#include "common.h" #include "llama.h" #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif int main(int argc, char ** argv) { gpt_params params; if (!gpt_params_parse(argc, argv, params)) { return 1; } params.embedding = true; print_build_info(); if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); } fprintf(stderr, "%s: seed = %u\n", __func__, params.seed); std::mt19937 rng(params.seed); if (params.random_prompt) { params.prompt = gpt_random_prompt(rng); } llama_backend_init(params.numa); llama_model * model; llama_context * ctx; // load the model std::tie(model, ctx) = llama_init_from_gpt_params(params); if (model == NULL) { fprintf(stderr, "%s: error: unable to load model\n", __func__); return 1; } const int n_ctx_train = llama_n_ctx_train(model); const int n_ctx = llama_n_ctx(ctx); if (n_ctx > n_ctx_train) { fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx); } // print system information { fprintf(stderr, "\n"); fprintf(stderr, "%s\n", get_system_info(params).c_str()); } int n_past = 0; // tokenize the prompt auto embd_inp = ::llama_tokenize(ctx, params.prompt, true); if (params.verbose_prompt) { fprintf(stderr, "\n"); fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str()); fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); for (int i = 0; i < (int) embd_inp.size(); i++) { fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str()); } fprintf(stderr, "\n"); } if (embd_inp.size() > (size_t)n_ctx) { fprintf(stderr, "%s: error: prompt is longer than the context window (%zu tokens, n_ctx = %d)\n", __func__, embd_inp.size(), n_ctx); return 1; } while (!embd_inp.empty()) { int n_tokens = std::min(params.n_batch, (int) embd_inp.size()); if (llama_decode(ctx, llama_batch_get_one(embd_inp.data(), n_tokens, n_past, 0))) { fprintf(stderr, "%s : failed to eval\n", __func__); return 1; } n_past += n_tokens; embd_inp.erase(embd_inp.begin(), embd_inp.begin() + n_tokens); } const int n_embd = llama_n_embd(model); auto * embeddings = llama_get_embeddings(ctx); // l2-normalize embeddings float norm = 0; for (int i = 0; i < n_embd; i++) { norm += embeddings[i] * embeddings[i]; } norm = sqrt(norm); for (int i = 0; i < n_embd; i++) { embeddings[i] /= norm; } for (int i = 0; i < n_embd; i++) { printf("%f ", embeddings[i]); } printf("\n"); llama_print_timings(ctx); llama_free(ctx); llama_free_model(model); llama_backend_free(); return 0; }