#pragma once #include "common.h" #include "log.h" #include "llama.h" #ifndef NDEBUG // crash the server in debug mode, otherwise send an http 500 error #define CPPHTTPLIB_NO_EXCEPTIONS 1 #endif // increase max payload length to allow use of larger context size #define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576 #include "httplib.h" // Change JSON_ASSERT from assert() to GGML_ASSERT: #define JSON_ASSERT GGML_ASSERT #include "json.hpp" #include #include #include #include #define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613" using json = nlohmann::ordered_json; using llama_tokens = std::vector; #define SLT_INF(slot, fmt, ...) LOG_INF("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__) #define SLT_WRN(slot, fmt, ...) LOG_WRN("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__) #define SLT_ERR(slot, fmt, ...) LOG_ERR("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__) #define SLT_DBG(slot, fmt, ...) LOG_DBG("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__) #define SRV_INF(fmt, ...) LOG_INF("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__) #define SRV_WRN(fmt, ...) LOG_WRN("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__) #define SRV_ERR(fmt, ...) LOG_ERR("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__) #define SRV_DBG(fmt, ...) LOG_DBG("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__) #define QUE_INF(fmt, ...) LOG_INF("que %12.*s: " fmt, 12, __func__, __VA_ARGS__) #define QUE_WRN(fmt, ...) LOG_WRN("que %12.*s: " fmt, 12, __func__, __VA_ARGS__) #define QUE_ERR(fmt, ...) LOG_ERR("que %12.*s: " fmt, 12, __func__, __VA_ARGS__) #define QUE_DBG(fmt, ...) LOG_DBG("que %12.*s: " fmt, 12, __func__, __VA_ARGS__) // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11 enum error_type { ERROR_TYPE_INVALID_REQUEST, ERROR_TYPE_AUTHENTICATION, ERROR_TYPE_SERVER, ERROR_TYPE_NOT_FOUND, ERROR_TYPE_PERMISSION, ERROR_TYPE_UNAVAILABLE, // custom error ERROR_TYPE_NOT_SUPPORTED, // custom error }; template static T json_value(const json & body, const std::string & key, const T & default_value) { // Fallback null to default value if (body.contains(key) && !body.at(key).is_null()) { try { return body.at(key); } catch (NLOHMANN_JSON_NAMESPACE::detail::type_error const &) { LOG_WRN("Wrong type supplied for parameter '%s'. Expected '%s', using default value\n", key.c_str(), json(default_value).type_name()); return default_value; } } else { return default_value; } } // // tokenizer and input processing utils // static bool json_is_array_of_numbers(const json & data) { if (data.is_array()) { for (const auto & e : data) { if (!e.is_number_integer()) { return false; } } return true; } return false; } // is array having BOTH numbers & strings? static bool json_is_array_of_mixed_numbers_strings(const json & data) { bool seen_string = false; bool seen_number = false; if (data.is_array()) { for (const auto & e : data) { seen_string |= e.is_string(); seen_number |= e.is_number_integer(); if (seen_number && seen_string) { return true; } } } return false; } /** * this handles 2 cases: * - only string, example: "string" * - mixed string and tokens, example: [12, 34, "string", 56, 78] */ static llama_tokens tokenize_mixed(const llama_context * ctx, const json & json_prompt, bool add_special, bool parse_special) { // If `add_bos` is true, we only add BOS, when json_prompt is a string, // or the first element of the json_prompt array is a string. llama_tokens prompt_tokens; if (json_prompt.is_array()) { bool first = true; for (const auto & p : json_prompt) { if (p.is_string()) { auto s = p.template get(); llama_tokens p; if (first) { p = common_tokenize(ctx, s, add_special, parse_special); first = false; } else { p = common_tokenize(ctx, s, false, parse_special); } prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end()); } else { if (first) { first = false; } prompt_tokens.push_back(p.template get()); } } } else { auto s = json_prompt.template get(); prompt_tokens = common_tokenize(ctx, s, add_special, parse_special); } return prompt_tokens; } /** * break the input "prompt" object into multiple prompt if needed, then tokenize them * this supports these cases: * - "prompt": "string" * - "prompt": [12, 34, 56] * - "prompt": [12, 34, "string", 56, 78] * and multiple prompts (multi-tasks): * - "prompt": ["string1", "string2"] * - "prompt": ["string1", [12, 34, 56]] * - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56]] */ static std::vector tokenize_input_prompts(llama_context * ctx, const json & json_prompt, bool add_special, bool parse_special) { std::vector result; if (json_prompt.is_string() || json_is_array_of_mixed_numbers_strings(json_prompt)) { // string or mixed result.push_back(tokenize_mixed(ctx, json_prompt, add_special, parse_special)); } else if (json_is_array_of_numbers(json_prompt)) { // array of tokens result.push_back(json_prompt.get()); } else if (json_prompt.is_array()) { // array of prompts result.reserve(json_prompt.size()); for (const auto & p : json_prompt) { if (p.is_string() || json_is_array_of_mixed_numbers_strings(p)) { result.push_back(tokenize_mixed(ctx, p, add_special, parse_special)); } else if (json_is_array_of_numbers(p)) { // array of tokens result.push_back(p.get()); } else { throw std::runtime_error("element of \"prompt\" must be a string, an list of tokens, or a list of mixed strings & tokens"); } } } else { throw std::runtime_error("\"prompt\" must be a string, an list of tokens, a list of mixed strings & tokens, or a list of prompts"); } return result; } // // template utils // // format rerank task: [BOS]query[EOS][SEP]doc[EOS] static llama_tokens format_rerank(const struct llama_model * model, const llama_tokens & query, const llama_tokens & doc) { llama_tokens result; result.reserve(doc.size() + query.size() + 4); result.push_back(llama_token_bos(model)); result.insert(result.end(), query.begin(), query.end()); result.push_back(llama_token_eos(model)); result.push_back(llama_token_sep(model)); result.insert(result.end(), doc.begin(), doc.end()); result.push_back(llama_token_eos(model)); return result; } // format infill task static llama_tokens format_infill( const llama_context * ctx, const json & input_prefix, const json & input_suffix, const json & input_extra, const int n_batch, const int n_predict, const int n_ctx, const bool spm_infill, const llama_tokens & tokens_prompt ) { // TODO: optimize this block by reducing memory allocations and movement // use FIM repo-level pattern: // ref: https://arxiv.org/pdf/2409.12186 // // [FIM_REP]myproject // [FIM_SEP]filename0 // extra chunk 0 // [FIM_SEP]filename1 // extra chunk 1 // ... // [FIM_SEP]filename // [FIM_PRE]prefix[FIM_SUF]suffix[FIM_MID]prompt // llama_tokens extra_tokens; extra_tokens.reserve(n_ctx); auto model = llama_get_model(ctx); auto tokens_prefix = tokenize_mixed(ctx, input_prefix, false, false); auto tokens_suffix = tokenize_mixed(ctx, input_suffix, false, false); if (llama_token_fim_rep(model) != LLAMA_TOKEN_NULL) { // TODO: make project name an input static const auto k_fim_repo = common_tokenize(ctx, "myproject\n", false, false); extra_tokens.push_back(llama_token_fim_rep(model)); extra_tokens.insert(extra_tokens.end(), k_fim_repo.begin(), k_fim_repo.end()); } for (const auto & chunk : input_extra) { // { "text": string, "filename": string } const std::string text = json_value(chunk, "text", std::string()); const std::string filename = json_value(chunk, "filename", std::string("tmp")); if (llama_token_fim_sep(model) != LLAMA_TOKEN_NULL) { const auto k_fim_file = common_tokenize(ctx, filename + "\n", false, false); extra_tokens.insert(extra_tokens.end(), llama_token_fim_sep(model)); extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end()); } else { // chunk separator in binary form to avoid confusing the AI static const char k_chunk_prefix_str[] = {0x0a, 0x0a, 0x2d, 0x2d, 0x2d, 0x20, 0x73, 0x6e, 0x69, 0x70, 0x70, 0x65, 0x74, 0x20, 0x2d, 0x2d, 0x2d, 0x0a, 0x0a, 0x00}; static const auto k_chunk_prefix_tokens = common_tokenize(ctx, k_chunk_prefix_str, false, false); extra_tokens.insert(extra_tokens.end(), k_chunk_prefix_tokens.begin(), k_chunk_prefix_tokens.end()); } const auto chunk_tokens = common_tokenize(ctx, text, false, false); extra_tokens.insert(extra_tokens.end(), chunk_tokens.begin(), chunk_tokens.end()); } if (llama_token_fim_sep(model) != LLAMA_TOKEN_NULL) { // TODO: current filename static const auto k_fim_file = common_tokenize(ctx, "filename\n", false, false); extra_tokens.insert(extra_tokens.end(), llama_token_fim_sep(model)); extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end()); } // for now pick FIM context to fit in a batch (ratio prefix:suffix = 3:1, TODO: configurable?) const int n_prefix_take = std::min(tokens_prefix.size(), 3*(n_batch/4)); const int n_suffix_take = std::min(tokens_suffix.size(), std::max(0, (n_batch/4) - (2 + tokens_prompt.size()))); SRV_DBG("n_prefix_take = %d, n_suffix_take = %d, total = %d\n", n_prefix_take, n_suffix_take, (n_prefix_take + n_suffix_take)); // fill the rest of the context with extra chunks const int n_extra_take = std::min(std::max(0, n_ctx - (n_batch) - 2*n_predict), extra_tokens.size()); tokens_prefix.erase(tokens_prefix.begin(), tokens_prefix.begin() + tokens_prefix.size() - n_prefix_take); tokens_suffix.resize(n_suffix_take); tokens_prefix.insert(tokens_prefix.begin(), llama_token_fim_pre(model)); tokens_prefix.insert(tokens_prefix.end(), tokens_prompt.begin(), tokens_prompt.end()); tokens_suffix.insert(tokens_suffix.begin(), llama_token_fim_suf(model)); auto embd_inp = spm_infill ? tokens_suffix : tokens_prefix; auto embd_end = spm_infill ? tokens_prefix : tokens_suffix; if (llama_add_bos_token(model)) { embd_inp.insert(embd_inp.begin(), llama_token_bos(model)); } SRV_DBG("extra: n_ctx = %d, n_extra_take = %d, n_extra = %d\n", n_ctx, n_extra_take, (int) extra_tokens.size()); // put the extra context before the FIM prefix embd_inp.insert(embd_inp.begin(), extra_tokens.end() - n_extra_take, extra_tokens.end()); embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end()); embd_inp.push_back(llama_token_fim_mid(model)); return embd_inp; } // Format given chat. If tmpl is empty, we take the template from model metadata inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector & messages) { std::vector chat; for (size_t i = 0; i < messages.size(); ++i) { const auto & curr_msg = messages[i]; std::string role = json_value(curr_msg, "role", std::string("")); std::string content; if (curr_msg.contains("content")) { if (curr_msg["content"].is_string()) { content = curr_msg["content"].get(); } else if (curr_msg["content"].is_array()) { for (const auto & part : curr_msg["content"]) { if (part.contains("text")) { content += "\n" + part["text"].get(); } } } else { throw std::runtime_error("Invalid 'content' type (ref: https://github.com/ggerganov/llama.cpp/issues/8367)"); } } else { throw std::runtime_error("Missing 'content' (ref: https://github.com/ggerganov/llama.cpp/issues/8367)"); } chat.push_back({role, content}); } const auto formatted_chat = common_chat_apply_template(model, tmpl, chat, true); LOG_DBG("formatted_chat: '%s'\n", formatted_chat.c_str()); return formatted_chat; } static std::string llama_get_chat_template(const struct llama_model * model) { std::string template_key = "tokenizer.chat_template"; // call with NULL buffer to get the total size of the string int32_t res = llama_model_meta_val_str(model, template_key.c_str(), NULL, 0); if (res < 0) { return ""; } else { std::vector model_template(res, 0); llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size()); return std::string(model_template.data(), model_template.size()); } } // // base64 utils (TODO: move to common in the future) // static const std::string base64_chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz" "0123456789+/"; static inline bool is_base64(uint8_t c) { return (isalnum(c) || (c == '+') || (c == '/')); } static inline std::vector base64_decode(const std::string & encoded_string) { int i = 0; int j = 0; int in_ = 0; int in_len = encoded_string.size(); uint8_t char_array_4[4]; uint8_t char_array_3[3]; std::vector ret; while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) { char_array_4[i++] = encoded_string[in_]; in_++; if (i == 4) { for (i = 0; i < 4; i++) { char_array_4[i] = base64_chars.find(char_array_4[i]); } char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4); char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2); char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3]; for (i = 0; (i < 3); i++) { ret.push_back(char_array_3[i]); } i = 0; } } if (i) { for (j = i; j < 4; j++) { char_array_4[j] = 0; } for (j = 0; j < 4; j++) { char_array_4[j] = base64_chars.find(char_array_4[j]); } char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4); char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2); char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3]; for (j = 0; j < i - 1; j++) { ret.push_back(char_array_3[j]); } } return ret; } // // random string / id // static std::string random_string() { static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"); std::random_device rd; std::mt19937 generator(rd()); std::string result(32, ' '); for (int i = 0; i < 32; ++i) { result[i] = str[generator() % str.size()]; } return result; } static std::string gen_chatcmplid() { return "chatcmpl-" + random_string(); } // // other common utils // static size_t longest_common_prefix(const llama_tokens & a, const llama_tokens & b) { size_t i; for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {} return i; } static size_t longest_common_subsequence(const llama_tokens & a, const llama_tokens & b) { // check for empty sequences if (a.empty() || b.empty()) { return 0; } // get the lengths of the input sequences size_t a_len = a.size(); size_t b_len = b.size(); // initialize the maximum length of the longest common subsequence (LCS) size_t max_length = 0; // use two rows instead of a 2D matrix to optimize space std::vector prev_row(b_len + 1, 0); std::vector curr_row(b_len + 1, 0); // iterate through the elements of a for (size_t i = 1; i <= a_len; i++) { // iterate through the elements of b for (size_t j = 1; j <= b_len; j++) { // if elements at the current positions match if (a[i - 1] == b[j - 1]) { // if it's the first element of either sequences, set LCS length to 1 if (i == 1 || j == 1) { curr_row[j] = 1; } else { // increment LCS length by 1 compared to the previous element curr_row[j] = prev_row[j - 1] + 1; } // update max_length if necessary if (curr_row[j] > max_length) { max_length = curr_row[j]; } } else { // reset LCS length if elements don't match curr_row[j] = 0; } } // update the previous row for the next iteration prev_row = curr_row; } // return the maximum length of the LCS return max_length; } static bool ends_with(const std::string & str, const std::string & suffix) { return str.size() >= suffix.size() && 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix); } static size_t find_partial_stop_string(const std::string &stop, const std::string &text) { if (!text.empty() && !stop.empty()) { const char text_last_char = text.back(); for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) { if (stop[char_index] == text_last_char) { const std::string current_partial = stop.substr(0, char_index + 1); if (ends_with(text, current_partial)) { return text.size() - char_index - 1; } } } } return std::string::npos; } // TODO: reuse llama_detokenize template static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) { std::string ret; for (; begin != end; ++begin) { ret += common_token_to_piece(ctx, *begin); } return ret; } // format incomplete utf-8 multibyte character for output static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) { std::string out = token == -1 ? "" : common_token_to_piece(ctx, token); // if the size is 1 and first bit is 1, meaning it's a partial character // (size > 1 meaning it's already a known token) if (out.size() == 1 && (out[0] & 0x80) == 0x80) { std::stringstream ss; ss << std::hex << (out[0] & 0xff); std::string res(ss.str()); out = "byte: \\x" + res; } return out; } struct completion_token_output { llama_token tok; std::string text_to_send; struct token_prob { llama_token tok; float prob; }; std::vector probs; }; // convert a vector of completion_token_output to json static json probs_vector_to_json(const llama_context * ctx, const std::vector & probs) { json out = json::array(); for (const auto & prob : probs) { json probs_for_token = json::array(); for (const auto & p : prob.probs) { const std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok); probs_for_token.push_back(json { {"tok_str", tok_str}, {"prob", p.prob}, }); } const std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok); out.push_back(json { {"content", tok_str}, {"probs", probs_for_token}, }); } return out; } static bool server_sent_event(httplib::DataSink & sink, const char * event, const json & data) { const std::string str = std::string(event) + ": " + data.dump(-1, ' ', false, json::error_handler_t::replace) + "\n\n"; // note: these newlines are important (not sure why though, if you know, add a comment to explain) LOG_DBG("data stream, to_send: %s", str.c_str()); return sink.write(str.c_str(), str.size()); } // // OAI utils // static json oaicompat_completion_params_parse( const struct llama_model * model, const json & body, /* openai api json semantics */ const std::string & chat_template) { json llama_params; llama_params["__oaicompat"] = true; // Apply chat template to the list of messages llama_params["prompt"] = format_chat(model, chat_template, body.at("messages")); // Handle "stop" field if (body.contains("stop") && body.at("stop").is_string()) { llama_params["stop"] = json::array({body.at("stop").get()}); } else { llama_params["stop"] = json_value(body, "stop", json::array()); } // Handle "response_format" field if (body.contains("response_format")) { json response_format = json_value(body, "response_format", json::object()); std::string response_type = json_value(response_format, "type", std::string()); if (response_type == "json_object") { llama_params["json_schema"] = json_value(response_format, "schema", json::object()); } else if (response_type == "json_schema") { json json_schema = json_value(response_format, "json_schema", json::object()); llama_params["json_schema"] = json_value(json_schema, "schema", json::object()); } else if (!response_type.empty() && response_type != "text") { throw std::runtime_error("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type); } } // Handle "n" field int n_choices = json_value(body, "n", 1); if (n_choices != 1) { throw std::runtime_error("Only one completion choice is allowed"); } // Handle "logprobs" field // TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future if (json_value(body, "logprobs", false)) { llama_params["n_probs"] = json_value(body, "top_logprobs", 20); } else if (body.contains("top_logprobs") && !body.at("top_logprobs").is_null()) { throw std::runtime_error("top_logprobs requires logprobs to be set to true"); } // Params supported by OAI but unsupported by llama.cpp static const std::vector unsupported_params { "tools", "tool_choice" }; for (const auto & param : unsupported_params) { if (body.contains(param)) { throw std::runtime_error("Unsupported param: " + param); } } // Copy remaining properties to llama_params // This allows user to use llama.cpp-specific params like "mirostat", ... via OAI endpoint. // See "launch_slot_with_task()" for a complete list of params supported by llama.cpp for (const auto & item : body.items()) { // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens" if (!llama_params.contains(item.key()) || item.key() == "n_predict") { llama_params[item.key()] = item.value(); } } return llama_params; } static json format_final_response_oaicompat(const json & request, const json & result, const std::string & completion_id, bool streaming = false, bool verbose = false) { bool stopped_word = result.count("stopped_word") != 0; bool stopped_eos = json_value(result, "stopped_eos", false); int num_tokens_predicted = json_value(result, "tokens_predicted", 0); int num_prompt_tokens = json_value(result, "tokens_evaluated", 0); std::string content = json_value(result, "content", std::string("")); std::string finish_reason = "length"; if (stopped_word || stopped_eos) { finish_reason = "stop"; } json choices = streaming ? json::array({json{{"finish_reason", finish_reason}, {"index", 0}, {"delta", json::object()}}}) : json::array({json{{"finish_reason", finish_reason}, {"index", 0}, {"message", json{{"content", content}, {"role", "assistant"}}}}}); std::time_t t = std::time(0); json res = json { {"choices", choices}, {"created", t}, {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))}, {"object", streaming ? "chat.completion.chunk" : "chat.completion"}, {"usage", json { {"completion_tokens", num_tokens_predicted}, {"prompt_tokens", num_prompt_tokens}, {"total_tokens", num_tokens_predicted + num_prompt_tokens} }}, {"id", completion_id} }; // extra fields for debugging purposes if (verbose) { res["__verbose"] = result; } if (result.contains("completion_probabilities")) { res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array()); } return res; } // return value is vector as there is one case where we might need to generate two responses static std::vector format_partial_response_oaicompat(const json & result, const std::string & completion_id) { if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) { return std::vector({result}); } bool first = json_value(result, "oaicompat_token_ctr", 0) == 0; std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL)); bool stopped_word = json_value(result, "stopped_word", false); bool stopped_eos = json_value(result, "stopped_eos", false); bool stopped_limit = json_value(result, "stopped_limit", false); std::string content = json_value(result, "content", std::string("")); std::string finish_reason; if (stopped_word || stopped_eos) { finish_reason = "stop"; } if (stopped_limit) { finish_reason = "length"; } std::time_t t = std::time(0); json choices; if (!finish_reason.empty()) { choices = json::array({json{{"finish_reason", finish_reason}, {"index", 0}, {"delta", json::object()}}}); } else { if (first) { if (content.empty()) { choices = json::array({json{{"finish_reason", nullptr}, {"index", 0}, {"delta", json{{"role", "assistant"}}}}}); } else { // We have to send this as two updates to conform to openai behavior json initial_ret = json{{"choices", json::array({json{ {"finish_reason", nullptr}, {"index", 0}, {"delta", json{ {"role", "assistant"} }}}})}, {"created", t}, {"id", completion_id}, {"model", modelname}, {"object", "chat.completion.chunk"}}; json second_ret = json{ {"choices", json::array({json{{"finish_reason", nullptr}, {"index", 0}, {"delta", json{ {"content", content}}} }})}, {"created", t}, {"id", completion_id}, {"model", modelname}, {"object", "chat.completion.chunk"}}; return std::vector({initial_ret, second_ret}); } } else { // Some idiosyncrasy in task processing logic makes several trailing calls // with empty content, we ignore these at the calee site. if (content.empty()) { return std::vector({json::object()}); } choices = json::array({json{ {"finish_reason", nullptr}, {"index", 0}, {"delta", json{ {"content", content}, }}, }}); } } json ret = json { {"choices", choices}, {"created", t}, {"id", completion_id}, {"model", modelname}, {"object", "chat.completion.chunk"} }; if (!finish_reason.empty()) { int num_tokens_predicted = json_value(result, "tokens_predicted", 0); int num_prompt_tokens = json_value(result, "tokens_evaluated", 0); ret.push_back({"usage", json { {"completion_tokens", num_tokens_predicted}, {"prompt_tokens", num_prompt_tokens}, {"total_tokens", num_tokens_predicted + num_prompt_tokens} }}); } return std::vector({ret}); } static json format_embeddings_response_oaicompat(const json & request, const json & embeddings) { json data = json::array(); int i = 0; for (const auto & elem : embeddings) { data.push_back(json{ {"embedding", json_value(elem, "embedding", json::array())}, {"index", i++}, {"object", "embedding"} }); } json res = json { {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))}, {"object", "list"}, {"usage", json { // TODO: fill {"prompt_tokens", 0}, {"total_tokens", 0} }}, {"data", data} }; return res; } static json format_response_rerank(const json & request, const json & ranks) { json data = json::array(); int i = 0; for (const auto & rank : ranks) { data.push_back(json{ {"index", i++}, {"relevance_score", json_value(rank, "score", 0.0)}, }); } json res = json { {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))}, {"object", "list"}, {"usage", json { // TODO: fill {"prompt_tokens", 0}, {"total_tokens", 0} }}, {"results", data} }; return res; } static bool is_valid_utf8(const std::string & str) { const unsigned char* bytes = reinterpret_cast(str.data()); const unsigned char* end = bytes + str.length(); while (bytes < end) { if (*bytes <= 0x7F) { // 1-byte sequence (0xxxxxxx) bytes++; } else if ((*bytes & 0xE0) == 0xC0) { // 2-byte sequence (110xxxxx 10xxxxxx) if (end - bytes < 2 || (bytes[1] & 0xC0) != 0x80) return false; bytes += 2; } else if ((*bytes & 0xF0) == 0xE0) { // 3-byte sequence (1110xxxx 10xxxxxx 10xxxxxx) if (end - bytes < 3 || (bytes[1] & 0xC0) != 0x80 || (bytes[2] & 0xC0) != 0x80) return false; bytes += 3; } else if ((*bytes & 0xF8) == 0xF0) { // 4-byte sequence (11110xxx 10xxxxxx 10xxxxxx 10xxxxxx) if (end - bytes < 4 || (bytes[1] & 0xC0) != 0x80 || (bytes[2] & 0xC0) != 0x80 || (bytes[3] & 0xC0) != 0x80) return false; bytes += 4; } else { // Invalid UTF-8 lead byte return false; } } return true; } static json format_tokenizer_response(const json & tokens) { return json { {"tokens", tokens} }; } static json format_detokenized_response(const std::string & content) { return json { {"content", content} }; } static json format_error_response(const std::string & message, const enum error_type type) { std::string type_str; int code = 500; switch (type) { case ERROR_TYPE_INVALID_REQUEST: type_str = "invalid_request_error"; code = 400; break; case ERROR_TYPE_AUTHENTICATION: type_str = "authentication_error"; code = 401; break; case ERROR_TYPE_NOT_FOUND: type_str = "not_found_error"; code = 404; break; case ERROR_TYPE_SERVER: type_str = "server_error"; code = 500; break; case ERROR_TYPE_PERMISSION: type_str = "permission_error"; code = 403; break; case ERROR_TYPE_NOT_SUPPORTED: type_str = "not_supported_error"; code = 501; break; case ERROR_TYPE_UNAVAILABLE: type_str = "unavailable_error"; code = 503; break; } return json { {"code", code}, {"message", message}, {"type", type_str}, }; }