idx]); } else { usage(argv[0]); } } else if (strcmp(argv[arg_idx], "--exclude-weights") == 0) { if (arg_idx < argc-1) { excluded_weights.push_back(argv[++arg_idx]); } else { usage(argv[0]); } } else { usage(argv[0]); } } if (argc - arg_idx < 2) { printf("%s: bad arguments\n", argv[0]); usage(argv[0]); } if (!included_weights.empty() && !excluded_weights.empty()) { usage(argv[0]); } std::unordered_map> imatrix_data; prepare_imatrix(imatrix_file, included_weights, excluded_weights, imatrix_data); if (!imatrix_data.empty()) { params.imatrix = &imatrix_data; } llama_backend_init(false); // parse command line arguments const std::string fname_inp = argv[arg_idx]; arg_idx++; std::string fname_out; std::string ftype_str; if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) { std::string fpath; const size_t pos = fname_inp.find_last_of("/\\"); if (pos != std::string::npos) { fpath = fname_inp.substr(0, pos + 1); } // export as [inp path]/ggml-model-[ftype].gguf fname_out = fpath + "ggml-model-" + ftype_str + ".gguf"; arg_idx++; if (ftype_str == "COPY") { params.only_copy = true; } } else { fname_out = argv[arg_idx]; arg_idx++; if (argc <= arg_idx) { fprintf(stderr, "%s: missing ftype\n", __func__); return 1; } if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) { fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]); return 1; } if (ftype_str == "COPY") { params.only_copy = true; } arg_idx++; } // parse nthreads if (argc > arg_idx) { try { params.nthread = std::stoi(argv[arg_idx]); } catch (const std::exception & e) { fprintf(stderr, "%s: invalid nthread '%s' (%s)\n", __func__, argv[arg_idx], e.what()); return 1; } } if ((params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) && imatrix_data.empty()) { fprintf(stderr, "\n===============================================================================================\n"); fprintf(stderr, "Please do not use IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n"); fprintf(stderr, "===============================================================================================\n\n\n"); return 1; } print_build_info(); fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str()); if (params.nthread > 0) { fprintf(stderr, " using %d threads", params.nthread); } fprintf(stderr, "\n"); const int64_t t_main_start_us = llama_time_us(); int64_t t_quantize_us = 0; // load the model { const int64_t t_start_us = llama_time_us(); if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), ¶ms)) { fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str()); return 1; } t_quantize_us = llama_time_us() - t_start_us; } // report timing { const int64_t t_main_end_us = llama_time_us(); printf("\n"); printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0); printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0); } llama_backend_free(); return 0; }