#include "arg.h" #include "common.h" #include "log.h" #include "llama.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif struct results_perplexity { std::vector tokens; double ppl_value; std::vector logits; std::vector probs; }; struct results_log_softmax { double log_softmax; float logit; float prob; }; static void write_logfile( const llama_context * ctx, const gpt_params & params, const llama_model * model, const struct results_perplexity & results ) { if (params.logdir.empty()) { return; } if (params.hellaswag) { LOG_WRN("%s: logging results is not implemented for HellaSwag. No files will be written.\n", __func__); return; } const std::string timestamp = string_get_sortable_timestamp(); const bool success = fs_create_directory_with_parents(params.logdir); if (!success) { LOG_WRN("%s: failed to create logdir %s, cannot write logfile\n", __func__, params.logdir.c_str()); return; } const std::string logfile_path = params.logdir + timestamp + ".yml"; FILE * logfile = fopen(logfile_path.c_str(), "w"); if (logfile == NULL) { LOG_ERR("%s: failed to open logfile %s\n", __func__, logfile_path.c_str()); return; } fprintf(logfile, "binary: main\n"); char model_desc[128]; llama_model_desc(model, model_desc, sizeof(model_desc)); yaml_dump_non_result_info(logfile, params, ctx, timestamp, results.tokens, model_desc); fprintf(logfile, "\n"); fprintf(logfile, "######################\n"); fprintf(logfile, "# Perplexity Results #\n"); fprintf(logfile, "######################\n"); fprintf(logfile, "\n"); yaml_dump_vector_float(logfile, "logits", results.logits); fprintf(logfile, "ppl_value: %f\n", results.ppl_value); yaml_dump_vector_float(logfile, "probs", results.probs); llama_perf_dump_yaml(logfile, ctx); fclose(logfile); } static std::vector softmax(const std::vector& logits) { std::vector probs(logits.size()); float max_logit = logits[0]; for (float v : logits) { max_logit = std::max(max_logit, v); } double sum_exp = 0.0; for (size_t i = 0; i < logits.size(); i++) { // Subtract the maximum logit value from the current logit value for numerical stability const float logit = logits[i] - max_logit; const float exp_logit = expf(logit); sum_exp += exp_logit; probs[i] = exp_logit; } for (size_t i = 0; i < probs.size(); i++) { probs[i] /= sum_exp; } return probs; } static results_log_softmax log_softmax(int64_t n_vocab, const float * logits, int tok) { float max_logit = logits[0]; for (int i = 1; i < n_vocab; ++i) { max_logit = std::max(max_logit, logits[i]); } double sum_exp = 0.0; for (int i = 0; i < n_vocab; ++i) { sum_exp += expf(logits[i] - max_logit); } return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp}; } static inline int nearest_int(float fval) { //assert(fval <= 4194303.f); float val = fval + 12582912.f; int i; memcpy(&i, &val, sizeof(int)); return (i & 0x007fffff) - 0x00400000; } static double log_softmax(int64_t n_vocab, const float * logits, uint16_t * log_prob, int tok) { float max_logit = logits[0]; float min_logit = logits[0]; for (int i = 1; i < n_vocab; ++i) { max_logit = std::max(max_logit, logits[i]); min_logit = std::min(min_logit, logits[i]); } min_logit = std::max(min_logit, max_logit - 16); double sum_exp = 0.0; for (int i = 0; i < n_vocab; ++i) { sum_exp += expf(logits[i] - max_logit); } const float log_sum_exp = log(sum_exp); const float min_log_prob = min_logit - max_logit - log_sum_exp; const float scale = (max_logit - min_logit)/65535.f; float * d = (float *)log_prob; d[0] = scale; d[1] = min_log_prob; log_prob += 4; if (scale) { const float inv_scale = 1/scale; for (int i = 0; i < n_vocab; ++i) { log_prob[i] = logits[i] > min_logit ? nearest_int(inv_scale*(logits[i] - min_logit)) : 0; } } else { std::memset(log_prob, 0, n_vocab*sizeof(uint16_t)); } return max_logit + log_sum_exp - logits[tok]; } static void process_logits( int64_t n_vocab, const float * logits, const int * tokens, int n_token, std::vector & workers, double & nll, double & nll2, float * logit_history, float * prob_history ) { std::mutex mutex; int counter = 0; auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () { double local_nll = 0; double local_nll2 = 0; while (true) { std::unique_lock lock(mutex); int i = counter++; if (i >= n_token) { nll += local_nll; nll2 += local_nll2; break; } lock.unlock(); const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]); const double v = -results.log_softmax; local_nll += v; local_nll2 += v*v; logit_history[i] = results.logit; prob_history[i] = results.prob; } }; for (auto & w : workers) { w = std::thread(compute); } compute(); for (auto & w : workers) { w.join(); } } static void process_logits(std::ostream& out, int64_t n_vocab, const float * logits, const int * tokens, int n_token, std::vector & workers, std::vector & log_probs, double & nll, double & nll2) { std::mutex mutex; const int nv = 2*((n_vocab + 1)/2) + 4; int counter = 0; auto compute = [&mutex, &counter, &log_probs, &nll, &nll2, n_vocab, logits, tokens, n_token, nv] () { double local_nll = 0; double local_nll2 = 0; while (true) { std::unique_lock lock(mutex); int i = counter++; if (i >= n_token) { nll += local_nll; nll2 += local_nll2; break; } lock.unlock(); const double v = log_softmax(n_vocab, logits + i*n_vocab, log_probs.data() + i*nv, tokens[i+1]); local_nll += v; local_nll2 += v*v; } }; for (auto & w : workers) { w = std::thread(compute); } compute(); for (auto & w : workers) { w.join(); } out.write((const char *)log_probs.data(), n_token*nv*sizeof(uint16_t)); } struct kl_divergence_result { double sum_nll = 0.0; double sum_nll2 = 0.0; double sum_nll_base = 0.0; double sum_nll_base2 = 0.0; double sum_nll_nll_base = 0.0; double sum_kld = 0.0; double sum_kld2 = 0.0; double sum_p_diff = 0.0; double sum_p_diff2 = 0.0; double sum_p_diff4 = 0.0; float max_p_diff = 0.0f; size_t n_same_top = 0.0; size_t count = 0.0; }; static std::pair log_softmax(int64_t n_vocab, const float * logits, const uint16_t * base_log_prob, int tok, kl_divergence_result & kld) { float max_logit = logits[0]; int imax = 0; for (int i = 1; i < n_vocab; ++i) { if (logits[i] > max_logit) { max_logit = logits[i]; imax = i; } } double sum_exp = 0.0; for (int i = 0; i < n_vocab; ++i) { sum_exp += expf(logits[i] - max_logit); } const float log_sum_exp = log(sum_exp); const float * d = (const float *)base_log_prob; const float scale = d[0]; const float min_log_prob = d[1]; base_log_prob += 4; const float nll = max_logit + log_sum_exp - logits[tok]; kld.sum_nll += nll; kld.sum_nll2 += nll*nll; const float nll_base = -(scale*base_log_prob[tok] + min_log_prob); kld.sum_nll_base += nll_base; kld.sum_nll_base2 += nll_base*nll_base; kld.sum_nll_nll_base += nll*nll_base; max_logit += log_sum_exp; double sum = 0; int imax_base = -1; float p_log_base_max = 0; for (int i = 0; i < n_vocab; ++i) { const float p_log_base = scale*base_log_prob[i] + min_log_prob; if (i == 0 || p_log_base > p_log_base_max) { p_log_base_max = p_log_base; imax_base = i; } if (p_log_base > -16.f) { const float p_base = expf(p_log_base); sum += p_base * (p_log_base - logits[i] + max_logit); } } kld.sum_kld += sum; kld.sum_kld2 += sum*sum; ++kld.count; if (imax == imax_base) { ++kld.n_same_top; } const float p_base = expf(-nll_base); const float p = expf(-nll); const float p_diff = p - p_base; kld.sum_p_diff += p_diff; const double p_diff2 = p_diff*p_diff; kld.sum_p_diff2 += p_diff2; kld.sum_p_diff4 += p_diff2*p_diff2; kld.max_p_diff = std::max(kld.max_p_diff, std::fabs(p_diff)); return std::make_pair(sum, p_diff); } static void process_logits(int64_t n_vocab, const float * logits, const int * tokens, int n_token, std::vector & workers, const std::vector & base_log_probs, kl_divergence_result & kld, float * kld_values, float * p_diff_values) { std::mutex mutex; const int nv = 2*((n_vocab + 1)/2) + 4; int counter = 0; auto compute = [&mutex, &counter, &base_log_probs, &kld, n_vocab, logits, tokens, n_token, nv, kld_values, p_diff_values] () { kl_divergence_result local_kld; while (true) { std::unique_lock lock(mutex); int i = counter++; if (i >= n_token) { kld.sum_nll += local_kld.sum_nll; kld.sum_nll2 += local_kld.sum_nll2; kld.sum_nll_base += local_kld.sum_nll_base; kld.sum_nll_base2 += local_kld.sum_nll_base2; kld.sum_nll_nll_base += local_kld.sum_nll_nll_base; kld.sum_kld += local_kld.sum_kld; kld.sum_kld2 += local_kld.sum_kld2; kld.sum_p_diff += local_kld.sum_p_diff; kld.sum_p_diff2 += local_kld.sum_p_diff2; kld.sum_p_diff4 += local_kld.sum_p_diff4; kld.n_same_top += local_kld.n_same_top; kld.max_p_diff = std::max(kld.max_p_diff, local_kld.max_p_diff); kld.count += local_kld.count; break; } lock.unlock(); std::pair v = log_softmax(n_vocab, logits + i*n_vocab, base_log_probs.data() + i*nv, tokens[i+1], local_kld); kld_values[i] = (float)v.first; p_diff_values[i] = v.second; } }; for (auto & w : workers) { w = std::thread(compute); } compute(); for (auto & w : workers) { w.join(); } } static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) { // Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` // Output: `perplexity: 13.5106 [114/114]` // BOS tokens will be added for each chunk before eval const bool add_bos = llama_add_bos_token(llama_get_model(ctx)); GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx))); LOG_INF("%s: tokenizing the input ..\n", __func__); std::vector tokens = ::llama_tokenize(ctx, params.prompt, true); const int n_ctx = llama_n_ctx(ctx); if (int(tokens.size()) < 2*n_ctx) { LOG_ERR("%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx, n_ctx); LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size()); return {std::move(tokens), 0., {}, {}}; } std::vector logit_history; std::vector prob_history; logit_history.resize(tokens.size()); prob_history.resize(tokens.size()); if (params.ppl_stride <= 0) { LOG_ERR("%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride); return {tokens, -1, logit_history, prob_history}; } const int calc_chunk = n_ctx; LOG_INF("%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk); if (int(tokens.size()) <= calc_chunk) { LOG_ERR("%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__, tokens.size(), n_ctx, params.ppl_stride); return {tokens, -1, logit_history, prob_history}; } const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride; const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max); const int n_batch = params.n_batch; const int64_t n_vocab = llama_n_vocab(llama_get_model(ctx)); int count = 0; double nll = 0.0; LOG_INF("%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch); for (int i = 0; i < n_chunk; ++i) { const int start = i * params.ppl_stride; const int end = start + calc_chunk; const int num_batches = (calc_chunk + n_batch - 1) / n_batch; //LOG_DBG("%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches); std::vector logits; const auto t_start = std::chrono::high_resolution_clock::now(); // clear the KV cache llama_kv_cache_clear(ctx); for (int j = 0; j < num_batches; ++j) { const int batch_start = start + j * n_batch; const int batch_size = std::min(end - batch_start, n_batch); //LOG_DBG(" Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch); // TODO: use llama_batch.logits instead of relying on logits_all == true if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) { //LOG_ERR("%s : failed to eval\n", __func__); return {tokens, -1, logit_history, prob_history}; } // save original token and restore it after eval const auto token_org = tokens[batch_start]; // add BOS token for the first batch of each chunk if (add_bos && j == 0) { tokens[batch_start] = llama_token_bos(llama_get_model(ctx)); } const auto batch_logits = llama_get_logits(ctx); logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); if (j == 0) { tokens[batch_start] = token_org; } } const auto t_end = std::chrono::high_resolution_clock::now(); if (i == 0) { const float t_total = std::chrono::duration(t_end - t_start).count(); LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total); int total_seconds = (int)(t_total * n_chunk); if (total_seconds >= 60*60) { LOG("%d hours ", total_seconds / (60*60)); total_seconds = total_seconds % (60*60); } LOG("%.2f minutes\n", total_seconds / 60.0); } //LOG_DBG("%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start); for (int j = n_ctx - params.ppl_stride - 1; j < n_ctx - 1; ++j) { // Calculate probability of next token, given the previous ones. const std::vector tok_logits( logits.begin() + (j + 0) * n_vocab, logits.begin() + (j + 1) * n_vocab); const float prob = softmax(tok_logits)[tokens[start + j + 1]]; logit_history[start + j + 1] = tok_logits[tokens[start + j + 1]]; prob_history[start + j + 1] = prob; nll += -std::log(prob); ++count; } // perplexity is e^(average negative log-likelihood) if (params.ppl_output_type == 0) { LOG("[%d]%.4lf,", i + 1, std::exp(nll / count)); } else { LOG("%8d %.4lf\n", i*params.ppl_stride, std::exp(nll / count)); } } LOG("\n"); return {tokens, std::exp(nll / count), logit_history, prob_history}; } static results_perplexity perplexity(llama_context * ctx, const gpt_params & params, const int32_t n_ctx) { if (params.ppl_stride > 0) { return perplexity_v2(ctx, params); } // Download: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip // Run `./llama-perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` // Output: `perplexity: 13.5106 [114/114]` // BOS tokens will be added for each chunk before eval const bool add_bos = llama_add_bos_token(llama_get_model(ctx)); GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx))); std::ofstream logits_stream; if (!params.logits_file.empty()) { logits_stream.open(params.logits_file.c_str(), std::ios::binary); if (!logits_stream.is_open()) { LOG_ERR("%s: failed to open %s for writing\n", __func__, params.logits_file.c_str()); return {}; } LOG_INF("%s: saving all logits to %s\n", __func__, params.logits_file.c_str()); logits_stream.write("_logits_", 8); logits_stream.write(reinterpret_cast(&n_ctx), sizeof(n_ctx)); } auto tim1 = std::chrono::high_resolution_clock::now(); LOG_INF("%s: tokenizing the input ..\n", __func__); std::vector tokens = ::llama_tokenize(ctx, params.prompt, true); auto tim2 = std::chrono::high_resolution_clock::now(); LOG_INF("%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast(tim2-tim1).count()); if (int(tokens.size()) < 2*n_ctx) { LOG_ERR("%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx, n_ctx); LOG_ERR("%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size()); return {std::move(tokens), 0., {}, {}}; } std::vector logit_history; logit_history.resize(tokens.size()); std::vector prob_history; prob_history.resize(tokens.size()); const int n_chunk_max = tokens.size() / n_ctx; const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max); const int n_batch = params.n_batch; const int64_t n_vocab = llama_n_vocab(llama_get_model(ctx)); int count = 0; double nll = 0.0; double nll2 = 0.0; const int num_batches = (n_ctx + n_batch - 1) / n_batch; const int n_seq = std::max(1, n_batch / n_ctx); GGML_ASSERT(n_batch < n_ctx || n_batch % n_ctx == 0); GGML_ASSERT(params.n_ctx == n_seq * n_ctx); llama_batch batch = llama_batch_init(std::min(n_batch, n_ctx*n_seq), 0, 1); std::vector logits; if (num_batches > 1) { logits.reserve((size_t)n_ctx * n_vocab); } LOG_INF("%s: calculating perplexity over %d chunks, n_ctx=%d, batch_size=%d, n_seq=%d\n", __func__, n_chunk, n_ctx, n_batch, n_seq); std::vector workers(std::thread::hardware_concurrency() - 1); std::vector log_probs; if (!params.logits_file.empty()) { logits_stream.write((const char *)&n_vocab, sizeof(n_vocab)); logits_stream.write((const char *)&n_chunk, sizeof(n_chunk)); logits_stream.write((const char *)tokens.data(), n_chunk*n_ctx*sizeof(tokens[0])); const int nv = 2*((n_vocab + 1)/2) + 4; log_probs.resize(n_ctx * nv); } // We get the logits for all the tokens in the context window (params.n_ctx) // from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity, // calculate the perplexity over the last half of the window (so the model always has // some context to predict the token). // // We rely on the fact that attention in the forward pass only looks at previous // tokens here, so the logits returned for each token are an accurate representation // of what the model would have predicted at that point. // // Example, we have a context window of 512, we will compute perplexity for each of the // last 256 tokens. Then, we split the input up into context window size chunks to // process the entire prompt. const int first = n_ctx/2; for (int i = 0; i < n_chunk; i += n_seq) { const int start = i * n_ctx; const int end = start + n_ctx; const int n_seq_batch = std::min(n_seq, n_chunk - i); const auto t_start = std::chrono::high_resolution_clock::now(); // clear the KV cache llama_kv_cache_clear(ctx); for (int j = 0; j < num_batches; ++j) { const int batch_start = start + j * n_batch; const int batch_size = std::min(end - batch_start, n_batch); int n_outputs = 0; batch.n_tokens = 0; for (int seq = 0; seq < n_seq_batch; seq++) { int seq_start = batch_start + seq*n_ctx; // save original token and restore it after eval const auto token_org = tokens[seq_start]; // add BOS token for the first batch of each chunk if (add_bos && j == 0) { tokens[seq_start] = llama_token_bos(llama_get_model(ctx)); } for (int k = 0; k < batch_size; ++k) { const int idx = seq*n_ctx + k; batch.token [idx] = tokens[seq_start + k]; batch.pos [idx] = j*n_batch + k; batch.n_seq_id[idx] = 1; batch.seq_id [idx][0] = seq; batch.logits [idx] = batch.pos[idx] >= first ? 1 : 0; n_outputs += batch.logits[idx] != 0; } batch.n_tokens += batch_size; // restore the original token in case it was set to BOS tokens[seq_start] = token_org; } if (llama_decode(ctx, batch)) { LOG_INF("%s : failed to eval\n", __func__); return {tokens, -1, logit_history, prob_history}; } if (num_batches > 1 && n_outputs > 0) { const auto * batch_logits = llama_get_logits(ctx); logits.insert(logits.end(), batch_logits, batch_logits + n_outputs * n_vocab); } } if (i == 0) { llama_synchronize(ctx); const auto t_end = std::chrono::high_resolution_clock::now(); const float t_total = std::chrono::duration(t_end - t_start).count(); LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total); int total_seconds = (int)(t_total*n_chunk/n_seq); if (total_seconds >= 60*60) { LOG("%d hours ", total_seconds / (60*60)); total_seconds = total_seconds % (60*60); } LOG("%.2f minutes\n", total_seconds / 60.0); } for (int seq = 0; seq < n_seq_batch; seq++) { const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx + first); llama_token * tokens_data = tokens.data() + start + seq*n_ctx + first; if (!params.logits_file.empty()) { process_logits(logits_stream, n_vocab, all_logits, tokens_data, n_ctx - 1 - first, workers, log_probs, nll, nll2); } else { process_logits(n_vocab, all_logits, tokens_data, n_ctx - 1 - first, workers, nll, nll2, logit_history.data() + start + seq*n_ctx + first, prob_history.data() + start + seq*n_ctx + first); } count += n_ctx - first - 1; // perplexity is e^(average negative log-likelihood) if (params.ppl_output_type == 0) { LOG("[%d]%.4lf,", i + seq + 1, std::exp(nll / count)); } else { double av = nll/count; double av2 = nll2/count - av*av; if (av2 > 0) av2 = sqrt(av2/(count-1)); LOG("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2); } } logits.clear(); } LOG("\n"); nll2 /= count; nll /= count; const double ppl = exp(nll); nll2 -= nll * nll; if (nll2 > 0) { nll2 = sqrt(nll2/(count-1)); LOG_INF("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl); } else { LOG_ERR("Unexpected negative standard deviation of log(prob)\n"); } llama_batch_free(batch); return {tokens, ppl, logit_history, prob_history}; } static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector & batch_logits, int32_t n_batch, int32_t n_vocab) { int prev_outputs = 0; for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) { const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i)); llama_batch batch_view = { n_tokens, batch.token + i, nullptr, batch.pos + i, batch.n_seq_id + i, batch.seq_id + i, batch.logits + i, 0, 0, 0, // unused }; const int ret = llama_decode(ctx, batch_view); if (ret != 0) { LOG_ERR("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret); return false; } int n_outputs = 0; for (int i = 0; i < n_tokens; ++i) { n_outputs += batch_view.logits[i] != 0; } memcpy(batch_logits.data() + prev_outputs*n_vocab, llama_get_logits(ctx), n_outputs*n_vocab*sizeof(float)); prev_outputs += n_outputs; } return true; } #define K_TOKEN_CHUNK 4 static void compute_logprobs(const float * batch_logits, int64_t n_vocab, std::vector& workers, const std::vector>& eval_pairs, std::vector& eval_results) { if (eval_results.size() != eval_pairs.size()) { eval_results.resize(eval_pairs.size()); } if (eval_pairs.empty()) return; size_t max_threads = std::min((eval_pairs.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK, workers.size()); std::atomic counter(0); auto compute = [&counter, &eval_pairs, &eval_results, batch_logits, n_vocab] () { float local_logprobs[K_TOKEN_CHUNK]; while (true) { size_t first = counter.fetch_add(K_TOKEN_CHUNK, std::memory_order_relaxed); if (first >= eval_results.size()) break; size_t last = std::min(first + K_TOKEN_CHUNK, eval_results.size()); for (size_t i = first; i < last; ++i) { auto logits = batch_logits + eval_pairs[i].first * n_vocab; float max_logit = logits[0]; for (int j = 1; j < n_vocab; ++j) { max_logit = std::max(max_logit, logits[j]); } float sum_p = 0.f; for (int j = 0; j < n_vocab; ++j) { sum_p += expf(logits[j] - max_logit); } local_logprobs[i - first] = logits[eval_pairs[i].second] - max_logit - std::log(sum_p); } std::memcpy(eval_results.data() + first, local_logprobs, (last - first)*sizeof(float)); } }; for (size_t it = 0; it < max_threads; ++it) { workers[it] = std::thread(compute); } for (size_t it = 0; it < max_threads; ++it) { workers[it].join(); } } static void hellaswag_score(llama_context * ctx, const gpt_params & params) { // Calculates hellaswag score (acc_norm) from prompt // // Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl // All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68 // // All 10042 tasks should be extracted to keep the results standardized like other implementations. // // Datafile layout: // ['??'] denotes json fields // 6 lines per task: // ['activity_label'] + ": " +['ctx'] - The first part of the query, the context // ['label'] - The index the best common sense ending aka gold ending // ['endings'][0] - Endings added to the first part of the query // ['endings'][1] // ['endings'][2] // ['endings'][3] std::vector prompt_lines; std::istringstream strstream(params.prompt); std::string line; while (std::getline(strstream,line,'\n')) { prompt_lines.push_back(line); } if (prompt_lines.size() % 6 != 0) { LOG_ERR("%s : number of lines in prompt not a multiple of 6.\n", __func__); return; } size_t hs_task_count = prompt_lines.size()/6; LOG_INF("%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count); const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM; LOG_INF("================================= is_spm = %d\n", is_spm); // The tasks should be randomized so the score stabilizes quickly. bool randomize_tasks = true; // Number of tasks to use when computing the score if (params.hellaswag_tasks < hs_task_count) { hs_task_count = params.hellaswag_tasks; } // The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now std::mt19937 rng(1); // Dataholder for hellaswag tasks struct hs_data_t { std::string context; size_t gold_ending_idx; std::string ending[4]; size_t ending_logprob_count[4]; double ending_logprob[4]; size_t i_logits; // starting index of logits in the llama_batch size_t common_prefix; // max number of initial tokens that are the same in all sentences size_t required_tokens; // needed number of tokens to evaluate all 4 endings std::vector seq_tokens[4]; }; LOG_INF("%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") ); // Select and read data from prompt lines std::vector hs_data(hs_task_count); for (size_t i = 0; i < hs_task_count; i++) { size_t idx = i; auto & hs_cur = hs_data[i]; // Select a random example of those left in the prompt if (randomize_tasks) { std::uniform_int_distribution dist(0, prompt_lines.size()/6-1 ) ; idx = dist(rng); } hs_cur.context = prompt_lines[idx*6]; hs_cur.gold_ending_idx = std::stoi( prompt_lines[idx*6+1] ); for (size_t j = 0; j < 4; j++) { hs_cur.ending[j] = prompt_lines[idx*6+2+j]; hs_cur.seq_tokens[j] = ::llama_tokenize(ctx, hs_cur.context + " " + hs_cur.ending[j], true); } // determine the common prefix of the endings hs_cur.common_prefix = 0; for (size_t k = 0; k < hs_cur.seq_tokens[0].size(); k++) { if (hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[1][k] || hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[2][k] || hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[3][k]) { break; } hs_cur.common_prefix++; } hs_cur.required_tokens = hs_cur.common_prefix + hs_cur.seq_tokens[0].size() - hs_cur.common_prefix + hs_cur.seq_tokens[1].size() - hs_cur.common_prefix + hs_cur.seq_tokens[2].size() - hs_cur.common_prefix + hs_cur.seq_tokens[3].size() - hs_cur.common_prefix; //GGML_ASSERT(hs_cur.common_prefix >= ::llama_tokenize(ctx, hs_cur.context, true).size()); // Delete the selected random example from the prompt if (randomize_tasks) { prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) ); } } LOG_INF("%s : calculating hellaswag score over selected tasks.\n", __func__); LOG("\ntask\tacc_norm\n"); double acc = 0.0f; const int n_ctx = llama_n_ctx(ctx); const int n_batch = params.n_batch; const int64_t n_vocab = llama_n_vocab(llama_get_model(ctx)); const int max_tasks_per_batch = 32; const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx)); llama_batch batch = llama_batch_init(n_ctx, 0, 4); std::vector tok_logits(n_vocab); // TODO: this could be made smaller; it's currently the worst-case size std::vector batch_logits(n_vocab*n_ctx); std::vector> eval_pairs; std::vector eval_results; std::vector workers(std::thread::hardware_concurrency()); for (size_t i0 = 0; i0 < hs_task_count; i0++) { int n_cur = 0; size_t i1 = i0; size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch llama_batch_clear(batch); // batch as much tasks as possible into the available context // each task has 4 unique sequence ids - one for each ending // the common prefix is shared among the 4 sequences to save tokens // we extract logits only from the last common token and from all ending tokens of each sequence while (n_cur + (int) hs_data[i1].required_tokens <= n_ctx) { auto & hs_cur = hs_data[i1]; int n_logits = 0; const int s0 = 4*(i1 - i0); if (s0 + 4 > max_seq) { break; } for (size_t i = 0; i < hs_cur.common_prefix; ++i) { llama_batch_add(batch, hs_cur.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3 }, false); } batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix n_logits += 1; for (int s = 0; s < 4; ++s) { const size_t seq_tokens_size = hs_cur.seq_tokens[s].size(); // TODO: don't evaluate the last token of each sequence for (size_t i = hs_cur.common_prefix; i < seq_tokens_size; ++i) { const bool needs_logits = i < seq_tokens_size - 1; llama_batch_add(batch, hs_cur.seq_tokens[s][i], i, { s0 + s }, needs_logits); n_logits += needs_logits; } } hs_cur.i_logits = i_logits; i_logits += n_logits; n_cur += hs_data[i1].required_tokens; if (++i1 == hs_task_count) { break; } } if (i0 == i1) { LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0); return; } llama_kv_cache_clear(ctx); // decode all tasks [i0, i1) if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) { LOG_ERR("%s: llama_decode() failed\n", __func__); return; } // Compute log-probs in parallel // First we collect all tasks eval_pairs.clear(); for (size_t i = i0; i < i1; ++i) { auto & hs_cur = hs_data[i]; size_t li = 1; // skip the last logit of the common prefix (computed separately below) for (int s = 0; s < 4; ++s) { for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) { eval_pairs.emplace_back(hs_cur.i_logits + li++, hs_cur.seq_tokens[s][j + 1]); } } } // Then we do the actual calculation compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results); size_t ir = 0; // compute the logprobs for each ending of the decoded tasks for (size_t i = i0; i < i1; ++i) { auto & hs_cur = hs_data[i]; // get the logits of the last token of the common prefix std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*hs_cur.i_logits, n_vocab*sizeof(float)); const auto first_probs = softmax(tok_logits); for (int s = 0; s < 4; ++s) { hs_cur.ending_logprob_count[s] = 1; hs_cur.ending_logprob[s] = std::log(first_probs[hs_cur.seq_tokens[s][hs_cur.common_prefix]]); for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) { hs_cur.ending_logprob[s] += eval_results[ir++]; hs_cur.ending_logprob_count[s]++; } hs_cur.ending_logprob[s] /= hs_cur.ending_logprob_count[s]; } // Find the ending with maximum logprob size_t ending_logprob_max_idx = 0; double ending_logprob_max_val = hs_cur.ending_logprob[0]; for (size_t s = 1; s < 4; s++) { if (hs_cur.ending_logprob[s] > ending_logprob_max_val) { ending_logprob_max_idx = s; ending_logprob_max_val = hs_cur.ending_logprob[s]; } } //LOG("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_cur.gold_ending_idx); // If the gold ending got the maximum logprobe add one accuracy point if (ending_logprob_max_idx == hs_cur.gold_ending_idx) { acc += 1.0; } // Print the accumulated accuracy mean x 100 LOG("%zu\t%.8lf\n", i + 1, acc/double(i + 1)*100.0); } i0 = i1 - 1; } llama_batch_free(batch); LOG("\n"); } struct winogrande_entry { std::string first; std::string second; std::array choices; int answer; size_t i_logits; size_t common_prefix; size_t required_tokens; size_t n_base1; // number of tokens for context + choice 1 size_t n_base2; // number of tokens for context + choice 2 std::vector seq_tokens[2]; }; static std::vector load_winogrande_from_csv(const std::string & prompt) { std::vector result; std::istringstream in(prompt); std::string line; std::array comma_pos; while (true) { std::getline(in, line); if (in.fail() || in.eof()) break; int ipos = 0; bool quote_open = false; for (int i = 0; i < int(line.size()); ++i) { if (!quote_open) { if (line[i] == ',') { comma_pos[ipos++] = i; if (ipos == 4) break; } else if (line[i] == '"') { quote_open = true; } } else { if (line[i] == '"') { quote_open = false; } } } if (ipos != 4) { LOG_ERR("%s: failed to find comma separators in <%s>\n", __func__, line.c_str()); continue; } auto sentence = line[comma_pos[0]+1] == '"' ? line.substr(comma_pos[0]+2, comma_pos[1] - comma_pos[0] - 3) : line.substr(comma_pos[0]+1, comma_pos[1] - comma_pos[0] - 1); auto choice1 = line.substr(comma_pos[1]+1, comma_pos[2] - comma_pos[1] - 1); auto choice2 = line.substr(comma_pos[2]+1, comma_pos[3] - comma_pos[2] - 1); auto answer = line.substr(comma_pos[3]+1, line.size() - comma_pos[3] - 1); auto index = line.substr(0, comma_pos[0]); int where = 0; for ( ; where < int(sentence.size()); ++where) { if (sentence[where] == '_') break; } if (where == int(sentence.size())) { LOG_ERR("%s: no _ in <%s>\n", __func__, sentence.c_str()); continue; } std::istringstream stream(answer.c_str()); int i_answer; stream >> i_answer; if (stream.fail() || i_answer < 1 || i_answer > 2) { LOG_ERR("%s: failed to parse answer <%s>\n", __func__, answer.c_str()); continue; } result.emplace_back(); auto& wg = result.back(); wg.first = sentence.substr(0, where); wg.second = sentence.substr(where + 1, sentence.size() - where - 1); wg.choices[0] = std::move(choice1); wg.choices[1] = std::move(choice2); wg.answer = i_answer; } return result; } /* * Evaluates the Winogrande score. * Uses a CSV containing task index, dentence, choice 1, choice 2, answer (1 or 2) * You can get one such dataset from e.g. https://huggingface.co/datasets/ikawrakow/winogrande-eval-for-llama.cpp * As an example, the 1st row in the above dataset is * * 0,Sarah was a much better surgeon than Maria so _ always got the easier cases.,Sarah,Maria,2 * */ static void winogrande_score(llama_context * ctx, const gpt_params & params) { constexpr int k_min_trailing_ctx = 3; auto data = load_winogrande_from_csv(params.prompt); if (data.empty()) { LOG_ERR("%s: no tasks\n", __func__); return; } LOG_INF("%s : loaded %zu tasks from prompt.\n", __func__, data.size()); if (params.winogrande_tasks > 0 && params.winogrande_tasks < data.size()) { LOG_INF("%s : selecting %zu random tasks\n", __func__, params.winogrande_tasks); std::mt19937 rng(1); std::vector aux(data.size()); for (int i = 0; i < int(data.size()); ++i) { aux[i] = i; } float scale = 1/(1.f + (float)rng.max()); std::vector selected; selected.resize(params.winogrande_tasks); for (int i = 0; i < int(params.winogrande_tasks); ++i) { int j = int(scale*rng()*aux.size()); selected[i] = std::move(data[aux[j]]); aux[j] = aux.back(); aux.pop_back(); } data = std::move(selected); } LOG_INF("%s : tokenizing selected tasks\n", __func__); for (auto & task : data) { task.seq_tokens[0] = ::llama_tokenize(ctx, task.first + task.choices[0] + task.second, true); task.seq_tokens[1] = ::llama_tokenize(ctx, task.first + task.choices[1] + task.second, true); task.common_prefix = 0; for (size_t k = 0; k < task.seq_tokens[0].size(); k++) { if (task.seq_tokens[0][k] != task.seq_tokens[1][k]) { break; } task.common_prefix++; } // TODO: the last token of each of the sequences don't need to be evaluated task.required_tokens = task.common_prefix + task.seq_tokens[0].size() - task.common_prefix + task.seq_tokens[1].size() - task.common_prefix; task.n_base1 = ::llama_tokenize(ctx, task.first + task.choices[0], true).size(); task.n_base2 = ::llama_tokenize(ctx, task.first + task.choices[1], true).size(); } LOG_INF("%s : calculating winogrande score over selected tasks.\n", __func__); const int n_ctx = llama_n_ctx(ctx); const int n_batch = params.n_batch; const int64_t n_vocab = llama_n_vocab(llama_get_model(ctx)); const int max_tasks_per_batch = 128; const int max_seq = std::min(2*max_tasks_per_batch, (int) llama_n_seq_max(ctx)); llama_batch batch = llama_batch_init(n_ctx, 0, 2); std::vector tok_logits(n_vocab); // TODO: this could be made smaller; it's currently the worst-case size std::vector batch_logits(n_vocab*n_ctx); std::vector> eval_pairs; std::vector eval_results; std::vector workers(std::thread::hardware_concurrency()); int n_correct = 0; int n_done = 0; for (size_t i0 = 0; i0 < data.size(); i0++) { int n_cur = 0; size_t i1 = i0; size_t i_logits = 0; llama_batch_clear(batch); while (n_cur + (int) data[i1].required_tokens <= n_ctx) { int n_logits = 0; const int s0 = 2*(i1 - i0); if (s0 + 2 > max_seq) { break; } for (size_t i = 0; i < data[i1].common_prefix; ++i) { llama_batch_add(batch, data[i1].seq_tokens[0][i], i, { s0 + 0, s0 + 1 }, false); } batch.logits[batch.n_tokens - 1] = true; n_logits += 1; for (int s = 0; s < 2; ++s) { // TODO: end before the last token, no need to predict past the end of the sequences for (size_t i = data[i1].common_prefix; i < data[i1].seq_tokens[s].size(); ++i) { llama_batch_add(batch, data[i1].seq_tokens[s][i], i, { s0 + s }, true); n_logits += 1; } } data[i1].i_logits = i_logits; i_logits += n_logits; n_cur += data[i1].required_tokens; if (++i1 == data.size()) { break; } } if (i0 == i1) { LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0); return; } llama_kv_cache_clear(ctx); // decode all tasks [i0, i1) if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) { LOG_ERR("%s: llama_decode() failed\n", __func__); return; } eval_pairs.clear(); for (size_t i = i0; i < i1; ++i) { auto & task = data[i]; const bool skip_choice = task.seq_tokens[0].size() - task.common_prefix > k_min_trailing_ctx && task.seq_tokens[1].size() - task.common_prefix > k_min_trailing_ctx; const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix; const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0; size_t li = n_base1 - task.common_prefix; for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) { eval_pairs.emplace_back(task.i_logits + li++, task.seq_tokens[0][j+1]); } const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix; const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0; // FIXME: this uses the wrong first logits when not skipping the choice word li = task.seq_tokens[0].size() - task.common_prefix + n_base2 - task.common_prefix; for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) { eval_pairs.emplace_back(task.i_logits + li++, task.seq_tokens[1][j+1]); } } compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results); size_t ir = 0; for (size_t i = i0; i < i1; ++i) { auto & task = data[i]; const bool skip_choice = task.seq_tokens[0].size() - task.common_prefix > k_min_trailing_ctx && task.seq_tokens[1].size() - task.common_prefix > k_min_trailing_ctx; float score_1st = 0; const auto& n_base1 = skip_choice ? task.n_base1 : task.common_prefix; const int last_1st = task.seq_tokens[0].size() - n_base1 > 1 ? 1 : 0; for (size_t j = n_base1-1; j < task.seq_tokens[0].size()-1-last_1st; ++j) { score_1st += eval_results[ir++]; } score_1st /= (task.seq_tokens[0].size() - n_base1 - last_1st); float score_2nd = 0; const auto& n_base2 = skip_choice ? task.n_base2 : task.common_prefix; const int last_2nd = task.seq_tokens[1].size() - n_base2 > 1 ? 1 : 0; for (size_t j = n_base2-1; j < task.seq_tokens[1].size()-1-last_2nd; ++j) { score_2nd += eval_results[ir++]; } score_2nd /= (task.seq_tokens[1].size() - n_base2 - last_2nd); int result = score_1st > score_2nd ? 1 : 2; if (result == task.answer) { ++n_correct; } ++n_done; // print the accumulated accuracy mean x 100 LOG("%zu\t%.4lf\t%10.6f %10.6f %d %d\n", i+1, 100.0 * n_correct/n_done, score_1st, score_2nd, result, task.answer); } i0 = i1 - 1; } LOG("\n"); if (n_done < 100) return; const float p = 1.f*n_correct/n_done; const float sigma = 100.f*sqrt(p*(1-p)/(n_done-1)); LOG_INF("Final Winogrande score(%d tasks): %.4lf +/- %.4lf\n", n_done, 100*p, sigma); } static bool deserialize_string(std::istream & in, std::string & str) { uint32_t size; if (!in.read((char *)&size, sizeof(size)).fail()) { str.resize(size); if (!in.read((char *)&str[0], size).fail()) return true; } return false; } struct multiple_choice_answers { std::vector answers; std::vector labels; bool deserialize(std::istream& in) { uint32_t n; in.read((char *)&n, sizeof(n)); if (in.fail() || n > 100) return false; // 100 as max. number of answers should be good enough for any practical purpose answers.resize(n); labels.resize(n); for (auto& a : answers) { if (!deserialize_string(in, a)) return false; } in.read((char *)labels.data(), n*sizeof(int)); return !in.fail(); } }; struct multiple_choice_task { std::string question; // the question (or context that needs to be continued) multiple_choice_answers mc1; // possible answers (continuations) with a single correct answer multiple_choice_answers mc2; // possible answers (continuations) with multiple correct answers - not handled yet bool deserialize(std::istream& in) { if (!deserialize_string(in, question)) return false; return mc1.deserialize(in) && mc2.deserialize(in); } // For evaluation size_t i_logits; // starting index of logits in the llama_batch size_t common_prefix; // max number of initial tokens that are the same in all sentences size_t required_tokens; // needed number of tokens to evaluate all answers std::vector> seq_tokens; std::vector log_probs; }; static bool multiple_choice_prepare_one_task(llama_context * ctx, multiple_choice_task& task, bool log_error) { if (task.question.empty() || task.mc1.answers.empty()) { if (log_error) { LOG_ERR("%s: found bad task with empty question and/or answers\n", __func__); } return false; } task.seq_tokens.reserve(task.mc1.answers.size()); for (auto& answer : task.mc1.answers) { if (answer.empty()) { if (log_error) { LOG_ERR("%s: found empty answer\n", __func__); } return false; } task.seq_tokens.emplace_back(::llama_tokenize(ctx, task.question + " " + answer, true)); } auto min_len = task.seq_tokens.front().size(); for (auto& seq : task.seq_tokens) { min_len = std::min(min_len, seq.size()); } task.common_prefix = 0; for (size_t k = 0; k < min_len; ++k) { auto token = task.seq_tokens[0][k]; bool all_same = true; for (size_t i = 1; i < task.seq_tokens.size(); ++i) { if (task.seq_tokens[i][k] != token) { all_same = false; break; } } if (!all_same) { break; } ++task.common_prefix; } task.required_tokens = task.common_prefix; for (auto& seq : task.seq_tokens) { task.required_tokens += seq.size() - task.common_prefix; } return true; } // // Calculates score for multiple choice tasks with single correct answer from prompt. // Commonly used LLM evaluation metrics of this type are // * ARC // * HellaSwag // * MMLU // * TruthfulQA // // Validation datasets for these 4 tests can be found at // https://huggingface.co/datasets/ikawrakow/validation-datasets-for-llama.cpp // The data for these datasets was extracted from // git@hf.co:datasets/allenai/ai2_arc // https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl // git@hf.co:datasets/Stevross/mmlu // https://huggingface.co/datasets/truthful_qa // static void multiple_choice_score(llama_context * ctx, const gpt_params & params) { std::istringstream strstream(params.prompt); uint32_t n_task; strstream.read((char *)&n_task, sizeof(n_task)); if (strstream.fail() || n_task == 0) { LOG_ERR("%s: no tasks\n", __func__); return; } LOG_INF("%s: there are %u tasks in prompt\n", __func__, n_task); std::vector task_pos(n_task); strstream.read((char *)task_pos.data(), task_pos.size()*sizeof(uint32_t)); if (strstream.fail()) { LOG_ERR("%s: failed to read task positions from prompt\n", __func__); return; } std::vector tasks; if (params.multiple_choice_tasks == 0 || params.multiple_choice_tasks >= (size_t)n_task) { // Use all tasks tasks.resize(n_task); LOG_INF("%s: reading tasks", __func__); int n_dot = std::max((int) n_task/100, 1); int i = 0; for (auto& task : tasks) { ++i; if (!task.deserialize(strstream)) { LOG_ERR("%s: failed to read task %d of %u\n", __func__, i, n_task); return; } if (i%n_dot == 0) LOG("."); } LOG("done\n"); } else { LOG_INF("%s: selecting %zu random tasks from %u tasks available\n", __func__, params.multiple_choice_tasks, n_task); std::mt19937 rng(1); std::vector aux(n_task); for (uint32_t i = 0; i < n_task; ++i) aux[i] = i; float scale = 1.f/(1.f + (float)std::mt19937::max()); tasks.resize(params.multiple_choice_tasks); for (auto& task : tasks) { int j = (int)(scale * rng() * aux.size()); int idx = aux[j]; aux[j] = aux.back(); aux.pop_back(); strstream.seekg(task_pos[idx], std::ios::beg); if (!task.deserialize(strstream)) { LOG_ERR("%s: failed to read task %d at position %u\n", __func__, idx, task_pos[idx]); return; } } n_task = params.multiple_choice_tasks; } LOG_INF("%s: preparing task data", __func__); if (n_task > 500) { LOG("..."); std::atomic counter(0); std::atomic n_bad(0); auto prepare = [&counter, &n_bad, &tasks, ctx] () { int num_tasks = tasks.size(); int n_bad_local = 0; while (true) { int first = counter.fetch_add(K_TOKEN_CHUNK); if (first >= num_tasks) { if (n_bad_local > 0) n_bad += n_bad_local; break; } int last = std::min(first + K_TOKEN_CHUNK, num_tasks); for (int i = first; i < last; ++i) { if (!multiple_choice_prepare_one_task(ctx, tasks[i], false)) ++n_bad_local; } } }; size_t max_thread = std::thread::hardware_concurrency(); max_thread = std::min(max_thread, (tasks.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK); std::vector workers(max_thread-1); for (auto& w : workers) w = std::thread(prepare); prepare(); for (auto& w : workers) w.join(); LOG("done\n"); int nbad = n_bad; if (nbad > 0) { LOG_ERR("%s: found %d malformed tasks\n", __func__, nbad); return; } } else { int n_dot = std::max((int) n_task/100, 1); int i_task = 0; for (auto& task : tasks) { ++i_task; if (!multiple_choice_prepare_one_task(ctx, task, true)) { return; } if (i_task%n_dot == 0) { LOG("."); } } LOG("done\n"); } LOG_INF("%s : calculating TruthfulQA score over %zu tasks.\n", __func__, tasks.size()); LOG("\ntask\tacc_norm\n"); const int n_ctx = llama_n_ctx(ctx); const int n_batch = params.n_batch; const int64_t n_vocab = llama_n_vocab(llama_get_model(ctx)); const int max_tasks_per_batch = 32; const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx)); llama_batch batch = llama_batch_init(n_ctx, 0, max_seq); std::vector tok_logits(n_vocab); std::vector batch_logits(n_vocab*n_ctx); std::vector> eval_pairs; std::vector eval_results; std::vector workers(std::thread::hardware_concurrency()); std::vector batch_indeces; int n_done = 0; int n_correct = 0; int n_tot_answers = 0; for (size_t i0 = 0; i0 < tasks.size(); i0++) { int n_cur = 0; size_t i1 = i0; size_t i_logits = 0; // this tells us how many logits were needed before this point in the batch llama_batch_clear(batch); // batch as much tasks as possible into the available context // each task has 4 unique sequence ids - one for each ending // the common prefix is shared among the 4 sequences to save tokens // we extract logits only from the last common token and from all ending tokens of each sequence int s0 = 0; while (n_cur + (int) tasks[i1].required_tokens <= n_ctx) { auto& cur_task = tasks[i1]; int n_logits = 0; int num_answers = cur_task.seq_tokens.size(); if (s0 + num_answers > max_seq) { break; } if (int(batch_indeces.size()) != num_answers) { batch_indeces.resize(num_answers); } for (int s = 0; s < num_answers; ++s) batch_indeces[s] = s0 + s; for (size_t i = 0; i < cur_task.common_prefix; ++i) { //llama_batch_add(batch, cur_task.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3}, false); llama_batch_add(batch, cur_task.seq_tokens[0][i], i, batch_indeces, false); } batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix n_logits += 1; for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) { const size_t seq_tokens_size = cur_task.seq_tokens[s].size(); // TODO: don't evaluate the last token of each sequence for (size_t i = cur_task.common_prefix; i < seq_tokens_size; ++i) { const bool needs_logits = i < seq_tokens_size - 1; llama_batch_add(batch, cur_task.seq_tokens[s][i], i, { s0 + s }, needs_logits); n_logits += needs_logits; } } s0 += num_answers; cur_task.i_logits = i_logits; i_logits += n_logits; n_cur += cur_task.required_tokens; if (++i1 == tasks.size()) { break; } } if (i0 == i1) { LOG_ERR("%s : task %zu does not fit in the context window\n", __func__, i0); return; } llama_kv_cache_clear(ctx); // decode all tasks [i0, i1) if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) { LOG_ERR("%s: llama_decode() failed\n", __func__); return; } // Compute log-probs in parallel // First we collect all tasks eval_pairs.clear(); for (size_t i = i0; i < i1; ++i) { auto& cur_task = tasks[i]; size_t li = 1; // skip the last logit of the common prefix (computed separately below) for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) { for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) { eval_pairs.emplace_back(cur_task.i_logits + li++, cur_task.seq_tokens[s][j + 1]); } } } // Then we do the actual calculation compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results); size_t ir = 0; // compute the logprobs for each ending of the decoded tasks for (size_t i = i0; i < i1; ++i) { auto & cur_task = tasks[i]; //LOG("==== Evaluating <%s> with correct answer ", cur_task.question.c_str()); //for (int j = 0; j < int(cur_task.mc1.labels.size()); ++j) { // if (cur_task.mc1.labels[j] == 1) { // LOG("%d", j+1); // } //} //LOG("\n common_prefix: %zu\n", cur_task.common_prefix); // get the logits of the last token of the common prefix std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*cur_task.i_logits, n_vocab*sizeof(float)); const auto first_probs = softmax(tok_logits); cur_task.log_probs.resize(cur_task.seq_tokens.size()); for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) { size_t count = 1; float log_prob = std::log(first_probs[cur_task.seq_tokens[s][cur_task.common_prefix]]); for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) { //LOG(" %zu %g\n", ir, eval_results[ir]); ++count; log_prob += eval_results[ir++]; } cur_task.log_probs[s] = log_prob / count; //LOG(" Final: %g\n", log_prob / count); //LOG(" <%s> : %g\n", cur_task.mc1.answers[s].c_str(), log_prob/count); } // Find the ending with maximum logprob size_t logprob_max_idx = 0; float logprob_max_val = cur_task.log_probs[0]; for (size_t s = 1; s < cur_task.log_probs.size(); s++) { if (cur_task.log_probs[s] > logprob_max_val) { logprob_max_val = cur_task.log_probs[s]; logprob_max_idx = s; } } n_tot_answers += cur_task.log_probs.size(); if (cur_task.mc1.labels[logprob_max_idx] == 1) { ++n_correct; } ++n_done; // Print the accumulated accuracy mean x 100 LOG("%d\t%.8lf\n", n_done, 100.*n_correct/n_done); } i0 = i1 - 1; } llama_batch_free(batch); if (n_done < 100 && (params.multiple_choice_tasks != 0 && params.multiple_choice_tasks < (size_t)n_task)) return; float p = 1.f*n_correct/n_done; float sigma = sqrt(p*(1-p)/(n_done-1)); LOG("\n"); LOG_INF("Final result: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma); p = 1.f*n_done/n_tot_answers; sigma = sqrt(p*(1-p)/(n_done-1)); LOG_INF("Random chance: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma); LOG_INF("\n"); } static void kl_divergence(llama_context * ctx, const gpt_params & params) { if (params.logits_file.empty()) { LOG_ERR("%s: you must provide a name of a file containing the log probabilities of the base model\n", __func__); return; } std::ifstream in(params.logits_file.c_str(), std::ios::binary); if (!in) { LOG_ERR("%s: failed to open %s\n", __func__, params.logits_file.c_str()); return; } { char check[9]; check[8] = 0; in.read(check, 8); if (in.fail() || strncmp("_logits_", check, 8) != 0) { LOG_ERR("%s: %s does not look like a file containing log-probabilities\n", __func__, params.logits_file.c_str()); return; } } uint32_t n_ctx; in.read((char *)&n_ctx, sizeof(n_ctx)); if (n_ctx > llama_n_ctx(ctx)) { LOG_ERR("%s: %s has been computed with %u, while the current context is %d. Increase it with -c and retry\n", __func__, params.logits_file.c_str(), n_ctx, params.n_ctx); } int64_t n_vocab; int64_t n_chunk; in.read((char *)&n_vocab, sizeof(n_vocab)); in.read((char *)&n_chunk, sizeof(n_chunk)); if (in.fail()) { LOG_ERR("%s: failed reading n_vocab, n_chunk from %s\n", __func__, params.logits_file.c_str()); return; } if (n_vocab != llama_n_vocab(llama_get_model(ctx))) { LOG_ERR("%s: inconsistent vocabulary (%" PRId64 " vs %d)\n", __func__, n_vocab, llama_n_vocab(llama_get_model(ctx))); } std::vector tokens(n_ctx * n_chunk); if (in.read((char *)tokens.data(), tokens.size()*sizeof(tokens[0])).fail()) { LOG_ERR("%s: failed reading evaluation tokens from %s\n", __func__, params.logits_file.c_str()); return; } const int n_batch = params.n_batch; const int num_batches = (n_ctx + n_batch - 1)/n_batch; const int nv = 2*((n_vocab + 1)/2) + 4; const bool add_bos = llama_add_bos_token(llama_get_model(ctx)); GGML_ASSERT(!llama_add_eos_token(llama_get_model(ctx))); std::vector log_probs_uint16(size_t(n_ctx - 1 - n_ctx/2) * nv); std::vector kld_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk); std::vector p_diff_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk); std::vector logits; if (num_batches > 1) { logits.reserve(n_ctx * n_vocab); } std::vector workers(std::thread::hardware_concurrency() - 1); auto mean_and_uncertainty = [] (double sum, double sum2, size_t count) { if (count < 1) { return std::make_pair(0., 0.); } double f = sum/count; double df = sum2/count - f*f; df = df > 0 && count > 10 ? sqrt(df/(count-1)) : 0.; return std::make_pair(f, df); }; auto covariance = [] (double suma, double sumb, double sumab, size_t count) { if (count < 10) { return 0.0; } double var = sumab/count - (suma/count)*(sumb/count); var /= count - 1; return var; }; kl_divergence_result kld; auto kld_ptr = kld_values.data(); auto p_diff_ptr = p_diff_values.data(); for (int i = 0; i < n_chunk; ++i) { const int start = i * n_ctx; const int end = start + n_ctx; const auto t_start = std::chrono::high_resolution_clock::now(); if (in.read((char *)log_probs_uint16.data(), log_probs_uint16.size()*sizeof(uint16_t)).fail()) { LOG_ERR("%s: failed reading log-probs for chunk %d\n", __func__, i); return; } // clear the KV cache llama_kv_cache_clear(ctx); for (int j = 0; j < num_batches; ++j) { const int batch_start = start + j * n_batch; const int batch_size = std::min(end - batch_start, n_batch); // save original token and restore it after eval const auto token_org = tokens[batch_start]; // add BOS token for the first batch of each chunk if (add_bos && j == 0) { tokens[batch_start] = llama_token_bos(llama_get_model(ctx)); } // TODO: use llama_batch.logits instead of relying on logits_all == true if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) { LOG_ERR("%s : failed to eval\n", __func__); return; } // restore the original token in case it was set to BOS tokens[batch_start] = token_org; if (num_batches > 1) { const auto * batch_logits = llama_get_logits(ctx); logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); } } const auto t_end = std::chrono::high_resolution_clock::now(); if (i == 0) { const float t_total = std::chrono::duration(t_end - t_start).count(); LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total); int total_seconds = (int)(t_total * n_chunk); if (total_seconds >= 60*60) { LOG("%d hours ", total_seconds / (60*60)); total_seconds = total_seconds % (60*60); } LOG("%.2f minutes\n", total_seconds / 60.0); } LOG("\n"); LOG("chunk PPL ln(PPL(Q)/PPL(base)) KL Divergence Δp RMS Same top p\n"); const int first = n_ctx/2; const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx); process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first, workers, log_probs_uint16, kld, kld_ptr, p_diff_ptr); p_diff_ptr += n_ctx - 1 - first; kld_ptr += n_ctx - 1 - first; LOG("%4d", i+1); auto log_ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count); const double ppl_val = exp(log_ppl.first); const double ppl_unc = ppl_val * log_ppl.second; // ppl_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl.second ** 2 ) LOG(" %9.4lf ± %9.4lf", ppl_val, ppl_unc); auto log_ppl_base = mean_and_uncertainty(kld.sum_nll_base, kld.sum_nll_base2, kld.count); const double log_ppl_cov = covariance(kld.sum_nll, kld.sum_nll_base, kld.sum_nll_nll_base, kld.count); const double log_ppl_ratio_val = log_ppl.first - log_ppl_base.first; const double log_ppl_ratio_unc = sqrt(log_ppl.second*log_ppl.second + log_ppl_base.second*log_ppl_base.second - 2.0*log_ppl_cov); LOG(" %10.5lf ± %10.5lf", log_ppl_ratio_val, log_ppl_ratio_unc); auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count); LOG(" %10.5lf ± %10.5lf", kl_div.first, kl_div.second); auto p_diff_mse = mean_and_uncertainty(kld.sum_p_diff2, kld.sum_p_diff4, kld.count); const double p_diff_rms_val = sqrt(p_diff_mse.first); const double p_diff_rms_unc = 0.5/p_diff_rms_val * p_diff_mse.second; LOG(" %6.3lf ± %6.3lf %%", 100.0*p_diff_rms_val, 100.0*p_diff_rms_unc); double p_top_val = 1.*kld.n_same_top/kld.count; double p_top_unc = sqrt(p_top_val*(1 - p_top_val)/(kld.count - 1)); LOG(" %6.3lf ± %6.3lf %%", 100.0*p_top_val, 100.0*p_top_unc); LOG("\n"); logits.clear(); } LOG("\n"); if (kld.count < 100) return; // we do not wish to do statistics on so few values std::sort(kld_values.begin(), kld_values.end()); std::sort(p_diff_values.begin(), p_diff_values.end()); LOG("====== Perplexity statistics ======\n"); auto log_ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count); const double ppl_val = exp(log_ppl.first); const double ppl_unc = ppl_val * log_ppl.second; // ppl_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl.second ** 2 ) LOG("Mean PPL(Q) : %10.6lf ± %10.6lf\n", ppl_val, ppl_unc); auto log_ppl_base = mean_and_uncertainty(kld.sum_nll_base, kld.sum_nll_base2, kld.count); const double ppl_base_val = exp(log_ppl_base.first); const double ppl_base_unc = ppl_base_val * log_ppl_base.second; // ppl_base_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl_base.second ** 2 ) LOG("Mean PPL(base) : %10.6lf ± %10.6lf\n", ppl_base_val, ppl_base_unc); const double log_ppl_cov = covariance(kld.sum_nll, kld.sum_nll_base, kld.sum_nll_nll_base, kld.count); // LOG("Cov(ln(PPL(Q)), ln(PPL(base))): %10.6lf\n", log_ppl_cov); const double log_ppl_cor = log_ppl_cov / (log_ppl.second*log_ppl_base.second); LOG("Cor(ln(PPL(Q)), ln(PPL(base))): %6.2lf%%\n", 100.0*log_ppl_cor); const double log_ppl_ratio_val = log_ppl.first - log_ppl_base.first; const double log_ppl_ratio_unc = sqrt(log_ppl.second*log_ppl.second + log_ppl_base.second*log_ppl_base.second - 2.0*log_ppl_cov); LOG("Mean ln(PPL(Q)/PPL(base)) : %10.6lf ± %10.6lf\n", log_ppl_ratio_val, log_ppl_ratio_unc); const double ppl_ratio_val = exp(log_ppl_ratio_val); const double ppl_ratio_unc = ppl_ratio_val * log_ppl_ratio_unc; // ppl_ratio_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl_ratio.second ** 2 ) LOG("Mean PPL(Q)/PPL(base) : %10.6lf ± %10.6lf\n", ppl_ratio_val, ppl_ratio_unc); const double ppl_cov = ppl_val * ppl_base_val * log_ppl_cov; const double ppl_diff_val = ppl_val - ppl_base_val; const double ppl_diff_unc = sqrt(ppl_unc*ppl_unc + ppl_base_unc*ppl_base_unc - 2.0*ppl_cov); LOG("Mean PPL(Q)-PPL(base) : %10.6lf ± %10.6lf\n", ppl_diff_val, ppl_diff_unc); LOG("\n"); LOG("====== KL divergence statistics ======\n"); auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count); LOG("Mean KLD: %10.6lf ± %10.6lf\n", kl_div.first, kl_div.second); auto kld_median = kld_values.size()%2 == 0 ? 0.5f*(kld_values[kld_values.size()/2] + kld_values[kld_values.size()/2-1]) : kld_values[kld_values.size()/2]; auto percentile = [] (std::vector values, float fraction) { if (fraction <= 0) return values.front(); if (fraction >= 1) return values.back(); float p = fraction*(values.size() - 1); size_t ip = size_t(p); p -= ip; return (1 - p)*values[ip] + p*values[std::min(ip+1, values.size()-1)]; }; LOG("Maximum KLD: %10.6f\n", kld_values.back()); LOG("99.9%% KLD: %10.6f\n", percentile(kld_values, 0.999f)); LOG("99.0%% KLD: %10.6f\n", percentile(kld_values, 0.990f)); LOG("99.0%% KLD: %10.6f\n", percentile(kld_values, 0.990f)); LOG("Median KLD: %10.6f\n", kld_median); LOG("10.0%% KLD: %10.6f\n", percentile(kld_values, 0.100f)); LOG(" 5.0%% KLD: %10.6f\n", percentile(kld_values, 0.050f)); LOG(" 1.0%% KLD: %10.6f\n", percentile(kld_values, 0.010f)); LOG("Minimum KLD: %10.6f\n", kld_values.front()); LOG("\n"); LOG("====== Token probability statistics ======\n"); auto p_diff = mean_and_uncertainty(kld.sum_p_diff, kld.sum_p_diff2, kld.count); LOG("Mean Δp: %6.3lf ± %5.3lf %%\n", 100.0*p_diff.first, 100.0*p_diff.second); auto p_diff_median = p_diff_values.size()%2 == 0 ? 0.5f*(p_diff_values[p_diff_values.size()/2] + p_diff_values[p_diff_values.size()/2-1]) : p_diff_values[p_diff_values.size()/2]; LOG("Maximum Δp: %6.3lf%%\n", 100.0*p_diff_values.back()); LOG("99.9%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.999f)); LOG("99.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.990f)); LOG("95.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.950f)); LOG("90.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.900f)); LOG("75.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.750f)); LOG("Median Δp: %6.3lf%%\n", 100.0*p_diff_median); LOG("25.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.250f)); LOG("10.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.100f)); LOG(" 5.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.050f)); LOG(" 1.0%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.010f)); LOG(" 0.1%% Δp: %6.3lf%%\n", 100.0*percentile(p_diff_values, 0.001f)); LOG("Minimum Δp: %6.3lf%%\n", 100.0*p_diff_values.front()); auto p_diff_mse = mean_and_uncertainty(kld.sum_p_diff2, kld.sum_p_diff4, kld.count); // LOG("MSE Δp : %10.6lf ± %10.6lf\n", p_diff_mse.first, p_diff_mse.second); const double p_diff_rms_val = sqrt(p_diff_mse.first); const double p_diff_rms_unc = 0.5/p_diff_rms_val * p_diff_mse.second; LOG("RMS Δp : %6.3lf ± %5.3lf %%\n", 100.0*p_diff_rms_val, 100.0*p_diff_rms_unc); const double same_top_p = 1.0*kld.n_same_top/kld.count; LOG("Same top p: %6.3lf ± %5.3lf %%\n", 100.0*same_top_p, 100.0*sqrt(same_top_p*(1.0 - same_top_p)/(kld.count - 1))); } int main(int argc, char ** argv) { gpt_params params; params.n_ctx = 512; params.logits_all = true; params.escape = false; if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_PERPLEXITY)) { return 1; } gpt_init(); const int32_t n_ctx = params.n_ctx; if (n_ctx <= 0) { LOG_ERR("%s: perplexity tool requires '--ctx-size' > 0\n", __func__); return 1; } const bool ppl = !params.hellaswag && !params.winogrande && !params.multiple_choice && !params.kl_divergence; if (ppl) { const int32_t n_seq = std::max(1, params.n_batch / n_ctx); const int32_t n_kv = n_seq * n_ctx; params.n_parallel = n_seq; params.n_ctx = n_kv; params.n_batch = std::min(params.n_batch, n_kv); } else { params.n_batch = std::min(params.n_batch, params.n_ctx); if (params.kl_divergence) { params.n_parallel = 1; } else { // ensure there's at least enough seq_ids for HellaSwag params.n_parallel = std::max(4, params.n_parallel); } } if (params.ppl_stride > 0) { LOG_INF("Will perform strided perplexity calculation -> adjusting context size from %d to %d\n", params.n_ctx, params.n_ctx + params.ppl_stride/2); params.n_ctx += params.ppl_stride/2; } llama_backend_init(); llama_numa_init(params.numa); // load the model and apply lora adapter, if any llama_init_result llama_init = llama_init_from_gpt_params(params); llama_model * model = llama_init.model; llama_context * ctx = llama_init.context; if (model == NULL) { LOG_ERR("%s: unable to load model\n", __func__); return 1; } const int n_ctx_train = llama_n_ctx_train(model); if (params.n_ctx > n_ctx_train) { LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, params.n_ctx); } // print system information { LOG_INF("\n"); LOG_INF("%s\n", gpt_params_get_system_info(params).c_str()); } struct results_perplexity results; if (params.hellaswag) { hellaswag_score(ctx, params); } else if (params.winogrande) { winogrande_score(ctx, params); } else if (params.multiple_choice) { multiple_choice_score(ctx, params); } else if (params.kl_divergence) { kl_divergence(ctx, params); } else { results = perplexity(ctx, params, n_ctx); } LOG("\n"); llama_perf_context_print(ctx); write_logfile(ctx, params, model, results); llama_free(ctx); llama_free_model(model); llama_backend_free(); return 0; }