#include #include "wkv6.hpp" constexpr int WKV_BLOCK_SIZE = 64; // Matching CUDA_WKV_BLOCK_SIZE // Helper function for the main kernel static void rwkv_wkv_f32_kernel( const int B, const int T, const int C, const int H, const float* k, const float* v, const float* r, const float* tf, const float* td, const float* s, float* dst, const sycl::nd_item<3>& item_ct1, float* shared_mem) { const int tid = item_ct1.get_local_id(2); const int bid = item_ct1.get_group(2); const int head_size = WKV_BLOCK_SIZE; const int batch_i = bid / H; const int head_i = bid % H; const int state_size = C * head_size; const int n_seq_tokens = T / B; // Set up shared memory pointers float* _k = shared_mem; float* _r = _k + head_size; float* _tf = _r + head_size; float* _td = _tf + head_size; // Local state array float state[WKV_BLOCK_SIZE]; // Load initial state #pragma unroll for (int i = 0; i < head_size; i++) { state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid]; } // Sync threads before shared memory operations item_ct1.barrier(sycl::access::fence_space::local_space); // Load time-mixing parameters _tf[tid] = tf[head_i * head_size + tid]; item_ct1.barrier(sycl::access::fence_space::local_space); // Main sequence processing loop for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid; t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid; t += C) { item_ct1.barrier(sycl::access::fence_space::local_space); // Load current timestep data to shared memory _k[tid] = k[t]; _r[tid] = r[t]; _td[tid] = td[t]; item_ct1.barrier(sycl::access::fence_space::local_space); const float _v = v[t]; float y = 0; // Process in chunks of 4 for better vectorization sycl::float4 k4, r4, tf4, td4, s4, kv4; #pragma unroll for (int j = 0; j < head_size; j += 4) { // Load data in vec4 chunks k4 = sycl::float4(_k[j], _k[j+1], _k[j+2], _k[j+3]); r4 = sycl::float4(_r[j], _r[j+1], _r[j+2], _r[j+3]); tf4 = sycl::float4(_tf[j], _tf[j+1], _tf[j+2], _tf[j+3]); td4 = sycl::float4(_td[j], _td[j+1], _td[j+2], _td[j+3]); s4 = sycl::float4(state[j], state[j+1], state[j+2], state[j+3]); // Compute key-value product sycl::float4 kv4 = k4 * _v; // Accumulate weighted sum y += sycl::dot(r4, tf4 * kv4 + s4); // Update state s4 = s4 * td4 + kv4; // Store updated state state[j] = s4.x(); state[j+1] = s4.y(); state[j+2] = s4.z(); state[j+3] = s4.w(); } dst[t] = y; } // Save final state #pragma unroll for (int i = 0; i < head_size; i++) { dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i]; } } void ggml_sycl_op_rwkv_wkv6(ggml_backend_sycl_context& ctx, const ggml_tensor* src0, const ggml_tensor* src1, ggml_tensor* dst) { const float* k_d = (const float*)dst->src[0]->data; const float* v_d = (const float*)dst->src[1]->data; const float* r_d = (const float*)dst->src[2]->data; const float* tf_d = (const float*)dst->src[3]->data; const float* td_d = (const float*)dst->src[4]->data; const float* s_d = (const float*)dst->src[5]->data; float* dst_d = (float*)dst->data; const int64_t B = dst->src[5]->ne[1]; const int64_t T = dst->src[0]->ne[3]; const int64_t C = dst->ne[0]; const int64_t H = dst->src[0]->ne[2]; GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32); GGML_ASSERT(C % H == 0); GGML_ASSERT(C / H == WKV_BLOCK_SIZE); // The current sycl kernel is designed for RWKV6, HEAD_SIZE == 64 dpct::queue_ptr stream = ctx.stream(); // Calculate execution configuration const size_t shared_mem_size = WKV_BLOCK_SIZE * 4 * sizeof(float); // For k, r, tf, td sycl::range<3> block_dims(1, 1, C / H); sycl::range<3> grid_dims(1, 1, B * H); // Submit kernel stream->submit([&](sycl::handler& cgh) { sycl::local_accessor shared_mem_acc(shared_mem_size, cgh); cgh.parallel_for( sycl::nd_range<3>(grid_dims * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { rwkv_wkv_f32_kernel( B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d, item_ct1, shared_mem_acc.get_pointer() ); }); }); }