#pragma once #include "ggml.h" #ifdef __cplusplus extern "C" { #endif struct ggml_backend; // backend buffers typedef void * ggml_buffer_context_t; struct ggml_backend_buffer; struct ggml_backend_buffer_interface { // allocator functions void (*free_buffer) (struct ggml_backend_buffer * alloc); void (*alloc_tensor) (struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor); void (*free_tensor) (struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor); void (*reset) (struct ggml_backend_buffer * alloc); // functions overriden by the backend size_t (*get_alloc_size)(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor); // pre-allocation callback void (*init_tensor) (struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor); // post-allocation callback void (*free_data) (struct ggml_backend_buffer * alloc); // free backend-specific data // TODO: better name }; struct ggml_backend_buffer { struct ggml_backend_buffer_interface interface; ggml_buffer_context_t context; void * backend_data; }; // backend buffer helper functions GGML_API void ggml_backend_buffer_free(struct ggml_backend_buffer * alloc); static inline void ggml_backend_buffer_tensor_alloc(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) { alloc->interface.alloc_tensor(alloc, tensor); } static inline void ggml_backend_buffer_free_tensor(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) { alloc->interface.free_tensor(alloc, tensor); } static inline void ggml_backend_buffer_reset(struct ggml_backend_buffer * alloc) { alloc->interface.reset(alloc); } // default buffer allocators // simple buffer allocator: cannot free tensors, good for weights and small contexts // default buffer allocator: can free tensors, good for compute contexts GGML_API struct ggml_backend_buffer * ggml_allocator_simple_init(void * data, size_t size, size_t alignment); GGML_API struct ggml_backend_buffer * ggml_allocator_default_init(void * data, size_t size, size_t alignment, int max_free_blocks); // buffer // buffers have space for the tensor structs in host memory, and tensor data in backend-specific memory struct ggml_buffer { // host memory size_t mem_size; void * mem_buffer; // tensor data struct ggml_backend * backend; struct ggml_backend_buffer * backend_buffer; }; GGML_API struct ggml_buffer * ggml_buffer_alloc(struct ggml_backend * backend, size_t size, size_t max_tensors); GGML_API void ggml_buffer_free(struct ggml_buffer * buffer); // backend typedef void * ggml_backend_context_t; typedef void * ggml_graph_plan_t; struct ggml_backend_interface { const char * (*get_name)(struct ggml_backend * backend); void (*free)(struct ggml_backend * backend); // buffer allocation struct ggml_backend_buffer * (*alloc_buffer)(struct ggml_backend * backend, size_t size); // tensor data access // these functions can be asynchronous. helper functions are provided for synchronous access that automatically call synchronize void (*set_tensor_async)(struct ggml_backend * backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); void (*get_tensor_async)(struct ggml_backend * backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); void (*synchronize) (struct ggml_backend * backend); // (optional) copy tensor between different backends, allow for single-copy tranfers void (*cpy_tensor_from)(struct ggml_backend * backend, struct ggml_tensor * src, struct ggml_tensor * dst); void (*cpy_tensor_to) (struct ggml_backend * backend, struct ggml_tensor * src, struct ggml_tensor * dst); // compute graph with a plan ggml_graph_plan_t (*graph_plan_create) (struct ggml_backend * backend, struct ggml_cgraph * cgraph); void (*graph_plan_free) (struct ggml_backend * backend, ggml_graph_plan_t plan); void (*graph_plan_compute)(struct ggml_backend * backend, ggml_graph_plan_t plan); // compute graph without a plan void (*graph_compute) (struct ggml_backend * backend, struct ggml_cgraph * cgraph); // check if a backend supports a given operation // this could be used to fallback automatically to the CPU backend if a backend doesn't support an operation // bool (*supports_op)(struct ggml_backend * backend, struct ggml_tensor * op); }; struct ggml_backend { struct ggml_backend_interface interface; ggml_backend_context_t context; }; // backend helper functions static inline const char * ggml_backend_name(struct ggml_backend * backend) { return backend->interface.get_name(backend); } static inline void ggml_backend_free(struct ggml_backend * backend) { backend->interface.free(backend); } static inline void ggml_backend_tensor_set_async(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { tensor->backend->interface.set_tensor_async(tensor->backend, tensor, data, offset, size); } static inline void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { tensor->backend->interface.get_tensor_async(tensor->backend, tensor, data, offset, size); } static inline void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { tensor->backend->interface.set_tensor_async(tensor->backend, tensor, data, offset, size); tensor->backend->interface.synchronize(tensor->backend); } static inline void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { tensor->backend->interface.get_tensor_async(tensor->backend, tensor, data, offset, size); tensor->backend->interface.synchronize(tensor->backend); } static inline void ggml_backend_synchronize(struct ggml_backend * backend) { backend->interface.synchronize(backend); } static inline ggml_graph_plan_t ggml_backend_graph_plan_create(struct ggml_backend * backend, struct ggml_cgraph * cgraph) { return backend->interface.graph_plan_create(backend, cgraph); } static inline void ggml_backend_graph_plan_free(struct ggml_backend * backend, ggml_graph_plan_t plan) { backend->interface.graph_plan_free(backend, plan); } static inline void ggml_backend_graph_plan_compute(struct ggml_backend * backend, ggml_graph_plan_t plan) { backend->interface.graph_plan_compute(backend, plan); } static inline void ggml_backend_graph_compute(struct ggml_backend * backend, struct ggml_cgraph * cgraph) { backend->interface.graph_compute(backend, cgraph); } // tensor copy between different backends GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst); // CPU backend GGML_API struct ggml_backend * ggml_backend_cpu_init(void); GGML_API void ggml_backend_cpu_set_n_threads(struct ggml_backend * backend_cpu, int n_threads); /////////////////////////// // graph splitting #define GGML_MAX_SPLITS 200 #define GGML_MAX_SPLIT_INPUTS 4 struct ggml_graph_split { char name[GGML_MAX_NAME]; struct ggml_tensor * src_inputs[GGML_MAX_SPLIT_INPUTS + 1]; struct ggml_tensor * dst_inputs[GGML_MAX_SPLIT_INPUTS + 1]; struct ggml_cgraph * graph; }; // TODO: this shouldn't be fixed size, allocate from ggml_context struct ggml_graph_splits { int n_splits; struct ggml_graph_split splits[GGML_MAX_SPLITS]; }; // TODO: allocate in ggml_context struct ggml_graph_splits ggml_graph_split_init(void); // this won't be needed once we can allocate graphs from a ggml_context GGML_API void ggml_graph_splits_free(struct ggml_graph_splits * splits); // add a split to the graph - single and multiple inputs versions GGML_API void ggml_graph_splits_add(struct ggml_graph_splits * splits, struct ggml_tensor ** input, struct ggml_context * ctx, const char * fmt, ...); GGML_API void ggml_graph_splits_add_n(struct ggml_graph_splits * splits, struct ggml_tensor *** inputs, struct ggml_context * ctx, const char * fmt, ...); // build graphs for all splits GGML_API void ggml_graph_splits_build_forward(struct ggml_graph_splits * splits, struct ggml_tensor * output); // compute GGML_API void ggml_graph_splits_compute(struct ggml_graph_splits * splits); #ifdef __cplusplus } #endif