#pragma once #include #include #include #include #include #include #include #include #include using json = nlohmann::ordered_json; /* Backport make_unique from C++14. */ template typename std::unique_ptr nonstd_make_unique(Args &&...args) { return std::unique_ptr(new T(std::forward(args)...)); } namespace minja { class Context; struct Options { bool trim_blocks; // removes the first newline after a block bool lstrip_blocks; // removes leading whitespace on the line of the block bool keep_trailing_newline; // don't remove last newline }; /* Values that behave roughly like in Python. */ class Value : public std::enable_shared_from_this { public: struct Arguments { std::vector args; std::vector> kwargs; bool has_named(const std::string & name) { for (const auto & p : kwargs) { if (p.first == name) return true; } return false; } Value get_named(const std::string & name) { for (const auto & p : kwargs) { if (p.first == name) return p.second; } return Value(); } bool empty() { return args.empty() && kwargs.empty(); } void expectArgs(const std::string & method_name, const std::pair & pos_count, const std::pair & kw_count) { if (args.size() < pos_count.first || args.size() > pos_count.second || kwargs.size() < kw_count.first || kwargs.size() > kw_count.second) { std::ostringstream out; out << method_name << " must have between " << pos_count.first << " and " << pos_count.second << " positional arguments and between " << kw_count.first << " and " << kw_count.second << " keyword arguments"; throw std::runtime_error(out.str()); } } }; using CallableType = std::function &, Arguments &)>; using FilterType = std::function &, Arguments &)>; private: using ObjectType = nlohmann::ordered_map; // Only contains primitive keys using ArrayType = std::vector; std::shared_ptr array_; std::shared_ptr object_; std::shared_ptr callable_; json primitive_; Value(const std::shared_ptr & array) : array_(array) {} Value(const std::shared_ptr & object) : object_(object) {} Value(const std::shared_ptr & callable) : object_(std::make_shared()), callable_(callable) {} /* Python-style string repr */ static void dump_string(const json & primitive, std::ostringstream & out, char string_quote = '\'') { if (!primitive.is_string()) throw std::runtime_error("Value is not a string: " + primitive.dump()); auto s = primitive.dump(); if (string_quote == '"' || s.find('\'') != std::string::npos) { out << s; return; } // Reuse json dump, just changing string quotes out << string_quote; for (size_t i = 1, n = s.size() - 1; i < n; ++i) { if (s[i] == '\\' && s[i + 1] == '"') { out << '"'; i++; } else if (s[i] == string_quote) { out << '\\' << string_quote; } else { out << s[i]; } } out << string_quote; } void dump(std::ostringstream & out, int indent = -1, int level = 0, char string_quote = '\'') const { auto print_indent = [&](int level) { if (indent > 0) { out << "\n"; for (int i = 0, n = level * indent; i < n; ++i) out << ' '; } }; auto print_sub_sep = [&]() { out << ','; if (indent < 0) out << ' '; else print_indent(level + 1); }; if (is_null()) out << "null"; else if (array_) { out << "["; print_indent(level + 1); for (size_t i = 0; i < array_->size(); ++i) { if (i) print_sub_sep(); (*array_)[i].dump(out, indent, level + 1, string_quote); } print_indent(level); out << "]"; } else if (object_) { out << "{"; print_indent(level + 1); for (auto begin = object_->begin(), it = begin; it != object_->end(); ++it) { if (it != begin) print_sub_sep(); if (it->first.is_string()) { dump_string(it->first, out, string_quote); } else { out << string_quote << it->first.dump() << string_quote; } out << ": "; it->second.dump(out, indent, level + 1, string_quote); } print_indent(level); out << "}"; } else if (callable_) { throw std::runtime_error("Cannot dump callable to JSON"); } else if (is_boolean()) { out << (this->to_bool() ? "True" : "False"); } else if (is_string()) { dump_string(primitive_, out, string_quote); } else { out << primitive_.dump(); } } public: Value() {} Value(const bool& v) : primitive_(v) {} Value(const int64_t & v) : primitive_(v) {} Value(const double& v) : primitive_(v) {} Value(const nullptr_t &) {} Value(const std::string & v) : primitive_(v) {} Value(const char * v) : primitive_(std::string(v)) {} Value(const json & v) { if (v.is_object()) { auto object = std::make_shared(); for (auto it = v.begin(); it != v.end(); ++it) { (*object)[it.key()] = it.value(); } object_ = std::move(object); } else if (v.is_array()) { auto array = std::make_shared(); for (const auto& item : v) { array->push_back(Value(item)); } array_ = array; } else { primitive_ = v; } } std::vector keys() { if (!object_) throw std::runtime_error("Value is not an object: " + dump()); std::vector res; for (const auto& item : *object_) { res.push_back(item.first); } return res; } size_t size() const { if (is_object()) return object_->size(); if (is_array()) return array_->size(); if (is_string()) return primitive_.get().length(); throw std::runtime_error("Value is not an array or object: " + dump()); } static Value array(const std::vector values = {}) { auto array = std::make_shared(); for (const auto& item : values) { array->push_back(item); } return Value(array); } static Value object(const std::shared_ptr object = std::make_shared()) { return Value(object); } static Value callable(const CallableType & callable) { return Value(std::make_shared(callable)); } void insert(size_t index, const Value& v) { if (!array_) throw std::runtime_error("Value is not an array: " + dump()); array_->insert(array_->begin() + index, v); } void push_back(const Value& v) { if (!array_) throw std::runtime_error("Value is not an array: " + dump()); array_->push_back(v); } Value get(const Value& key) { if (array_) { auto index = key.get(); return array_->at(index < 0 ? array_->size() + index : index); } else if (object_) { if (!key.is_hashable()) throw std::runtime_error("Unashable type: " + dump()); auto it = object_->find(key.primitive_); if (it == object_->end()) return Value(); return it->second; } throw std::runtime_error("Value is not an array or object: " + dump()); } void set(const Value& key, const Value& value) { if (!object_) throw std::runtime_error("Value is not an object: " + dump()); if (!key.is_hashable()) throw std::runtime_error("Unashable type: " + dump()); (*object_)[key.primitive_] = value; } Value call(const std::shared_ptr & context, Value::Arguments & args) const { if (!callable_) throw std::runtime_error("Value is not callable: " + dump()); return (*callable_)(context, args); } bool is_object() const { return !!object_; } bool is_array() const { return !!array_; } bool is_callable() const { return !!callable_; } bool is_null() const { return !object_ && !array_ && primitive_.is_null() && !callable_; } bool is_boolean() const { return primitive_.is_boolean(); } bool is_number_integer() const { return primitive_.is_number_integer(); } bool is_number_float() const { return primitive_.is_number_float(); } bool is_number() const { return primitive_.is_number(); } bool is_string() const { return primitive_.is_string(); } bool is_primitive() const { return !array_ && !object_ && !callable_; } bool is_hashable() const { return is_primitive(); } bool empty() const { if (is_null()) throw std::runtime_error("Undefined value or reference"); if (is_string()) return primitive_.empty(); if (is_array()) return array_->empty(); if (is_object()) return object_->empty(); return false; } bool to_bool() const { if (is_null()) return false; if (is_boolean()) return get(); if (is_number()) return get() != 0; if (is_string()) return !get().empty(); if (is_array()) return !empty(); return true; } bool operator<(const Value & other) const { if (is_null()) throw std::runtime_error("Undefined value or reference"); if (is_number() && other.is_number()) return get() < other.get(); if (is_string() && other.is_string()) return get() < other.get(); throw std::runtime_error("Cannot compare values: " + dump() + " < " + other.dump()); } bool operator>=(const Value & other) const { return !(*this < other); } bool operator>(const Value & other) const { if (is_null()) throw std::runtime_error("Undefined value or reference"); if (is_number() && other.is_number()) return get() > other.get(); if (is_string() && other.is_string()) return get() > other.get(); throw std::runtime_error("Cannot compare values: " + dump() + " > " + other.dump()); } bool operator<=(const Value & other) const { return !(*this > other); } bool operator==(const Value & other) const { if (callable_ || other.callable_) { if (callable_.get() != other.callable_.get()) return false; } if (array_) { if (!other.array_) return false; if (array_->size() != other.array_->size()) return false; for (size_t i = 0; i < array_->size(); ++i) { if (!(*array_)[i].to_bool() || !(*other.array_)[i].to_bool() || (*array_)[i] != (*other.array_)[i]) return false; } return true; } else if (object_) { if (!other.object_) return false; if (object_->size() != other.object_->size()) return false; for (const auto& item : *object_) { if (!item.second.to_bool() || !other.object_->count(item.first) || item.second != other.object_->at(item.first)) return false; } return true; } else { return primitive_ == other.primitive_; } } bool operator!=(const Value & other) const { return !(*this == other); } bool contains(const char * key) const { return contains(std::string(key)); } bool contains(const std::string & key) const { if (array_) { return false; } else if (object_) { return object_->find(key) != object_->end(); } else { throw std::runtime_error("contains can only be called on arrays and objects: " + dump()); } } bool contains(const Value & value) const { if (is_null()) throw std::runtime_error("Undefined value or reference"); if (array_) { for (const auto& item : *array_) { if (item.to_bool() && item == value) return true; } return false; } else if (object_) { if (!value.is_hashable()) throw std::runtime_error("Unashable type: " + value.dump()); return object_->find(value.primitive_) != object_->end(); } else { throw std::runtime_error("contains can only be called on arrays and objects: " + dump()); } } void erase(size_t index) { if (array_) throw std::runtime_error("Value is not an array: " + dump()); array_->erase(array_->begin() + index); } void erase(const std::string & key) { if (object_) throw std::runtime_error("Value is not an object: " + dump()); object_->erase(key); } const Value& at(const Value & index) const { return const_cast(this)->at(index); } Value& at(const Value & index) { if (!index.is_hashable()) throw std::runtime_error("Unashable type: " + dump()); if (is_array()) return array_->at(index.get()); if (is_object()) return object_->at(index.primitive_); throw std::runtime_error("Value is not an array or object: " + dump()); } const Value& at(size_t index) const { return const_cast(this)->at(index); } Value& at(size_t index) { if (is_null()) throw std::runtime_error("Undefined value or reference"); if (is_array()) return array_->at(index); if (is_object()) return object_->at(index); throw std::runtime_error("Value is not an array or object: " + dump()); } template T get(const std::string & key, T default_value) const { if (!contains(key)) return default_value; return at(key).get(); } template T get() const { if (is_primitive()) return primitive_.get(); throw std::runtime_error("get not defined for this value type: " + dump()); } std::string dump(int indent=-1, bool to_json=false) const { std::ostringstream out; dump(out, indent, 0, to_json ? '"' : '\''); return out.str(); } Value operator-() const { if (is_number_integer()) return -get(); else return -get(); } std::string to_str() const { if (is_string()) return get(); if (is_number_integer()) return std::to_string(get()); if (is_number_float()) return std::to_string(get()); if (is_boolean()) return get() ? "True" : "False"; if (is_null()) return "None"; return dump(); } Value operator+(const Value& rhs) const { if (is_string() || rhs.is_string()) return to_str() + rhs.to_str(); else if (is_number_integer() && rhs.is_number_integer()) return get() + rhs.get(); else return get() + rhs.get(); } Value operator-(const Value& rhs) const { if (is_number_integer() && rhs.is_number_integer()) return get() - rhs.get(); else return get() - rhs.get(); } Value operator*(const Value& rhs) const { if (is_string() && rhs.is_number_integer()) { std::ostringstream out; for (int i = 0, n = rhs.get(); i < n; ++i) { out << to_str(); } return out.str(); } else if (is_number_integer() && rhs.is_number_integer()) return get() * rhs.get(); else return get() * rhs.get(); } Value operator/(const Value& rhs) const { if (is_number_integer() && rhs.is_number_integer()) return get() / rhs.get(); else return get() / rhs.get(); } Value operator%(const Value& rhs) const { return get() % rhs.get(); } }; template <> inline json Value::get() const { if (is_primitive()) return primitive_; if (is_null()) return json(); if (array_) { std::vector res; for (const auto& item : *array_) { res.push_back(item.get()); } return res; } if (object_) { json res = json::object(); for (const auto& item : *object_) { const auto & key = item.first; auto json_value = item.second.get(); if (key.is_string()) { res[key.get()] = json_value; } else if (key.is_primitive()) { res[key.dump()] = json_value; } else { throw std::runtime_error("Invalid key type for conversion to JSON: " + key.dump()); } } if (is_callable()) { res["__callable__"] = true; } return res; } throw std::runtime_error("get not defined for this value type: " + dump()); } } // namespace minja namespace std { template <> struct hash { size_t operator()(const minja::Value & v) const { if (!v.is_hashable()) throw std::runtime_error("Unsupported type for hashing: " + v.dump()); return std::hash()(v.get()); } }; } // namespace std namespace minja { static std::string error_location_suffix(const std::string & source, size_t pos) { auto get_line = [&](size_t line) { auto start = source.begin(); for (size_t i = 1; i < line; ++i) { start = std::find(start, source.end(), '\n') + 1; } auto end = std::find(start, source.end(), '\n'); return std::string(start, end); }; auto start = source.begin(); auto end = source.end(); auto it = start + pos; auto line = std::count(start, it, '\n') + 1; auto max_line = std::count(start, end, '\n') + 1; auto col = pos - std::string(start, it).rfind('\n'); std::ostringstream out; out << " at row " << line << ", column " << col << ":\n"; if (line > 1) out << get_line(line - 1) << "\n"; out << get_line(line) << "\n"; out << std::string(col - 1, ' ') << "^" << "\n"; if (line < max_line) out << get_line(line + 1) << "\n"; return out.str(); } class Context : public std::enable_shared_from_this { protected: Value values_; std::shared_ptr parent_; public: Context(Value && values, const std::shared_ptr & parent = nullptr) : values_(std::move(values)), parent_(parent) { if (!values_.is_object()) throw std::runtime_error("Context values must be an object: " + values_.dump()); } virtual ~Context() {} static std::shared_ptr builtins(); static std::shared_ptr make(Value && values, const std::shared_ptr & parent = builtins()); std::vector keys() { return values_.keys(); } virtual Value get(const Value & key) { if (values_.contains(key)) return values_.at(key); if (parent_) return parent_->get(key); return Value(); } virtual Value & at(const Value & key) { if (values_.contains(key)) return values_.at(key); if (parent_) return parent_->at(key); throw std::runtime_error("Undefined variable: " + key.dump()); } virtual bool contains(const Value & key) { if (values_.contains(key)) return true; if (parent_) return parent_->contains(key); return false; } virtual void set(const Value & key, Value & value) { values_.set(key, value); } }; struct Location { std::shared_ptr source; size_t pos; }; class Expression { protected: virtual Value do_evaluate(const std::shared_ptr & context) const = 0; public: struct Arguments { std::vector> args; std::vector>> kwargs; void expectArgs(const std::string & method_name, const std::pair & pos_count, const std::pair & kw_count) const { if (args.size() < pos_count.first || args.size() > pos_count.second || kwargs.size() < kw_count.first || kwargs.size() > kw_count.second) { std::ostringstream out; out << method_name << " must have between " << pos_count.first << " and " << pos_count.second << " positional arguments and between " << kw_count.first << " and " << kw_count.second << " keyword arguments"; throw std::runtime_error(out.str()); } } Value::Arguments evaluate(const std::shared_ptr & context) const { Value::Arguments vargs; for (const auto& arg : this->args) { vargs.args.push_back(arg->evaluate(context)); } for (const auto& arg : this->kwargs) { vargs.kwargs.push_back({arg.first, arg.second->evaluate(context)}); } return vargs; } }; using Parameters = std::vector>>; Location location; Expression(const Location & location) : location(location) {} virtual ~Expression() = default; Value evaluate(const std::shared_ptr & context) const { try { return do_evaluate(context); } catch (const std::runtime_error & e) { std::ostringstream out; out << e.what(); if (location.source) out << error_location_suffix(*location.source, location.pos); throw std::runtime_error(out.str()); } } }; class VariableExpr : public Expression { std::string name; public: VariableExpr(const Location & location, const std::string& n) : Expression(location), name(n) {} std::string get_name() const { return name; } Value do_evaluate(const std::shared_ptr & context) const override { if (!context->contains(name)) { return Value(); } return context->at(name); } }; static void destructuring_assign(const std::vector & var_names, const std::shared_ptr & context, Value& item) { if (var_names.size() == 1) { Value name(var_names[0]); context->set(name, item); } else { if (!item.is_array() || item.size() != var_names.size()) { throw std::runtime_error("Mismatched number of variables and items in destructuring assignment"); } for (size_t i = 0; i < var_names.size(); ++i) { context->set(var_names[i], item.at(i)); } } } enum SpaceHandling { Keep, Strip, StripSpaces, StripNewline }; class TemplateToken { public: enum class Type { Text, Expression, If, Else, Elif, EndIf, For, EndFor, Set, EndSet, Comment, Macro, EndMacro }; static std::string typeToString(Type t) { switch (t) { case Type::Text: return "text"; case Type::Expression: return "expression"; case Type::If: return "if"; case Type::Else: return "else"; case Type::Elif: return "elif"; case Type::EndIf: return "endif"; case Type::For: return "for"; case Type::EndFor: return "endfor"; case Type::Set: return "set"; case Type::EndSet: return "endset"; case Type::Comment: return "comment"; case Type::Macro: return "macro"; case Type::EndMacro: return "endmacro"; } return "Unknown"; } TemplateToken(Type type, const Location & location, SpaceHandling pre, SpaceHandling post) : type(type), location(location), pre_space(pre), post_space(post) {} virtual ~TemplateToken() = default; Type type; Location location; SpaceHandling pre_space = SpaceHandling::Keep; SpaceHandling post_space = SpaceHandling::Keep; }; struct TextTemplateToken : public TemplateToken { std::string text; TextTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::string& t) : TemplateToken(Type::Text, location, pre, post), text(t) {} }; struct ExpressionTemplateToken : public TemplateToken { std::unique_ptr expr; ExpressionTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::unique_ptr && e) : TemplateToken(Type::Expression, location, pre, post), expr(std::move(e)) {} }; struct IfTemplateToken : public TemplateToken { std::unique_ptr condition; IfTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::unique_ptr && c) : TemplateToken(Type::If, location, pre, post), condition(std::move(c)) {} }; struct ElifTemplateToken : public TemplateToken { std::unique_ptr condition; ElifTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::unique_ptr && c) : TemplateToken(Type::Elif, location, pre, post), condition(std::move(c)) {} }; struct ElseTemplateToken : public TemplateToken { ElseTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::Else, location, pre, post) {} }; struct EndIfTemplateToken : public TemplateToken { EndIfTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndIf, location, pre, post) {} }; struct MacroTemplateToken : public TemplateToken { std::unique_ptr name; Expression::Parameters params; MacroTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, std::unique_ptr && n, Expression::Parameters && p) : TemplateToken(Type::Macro, location, pre, post), name(std::move(n)), params(std::move(p)) {} }; struct EndMacroTemplateToken : public TemplateToken { EndMacroTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndMacro, location, pre, post) {} }; struct ForTemplateToken : public TemplateToken { std::vector var_names; std::unique_ptr iterable; std::unique_ptr condition; bool recursive; ForTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::vector & vns, std::unique_ptr && iter, std::unique_ptr && c, bool r) : TemplateToken(Type::For, location, pre, post), var_names(vns), iterable(std::move(iter)), condition(std::move(c)), recursive(r) {} }; struct EndForTemplateToken : public TemplateToken { EndForTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndFor, location, pre, post) {} }; struct SetTemplateToken : public TemplateToken { std::string ns; std::vector var_names; std::unique_ptr value; SetTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::string & ns, const std::vector & vns, std::unique_ptr && v) : TemplateToken(Type::Set, location, pre, post), ns(ns), var_names(vns), value(std::move(v)) {} }; struct EndSetTemplateToken : public TemplateToken { EndSetTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post) : TemplateToken(Type::EndSet, location, pre, post) {} }; struct CommentTemplateToken : public TemplateToken { std::string text; CommentTemplateToken(const Location & location, SpaceHandling pre, SpaceHandling post, const std::string& t) : TemplateToken(Type::Comment, location, pre, post), text(t) {} }; class TemplateNode { Location location_; protected: virtual void do_render(std::ostringstream & out, const std::shared_ptr & context) const = 0; public: TemplateNode(const Location & location) : location_(location) {} void render(std::ostringstream & out, const std::shared_ptr & context) const { try { do_render(out, context); } catch (const std::runtime_error & e) { std::ostringstream err; err << e.what(); if (location_.source) err << error_location_suffix(*location_.source, location_.pos); throw std::runtime_error(err.str()); } } const Location & location() const { return location_; } virtual ~TemplateNode() = default; std::string render(const std::shared_ptr & context) const { std::ostringstream out; render(out, context); return out.str(); } }; class SequenceNode : public TemplateNode { std::vector> children; public: SequenceNode(const Location & location, std::vector> && c) : TemplateNode(location), children(std::move(c)) {} void do_render(std::ostringstream & out, const std::shared_ptr & context) const override { for (const auto& child : children) child->render(out, context); } }; class TextNode : public TemplateNode { std::string text; public: TextNode(const Location & location, const std::string& t) : TemplateNode(location), text(t) {} void do_render(std::ostringstream & out, const std::shared_ptr &) const override { out << text; } }; class ExpressionNode : public TemplateNode { std::unique_ptr expr; public: ExpressionNode(const Location & location, std::unique_ptr && e) : TemplateNode(location), expr(std::move(e)) {} void do_render(std::ostringstream & out, const std::shared_ptr & context) const override { auto result = expr->evaluate(context); if (result.is_string()) { out << result.get(); } else if (result.is_boolean()) { out << (result.get() ? "True" : "False"); } else if (!result.is_null()) { out << result.dump(); } } }; class IfNode : public TemplateNode { std::vector, std::unique_ptr>> cascade; public: IfNode(const Location & location, std::vector, std::unique_ptr>> && c) : TemplateNode(location), cascade(std::move(c)) {} void do_render(std::ostringstream & out, const std::shared_ptr & context) const override { for (const auto& branch : cascade) { auto enter_branch = true; if (branch.first) { enter_branch = branch.first->evaluate(context).to_bool(); } if (enter_branch) { branch.second->render(out, context); return; } } } }; class ForNode : public TemplateNode { std::vector var_names; std::unique_ptr iterable; std::unique_ptr condition; std::unique_ptr body; bool recursive; std::unique_ptr else_body; public: ForNode(const Location & location, std::vector && var_names, std::unique_ptr && iterable, std::unique_ptr && condition, std::unique_ptr && body, bool recursive, std::unique_ptr && else_body) : TemplateNode(location), var_names(var_names), iterable(std::move(iterable)), condition(std::move(condition)), body(std::move(body)), recursive(recursive), else_body(std::move(else_body)) {} void do_render(std::ostringstream & out, const std::shared_ptr & context) const override { // https://jinja.palletsprojects.com/en/3.0.x/templates/#for auto iterable_value = iterable->evaluate(context); Value::CallableType loop_function; std::function visit = [&](Value& iter) { auto filtered_items = Value::array(); if (!iter.is_null()) { if (!iterable_value.is_array()) { throw std::runtime_error("For loop iterable must be iterable: " + iterable_value.dump()); } for (size_t i = 0, n = iter.size(); i < n; ++i) { auto item = iter.at(i); destructuring_assign(var_names, context, item); if (!condition || condition->evaluate(context).to_bool()) { filtered_items.push_back(item); } } } if (filtered_items.empty()) { if (else_body) { else_body->render(out, context); } } else { auto loop = recursive ? Value::callable(loop_function) : Value::object(); loop.set("length", (int64_t) filtered_items.size()); size_t cycle_index = 0; loop.set("cycle", Value::callable([&](const std::shared_ptr &, Value::Arguments & args) { if (args.args.empty() || !args.kwargs.empty()) { throw std::runtime_error("cycle() expects at least 1 positional argument and no named arg"); } auto item = args.args[cycle_index]; cycle_index = (cycle_index + 1) % args.args.size(); return item; })); auto loop_context = Context::make(Value::object(), context); loop_context->set("loop", loop); for (size_t i = 0, n = filtered_items.size(); i < n; ++i) { auto & item = filtered_items.at(i); destructuring_assign(var_names, loop_context, item); loop.set("index", (int64_t) i + 1); loop.set("index0", (int64_t) i); loop.set("revindex", (int64_t) (n - i)); loop.set("revindex0", (int64_t) (n - i - 1)); loop.set("length", (int64_t) n); loop.set("first", i == 0); loop.set("last", i == (n - 1)); loop.set("previtem", i > 0 ? filtered_items.at(i - 1) : Value()); loop.set("nextitem", i < n - 1 ? filtered_items.at(i + 1) : Value()); body->render(out, loop_context); } } }; if (recursive) { loop_function = [&](const std::shared_ptr &, Value::Arguments & args) { if (args.args.size() != 1 || !args.kwargs.empty() || !args.args[0].is_array()) { throw std::runtime_error("loop() expects exactly 1 positional iterable argument"); } auto & items = args.args[0]; visit(items); return Value(); }; } visit(iterable_value); } }; class MacroNode : public TemplateNode { std::unique_ptr name; Expression::Parameters params; std::unique_ptr body; std::unordered_map named_param_positions; public: MacroNode(const Location & location, std::unique_ptr && n, Expression::Parameters && p, std::unique_ptr && b) : TemplateNode(location), name(std::move(n)), params(std::move(p)), body(std::move(b)) { for (size_t i = 0; i < params.size(); ++i) { const auto & name = params[i].first; if (!name.empty()) { named_param_positions[name] = i; } } } void do_render(std::ostringstream &, const std::shared_ptr & macro_context) const override { auto callable = Value::callable([&](const std::shared_ptr & context, Value::Arguments & args) { auto call_context = macro_context; std::vector param_set(params.size(), false); for (size_t i = 0, n = args.args.size(); i < n; i++) { auto & arg = args.args[i]; if (i >= params.size()) throw std::runtime_error("Too many positional arguments for macro " + name->get_name()); param_set[i] = true; auto & param_name = params[i].first; call_context->set(param_name, arg); } for (size_t i = 0, n = args.kwargs.size(); i < n; i++) { auto & arg = args.kwargs[i]; auto & arg_name = arg.first; auto it = named_param_positions.find(arg_name); if (it == named_param_positions.end()) throw std::runtime_error("Unknown parameter name for macro " + name->get_name() + ": " + arg_name); call_context->set(arg_name, arg.second); param_set[it->second] = true; } // Set default values for parameters that were not passed for (size_t i = 0, n = params.size(); i < n; i++) { if (!param_set[i] && params[i].second != nullptr) { auto val = params[i].second->evaluate(context); call_context->set(params[i].first, val); } } return body->render(call_context); }); macro_context->set(name->get_name(), callable); } }; class SetNode : public TemplateNode { std::string ns; std::vector var_names; std::unique_ptr value; std::unique_ptr template_value; public: SetNode(const Location & location, const std::string & ns, const std::vector & vns, std::unique_ptr && v, std::unique_ptr && tv) : TemplateNode(location), ns(ns), var_names(vns), value(std::move(v)), template_value(std::move(tv)) { if (value && template_value) { throw std::runtime_error("Cannot have both value and template value in set node"); } if (template_value && var_names.size() != 1) { throw std::runtime_error("Destructuring assignment is only supported with a single variable name"); } } void do_render(std::ostringstream &, const std::shared_ptr & context) const override { if (!ns.empty()) { if (var_names.size() != 1) { throw std::runtime_error("Namespaced set only supports a single variable name"); } auto & name = var_names[0]; auto ns_value = context->get(ns); if (!ns_value.is_object()) throw std::runtime_error("Namespace '" + ns + "' is not an object"); ns_value.set(name, this->value->evaluate(context)); } else if (template_value) { Value value { template_value->render(context) }; context->set(var_names[0], value); } else { auto val = value->evaluate(context); destructuring_assign(var_names, context, val); } } }; class IfExpr : public Expression { std::unique_ptr condition; std::unique_ptr then_expr; std::unique_ptr else_expr; public: IfExpr(const Location & location, std::unique_ptr && c, std::unique_ptr && t, std::unique_ptr && e) : Expression(location), condition(std::move(c)), then_expr(std::move(t)), else_expr(std::move(e)) {} Value do_evaluate(const std::shared_ptr & context) const override { if (condition->evaluate(context).to_bool()) { return then_expr->evaluate(context); } if (else_expr) { return else_expr->evaluate(context); } return nullptr; } }; class LiteralExpr : public Expression { Value value; public: LiteralExpr(const Location & location, const Value& v) : Expression(location), value(v) {} Value do_evaluate(const std::shared_ptr &) const override { return value; } }; class ArrayExpr : public Expression { std::vector> elements; public: ArrayExpr(const Location & location, std::vector> && e) : Expression(location), elements(std::move(e)) {} Value do_evaluate(const std::shared_ptr & context) const override { auto result = Value::array(); for (const auto& e : elements) { result.push_back(e->evaluate(context)); } return result; } }; class DictExpr : public Expression { std::vector, std::unique_ptr>> elements; public: DictExpr(const Location & location, std::vector, std::unique_ptr>> && e) : Expression(location), elements(std::move(e)) {} Value do_evaluate(const std::shared_ptr & context) const override { auto result = Value::object(); for (const auto& e : elements) { result.set(e.first->evaluate(context), e.second->evaluate(context)); } return result; } }; class SliceExpr : public Expression { public: std::unique_ptr start, end; SliceExpr(const Location & location, std::unique_ptr && s, std::unique_ptr && e) : Expression(location), start(std::move(s)), end(std::move(e)) {} Value do_evaluate(const std::shared_ptr &) const override { throw std::runtime_error("SliceExpr not implemented"); } }; class SubscriptExpr : public Expression { std::unique_ptr base; std::unique_ptr index; public: SubscriptExpr(const Location & location, std::unique_ptr && b, std::unique_ptr && i) : Expression(location), base(std::move(b)), index(std::move(i)) {} Value do_evaluate(const std::shared_ptr & context) const override { auto target_value = base->evaluate(context); if (auto slice = dynamic_cast(index.get())) { if (!target_value.is_array()) throw std::runtime_error("Subscripting non-array"); auto start = slice->start ? slice->start->evaluate(context).get() : 0; auto end = slice->end ? slice->end->evaluate(context).get() : target_value.size(); auto result = Value::array(); for (auto i = start; i < end; ++i) { result.push_back(target_value.at(i)); } return result; } else { auto index_value = index->evaluate(context); if (target_value.is_null()) { if (auto t = dynamic_cast(base.get())) { throw std::runtime_error("'" + t->get_name() + "' is " + (context->contains(t->get_name()) ? "null" : "not defined")); } throw std::runtime_error("Trying to access property '" + index_value.dump() + "' on null!"); } return target_value.get(index_value); } } }; class UnaryOpExpr : public Expression { public: enum class Op { Plus, Minus, LogicalNot }; private: std::unique_ptr expr; Op op; public: UnaryOpExpr(const Location & location, std::unique_ptr && e, Op o) : Expression(location), expr(std::move(e)), op(o) {} Value do_evaluate(const std::shared_ptr & context) const override { auto e = expr->evaluate(context); switch (op) { case Op::Plus: return e; case Op::Minus: return -e; case Op::LogicalNot: return !e.to_bool(); } throw std::runtime_error("Unknown unary operator"); } }; class BinaryOpExpr : public Expression { public: enum class Op { StrConcat, Add, Sub, Mul, MulMul, Div, DivDiv, Mod, Eq, Ne, Lt, Gt, Le, Ge, And, Or, In, NotIn, Is, IsNot }; private: std::unique_ptr left; std::unique_ptr right; Op op; public: BinaryOpExpr(const Location & location, std::unique_ptr && l, std::unique_ptr && r, Op o) : Expression(location), left(std::move(l)), right(std::move(r)), op(o) {} Value do_evaluate(const std::shared_ptr & context) const override { auto l = left->evaluate(context); auto do_eval = [&](const Value & l) -> Value { if (op == Op::Is || op == Op::IsNot) { auto t = dynamic_cast(right.get()); if (!t) throw std::runtime_error("Right side of 'is' operator must be a variable"); auto eval = [&]() { const auto & name = t->get_name(); if (name == "none") return l.is_null(); if (name == "boolean") return l.is_boolean(); if (name == "integer") return l.is_number_integer(); if (name == "float") return l.is_number_float(); if (name == "number") return l.is_number(); if (name == "string") return l.is_string(); if (name == "mapping") return l.is_object(); if (name == "iterable") return l.is_array(); if (name == "sequence") return l.is_array(); if (name == "defined") return !l.is_null(); throw std::runtime_error("Unknown type for 'is' operator: " + name); }; auto value = eval(); return Value(op == Op::Is ? value : !value); } if (op == Op::And) { if (!l.to_bool()) return Value(false); return right->evaluate(context).to_bool(); } else if (op == Op::Or) { if (l.to_bool()) return Value(true); return right->evaluate(context).to_bool(); } auto r = right->evaluate(context); switch (op) { case Op::StrConcat: return l.to_str() + r.to_str(); case Op::Add: return l + r; case Op::Sub: return l - r; case Op::Mul: return l * r; case Op::Div: return l / r; case Op::MulMul: return std::pow(l.get(), r.get()); case Op::DivDiv: return l.get() / r.get(); case Op::Mod: return l.get() % r.get(); case Op::Eq: return l == r; case Op::Ne: return l != r; case Op::Lt: return l < r; case Op::Gt: return l > r; case Op::Le: return l <= r; case Op::Ge: return l >= r; case Op::In: return (r.is_array() || r.is_object()) && r.contains(l); case Op::NotIn: return !(r.is_array() && r.contains(l)); default: break; } throw std::runtime_error("Unknown binary operator"); }; if (l.is_callable()) { return Value::callable([l, do_eval](const std::shared_ptr & context, Value::Arguments & args) { auto ll = l.call(context, args); return do_eval(ll); //args[0].second); }); } else { return do_eval(l); } } }; static std::string strip(const std::string & s) { static std::regex trailing_spaces_regex("^\\s+|\\s+$"); return std::regex_replace(s, trailing_spaces_regex, ""); } static std::string html_escape(const std::string & s) { std::string result; result.reserve(s.size()); for (const auto & c : s) { switch (c) { case '&': result += "&"; break; case '<': result += "<"; break; case '>': result += ">"; break; case '"': result += """; break; case '\'': result += "'"; break; default: result += c; break; } } return result; } class MethodCallExpr : public Expression { std::unique_ptr object; std::unique_ptr method; Expression::Arguments args; public: MethodCallExpr(const Location & location, std::unique_ptr && obj, std::unique_ptr && m, Expression::Arguments && a) : Expression(location), object(std::move(obj)), method(std::move(m)), args(std::move(a)) {} Value do_evaluate(const std::shared_ptr & context) const override { auto obj = object->evaluate(context); if (obj.is_array()) { if (method->get_name() == "append") { args.expectArgs("append method", {1, 1}, {0, 0}); obj.push_back(args.args[0]->evaluate(context)); return Value(); } else if (method->get_name() == "insert") { args.expectArgs("insert method", {2, 2}, {0, 0}); auto index = args.args[0]->evaluate(context).get(); if (index < 0 || index > (int64_t) obj.size()) throw std::runtime_error("Index out of range for insert method"); obj.insert(index, args.args[1]->evaluate(context)); return Value(); } } else if (obj.is_object()) { if (method->get_name() == "items") { args.expectArgs("items method", {0, 0}, {0, 0}); auto result = Value::array(); for (const auto& key : obj.keys()) { result.push_back(Value::array({key, obj.at(key)})); } return result; } else if (method->get_name() == "get") { args.expectArgs("get method", {1, 2}, {0, 0}); auto key = args.args[0]->evaluate(context); if (args.args.size() == 1) { return obj.contains(key) ? obj.at(key) : Value(); } else { return obj.contains(key) ? obj.at(key) : args.args[1]->evaluate(context); } } else if (obj.contains(method->get_name())) { auto callable = obj.at(method->get_name()); if (!callable.is_callable()) { throw std::runtime_error("Property '" + method->get_name() + "' is not callable"); } Value::Arguments vargs = args.evaluate(context); return callable.call(context, vargs); } } else if (obj.is_string()) { if (method->get_name() == "strip") { args.expectArgs("strip method", {0, 0}, {0, 0}); return Value(strip(obj.get())); } else if (method->get_name() == "endswith") { args.expectArgs("endswith method", {1, 1}, {0, 0}); auto str = obj.get(); auto suffix = args.args[0]->evaluate(context).get(); return suffix.length() <= str.length() && std::equal(suffix.rbegin(), suffix.rend(), str.rbegin()); } } throw std::runtime_error("Unknown method: " + method->get_name()); } }; class CallExpr : public Expression { public: std::unique_ptr object; Expression::Arguments args; CallExpr(const Location & location, std::unique_ptr && obj, Expression::Arguments && a) : Expression(location), object(std::move(obj)), args(std::move(a)) {} Value do_evaluate(const std::shared_ptr & context) const override { auto obj = object->evaluate(context); if (!obj.is_callable()) { throw std::runtime_error("Object is not callable: " + obj.dump(2)); } auto vargs = args.evaluate(context); return obj.call(context, vargs); } }; class FilterExpr : public Expression { std::vector> parts; public: FilterExpr(const Location & location, std::vector> && p) : Expression(location), parts(std::move(p)) {} Value do_evaluate(const std::shared_ptr & context) const override { Value result; bool first = true; for (const auto& part : parts) { if (first) { first = false; result = part->evaluate(context); } else { if (auto ce = dynamic_cast(part.get())) { auto target = ce->object->evaluate(context); Value::Arguments args = ce->args.evaluate(context); args.args.insert(args.args.begin(), result); result = target.call(context, args); } else { auto callable = part->evaluate(context); Value::Arguments args; args.args.insert(args.args.begin(), result); result = callable.call(context, args); } } } return result; } void prepend(std::unique_ptr && e) { parts.insert(parts.begin(), std::move(e)); } }; class Parser { private: using CharIterator = std::string::const_iterator; std::shared_ptr template_str; CharIterator start, end, it; Options options; Parser(const std::shared_ptr& template_str, const Options & options) : template_str(template_str), options(options) { if (!template_str) throw std::runtime_error("Template string is null"); start = it = this->template_str->begin(); end = this->template_str->end(); } bool consumeSpaces(SpaceHandling space_handling = SpaceHandling::Strip) { if (space_handling == SpaceHandling::Strip) { while (it != end && std::isspace(*it)) ++it; } return true; } std::unique_ptr parseString() { auto doParse = [&](char quote) -> std::unique_ptr { if (it == end || *it != quote) return nullptr; std::string result; bool escape = false; for (++it; it != end; ++it) { if (escape) { escape = false; switch (*it) { case 'n': result += '\n'; break; case 'r': result += '\r'; break; case 't': result += '\t'; break; case 'b': result += '\b'; break; case 'f': result += '\f'; break; case '\\': result += '\\'; break; default: if (*it == quote) { result += quote; } else { result += *it; } break; } } else if (*it == '\\') { escape = true; } else if (*it == quote) { ++it; return nonstd_make_unique(result); } else { result += *it; } } return nullptr; }; consumeSpaces(); if (it == end) return nullptr; if (*it == '"') return doParse('"'); if (*it == '\'') return doParse('\''); return nullptr; } json parseNumber(CharIterator& it, const CharIterator& end) { auto before = it; consumeSpaces(); auto start = it; bool hasDecimal = false; bool hasExponent = false; if (it != end && (*it == '-' || *it == '+')) ++it; while (it != end) { if (std::isdigit(*it)) { ++it; } else if (*it == '.') { if (hasDecimal) throw std::runtime_error("Multiple decimal points"); hasDecimal = true; ++it; } else if (it != start && (*it == 'e' || *it == 'E')) { if (hasExponent) throw std::runtime_error("Multiple exponents"); hasExponent = true; ++it; } else { break; } } if (start == it) { it = before; return json(); // No valid characters found } std::string str(start, it); try { return json::parse(str); } catch (json::parse_error& e) { throw std::runtime_error("Failed to parse number: '" + str + "' (" + std::string(e.what()) + ")"); return json(); } } /** integer, float, bool, string */ std::unique_ptr parseConstant() { auto start = it; consumeSpaces(); if (it == end) return nullptr; if (*it == '"' || *it == '\'') { auto str = parseString(); if (str) return nonstd_make_unique(*str); } static std::regex prim_tok(R"(true\b|True\b|false\b|False\b|None\b)"); auto token = consumeToken(prim_tok); if (!token.empty()) { if (token == "true" || token == "True") return nonstd_make_unique(true); if (token == "false" || token == "False") return nonstd_make_unique(false); if (token == "None") return nonstd_make_unique(nullptr); throw std::runtime_error("Unknown constant token: " + token); } auto number = parseNumber(it, end); if (!number.is_null()) return nonstd_make_unique(number); it = start; return nullptr; } class expression_parsing_error : public std::runtime_error { const CharIterator it; public: expression_parsing_error(const std::string & message, const CharIterator & it) : std::runtime_error(message), it(it) {} size_t get_pos(const CharIterator & begin) const { return std::distance(begin, it); } }; bool peekSymbols(const std::vector & symbols) const { for (const auto & symbol : symbols) { if (std::distance(it, end) >= (int64_t) symbol.size() && std::string(it, it + symbol.size()) == symbol) { return true; } } return false; } std::vector consumeTokenGroups(const std::regex & regex, SpaceHandling space_handling = SpaceHandling::Strip) { auto start = it; consumeSpaces(space_handling); std::smatch match; if (std::regex_search(it, end, match, regex) && match.position() == 0) { it += match[0].length(); std::vector ret; for (size_t i = 0, n = match.size(); i < n; ++i) { ret.push_back(match[i].str()); } return ret; } it = start; return {}; } std::string consumeToken(const std::regex & regex, SpaceHandling space_handling = SpaceHandling::Strip) { auto start = it; consumeSpaces(space_handling); std::smatch match; if (std::regex_search(it, end, match, regex) && match.position() == 0) { it += match[0].length(); return match[0].str(); } it = start; return ""; } std::string consumeToken(const std::string & token, SpaceHandling space_handling = SpaceHandling::Strip) { auto start = it; consumeSpaces(space_handling); if (std::distance(it, end) >= (int64_t) token.size() && std::string(it, it + token.size()) == token) { it += token.size(); return token; } it = start; return ""; } std::unique_ptr parseExpression(bool allow_if_expr = true) { auto left = parseLogicalOr(); if (it == end) return left; if (!allow_if_expr) return left; static std::regex if_tok(R"(if\b)"); if (consumeToken(if_tok).empty()) { return left; } auto location = get_location(); auto if_expr = parseIfExpression(); return nonstd_make_unique(location, std::move(if_expr.first), std::move(left), std::move(if_expr.second)); } Location get_location() const { return {template_str, (size_t) std::distance(start, it)}; } std::pair, std::unique_ptr> parseIfExpression() { auto condition = parseLogicalOr(); if (!condition) throw std::runtime_error("Expected condition expression"); static std::regex else_tok(R"(else\b)"); std::unique_ptr else_expr; if (!consumeToken(else_tok).empty()) { else_expr = parseExpression(); if (!else_expr) throw std::runtime_error("Expected 'else' expression"); } return std::make_pair(std::move(condition), std::move(else_expr)); } std::unique_ptr parseLogicalOr() { auto left = parseLogicalAnd(); if (!left) throw std::runtime_error("Expected left side of 'logical or' expression"); static std::regex or_tok(R"(or\b)"); auto location = get_location(); while (!consumeToken(or_tok).empty()) { auto right = parseLogicalAnd(); if (!right) throw std::runtime_error("Expected right side of 'or' expression"); left = nonstd_make_unique(location, std::move(left), std::move(right), BinaryOpExpr::Op::Or); } return left; } std::unique_ptr parseLogicalNot() { static std::regex not_tok(R"(not\b)"); auto location = get_location(); if (!consumeToken(not_tok).empty()) { auto sub = parseLogicalNot(); if (!sub) throw std::runtime_error("Expected expression after 'not' keyword"); return nonstd_make_unique(location, std::move(sub), UnaryOpExpr::Op::LogicalNot); } return parseLogicalCompare(); } std::unique_ptr parseLogicalAnd() { auto left = parseLogicalNot(); if (!left) throw std::runtime_error("Expected left side of 'logical and' expression"); static std::regex and_tok(R"(and\b)"); auto location = get_location(); while (!consumeToken(and_tok).empty()) { auto right = parseLogicalNot(); if (!right) throw std::runtime_error("Expected right side of 'and' expression"); left = nonstd_make_unique(location, std::move(left), std::move(right), BinaryOpExpr::Op::And); } return left; } std::unique_ptr parseLogicalCompare() { auto left = parseStringConcat(); if (!left) throw std::runtime_error("Expected left side of 'logical compare' expression"); static std::regex compare_tok(R"(==|!=|<=?|>=?|in\b|is\b|not[\n\s]+in\b)"); static std::regex not_tok(R"(not\b)"); std::string op_str; while (!(op_str = consumeToken(compare_tok)).empty()) { auto location = get_location(); if (op_str == "is") { auto negated = !consumeToken(not_tok).empty(); auto identifier = parseIdentifier(); if (!identifier) throw std::runtime_error("Expected identifier after 'is' keyword"); return nonstd_make_unique( left->location, std::move(left), std::move(identifier), negated ? BinaryOpExpr::Op::IsNot : BinaryOpExpr::Op::Is); } auto right = parseStringConcat(); if (!right) throw std::runtime_error("Expected right side of 'logical compare' expression"); BinaryOpExpr::Op op; if (op_str == "==") op = BinaryOpExpr::Op::Eq; else if (op_str == "!=") op = BinaryOpExpr::Op::Ne; else if (op_str == "<") op = BinaryOpExpr::Op::Lt; else if (op_str == ">") op = BinaryOpExpr::Op::Gt; else if (op_str == "<=") op = BinaryOpExpr::Op::Le; else if (op_str == ">=") op = BinaryOpExpr::Op::Ge; else if (op_str == "in") op = BinaryOpExpr::Op::In; else if (op_str.substr(0, 3) == "not") op = BinaryOpExpr::Op::NotIn; else throw std::runtime_error("Unknown comparison operator: " + op_str); left = nonstd_make_unique(get_location(), std::move(left), std::move(right), op); } return left; } Expression::Parameters parseParameters() { consumeSpaces(); if (consumeToken("(").empty()) throw std::runtime_error("Expected opening parenthesis in param list"); Expression::Parameters result; while (it != end) { if (!consumeToken(")").empty()) { return result; } auto expr = parseExpression(); if (!expr) throw std::runtime_error("Expected expression in call args"); if (auto ident = dynamic_cast(expr.get())) { if (!consumeToken("=").empty()) { auto value = parseExpression(); if (!value) throw std::runtime_error("Expected expression in for named arg"); result.emplace_back(ident->get_name(), std::move(value)); } else { result.emplace_back(ident->get_name(), nullptr); } } else { result.emplace_back(std::string(), std::move(expr)); } if (consumeToken(",").empty()) { if (consumeToken(")").empty()) { throw std::runtime_error("Expected closing parenthesis in call args"); } return result; } } throw std::runtime_error("Expected closing parenthesis in call args"); } Expression::Arguments parseCallArgs() { consumeSpaces(); if (consumeToken("(").empty()) throw std::runtime_error("Expected opening parenthesis in call args"); Expression::Arguments result; while (it != end) { if (!consumeToken(")").empty()) { return result; } auto expr = parseExpression(); if (!expr) throw std::runtime_error("Expected expression in call args"); if (auto ident = dynamic_cast(expr.get())) { if (!consumeToken("=").empty()) { auto value = parseExpression(); if (!value) throw std::runtime_error("Expected expression in for named arg"); result.kwargs.emplace_back(ident->get_name(), std::move(value)); } else { result.args.emplace_back(std::move(expr)); } } else { result.args.emplace_back(std::move(expr)); } if (consumeToken(",").empty()) { if (consumeToken(")").empty()) { throw std::runtime_error("Expected closing parenthesis in call args"); } return result; } } throw std::runtime_error("Expected closing parenthesis in call args"); } std::unique_ptr parseIdentifier() { static std::regex ident_regex(R"((?!not|is|and|or|del)[a-zA-Z_]\w*)"); auto location = get_location(); auto ident = consumeToken(ident_regex); if (ident.empty()) return nullptr; return nonstd_make_unique(location, ident); } std::unique_ptr parseStringConcat() { auto left = parseMathPow(); if (!left) throw std::runtime_error("Expected left side of 'string concat' expression"); static std::regex concat_tok(R"(~(?!\}))"); if (!consumeToken(concat_tok).empty()) { auto right = parseLogicalAnd(); if (!right) throw std::runtime_error("Expected right side of 'string concat' expression"); left = nonstd_make_unique(get_location(), std::move(left), std::move(right), BinaryOpExpr::Op::StrConcat); } return left; } std::unique_ptr parseMathPow() { auto left = parseMathPlusMinus(); if (!left) throw std::runtime_error("Expected left side of 'math pow' expression"); while (!consumeToken("**").empty()) { auto right = parseMathPlusMinus(); if (!right) throw std::runtime_error("Expected right side of 'math pow' expression"); left = nonstd_make_unique(get_location(), std::move(left), std::move(right), BinaryOpExpr::Op::MulMul); } return left; } std::unique_ptr parseMathPlusMinus() { static std::regex plus_minus_tok(R"(\+|-(?![}%#]\}))"); auto left = parseMathMulDiv(); if (!left) throw std::runtime_error("Expected left side of 'math plus/minus' expression"); std::string op_str; while (!(op_str = consumeToken(plus_minus_tok)).empty()) { auto right = parseMathMulDiv(); if (!right) throw std::runtime_error("Expected right side of 'math plus/minus' expression"); auto op = op_str == "+" ? BinaryOpExpr::Op::Add : BinaryOpExpr::Op::Sub; left = nonstd_make_unique(get_location(), std::move(left), std::move(right), op); } return left; } std::unique_ptr parseMathMulDiv() { auto left = parseMathUnaryPlusMinus(); if (!left) throw std::runtime_error("Expected left side of 'math mul/div' expression"); static std::regex mul_div_tok(R"(\*\*?|//?|%(?!\}))"); std::string op_str; while (!(op_str = consumeToken(mul_div_tok)).empty()) { auto right = parseMathUnaryPlusMinus(); if (!right) throw std::runtime_error("Expected right side of 'math mul/div' expression"); auto op = op_str == "*" ? BinaryOpExpr::Op::Mul : op_str == "**" ? BinaryOpExpr::Op::MulMul : op_str == "/" ? BinaryOpExpr::Op::Div : op_str == "//" ? BinaryOpExpr::Op::DivDiv : BinaryOpExpr::Op::Mod; left = nonstd_make_unique(get_location(), std::move(left), std::move(right), op); } if (!consumeToken("|").empty()) { auto expr = parseMathMulDiv(); if (auto filter = dynamic_cast(expr.get())) { filter->prepend(std::move(left)); return expr; } else { std::vector> parts; parts.emplace_back(std::move(left)); parts.emplace_back(std::move(expr)); return nonstd_make_unique(get_location(), std::move(parts)); } } return left; } std::unique_ptr call_func(const std::string & name, Expression::Arguments && args) const { return nonstd_make_unique(get_location(), nonstd_make_unique(get_location(), name), std::move(args)); } std::unique_ptr parseMathUnaryPlusMinus() { static std::regex unary_plus_minus_tok(R"(\+|-(?![}%#]\}))"); auto op_str = consumeToken(unary_plus_minus_tok); auto expr = parseValueExpression(); if (!expr) throw std::runtime_error("Expected expr of 'unary plus/minus' expression"); if (!op_str.empty()) { auto op = op_str == "+" ? UnaryOpExpr::Op::Plus : UnaryOpExpr::Op::Minus; return nonstd_make_unique(get_location(), std::move(expr), op); } return expr; } std::unique_ptr parseValueExpression() { auto parseValue = [&]() -> std::unique_ptr { auto location = get_location(); auto constant = parseConstant(); if (constant) return nonstd_make_unique(location, *constant); static std::regex null_regex(R"(null\b)"); if (!consumeToken(null_regex).empty()) return nonstd_make_unique(location, Value()); auto identifier = parseIdentifier(); if (identifier) return identifier; auto braced = parseBracedExpressionOrArray(); if (braced) return braced; auto array = parseArray(); if (array) return array; auto dictionary = parseDictionary(); if (dictionary) return dictionary; throw std::runtime_error("Expected value expression"); }; auto value = parseValue(); while (it != end && consumeSpaces() && peekSymbols({ "[", "." })) { if (!consumeToken("[").empty()) { std::unique_ptr index; if (!consumeToken(":").empty()) { auto slice_end = parseExpression(); index = nonstd_make_unique(slice_end->location, nullptr, std::move(slice_end)); } else { auto slice_start = parseExpression(); if (!consumeToken(":").empty()) { consumeSpaces(); if (peekSymbols({ "]" })) { index = nonstd_make_unique(slice_start->location, std::move(slice_start), nullptr); } else { auto slice_end = parseExpression(); index = nonstd_make_unique(slice_start->location, std::move(slice_start), std::move(slice_end)); } } else { index = std::move(slice_start); } } if (!index) throw std::runtime_error("Empty index in subscript"); if (consumeToken("]").empty()) throw std::runtime_error("Expected closing bracket in subscript"); value = nonstd_make_unique(value->location, std::move(value), std::move(index)); } else if (!consumeToken(".").empty()) { auto identifier = parseIdentifier(); if (!identifier) throw std::runtime_error("Expected identifier in subscript"); consumeSpaces(); if (peekSymbols({ "(" })) { auto callParams = parseCallArgs(); value = nonstd_make_unique(identifier->location, std::move(value), std::move(identifier), std::move(callParams)); } else { auto key = nonstd_make_unique(identifier->location, Value(identifier->get_name())); value = nonstd_make_unique(identifier->location, std::move(value), std::move(key)); } } consumeSpaces(); } if (peekSymbols({ "(" })) { auto location = get_location(); auto callParams = parseCallArgs(); value = nonstd_make_unique(location, std::move(value), std::move(callParams)); } return value; } std::unique_ptr parseBracedExpressionOrArray() { if (consumeToken("(").empty()) return nullptr; auto expr = parseExpression(); if (!expr) throw std::runtime_error("Expected expression in braced expression"); if (!consumeToken(")").empty()) { return expr; // Drop the parentheses } std::vector> tuple; tuple.emplace_back(std::move(expr)); while (it != end) { if (consumeToken(",").empty()) throw std::runtime_error("Expected comma in tuple"); auto next = parseExpression(); if (!next) throw std::runtime_error("Expected expression in tuple"); tuple.push_back(std::move(next)); if (!consumeToken(")").empty()) { return nonstd_make_unique(get_location(), std::move(tuple)); } } throw std::runtime_error("Expected closing parenthesis"); } std::unique_ptr parseArray() { if (consumeToken("[").empty()) return nullptr; std::vector> elements; if (!consumeToken("]").empty()) { return nonstd_make_unique(get_location(), std::move(elements)); } auto first_expr = parseExpression(); if (!first_expr) throw std::runtime_error("Expected first expression in array"); elements.push_back(std::move(first_expr)); while (it != end) { if (!consumeToken(",").empty()) { auto expr = parseExpression(); if (!expr) throw std::runtime_error("Expected expression in array"); elements.push_back(std::move(expr)); } else if (!consumeToken("]").empty()) { return nonstd_make_unique(get_location(), std::move(elements)); } else { throw std::runtime_error("Expected comma or closing bracket in array"); } } throw std::runtime_error("Expected closing bracket"); } std::unique_ptr parseDictionary() { if (consumeToken("{").empty()) return nullptr; std::vector, std::unique_ptr>> elements; if (!consumeToken("}").empty()) { return nonstd_make_unique(get_location(), std::move(elements)); } auto parseKeyValuePair = [&]() { auto key = parseExpression(); if (!key) throw std::runtime_error("Expected key in dictionary"); if (consumeToken(":").empty()) throw std::runtime_error("Expected colon betweek key & value in dictionary"); auto value = parseExpression(); if (!value) throw std::runtime_error("Expected value in dictionary"); elements.emplace_back(std::make_pair(std::move(key), std::move(value))); }; parseKeyValuePair(); while (it != end) { if (!consumeToken(",").empty()) { parseKeyValuePair(); } else if (!consumeToken("}").empty()) { return nonstd_make_unique(get_location(), std::move(elements)); } else { throw std::runtime_error("Expected comma or closing brace in dictionary"); } } throw std::runtime_error("Expected closing brace"); } SpaceHandling parsePreSpace(const std::string& s) const { if (s == "-") return SpaceHandling::Strip; return SpaceHandling::Keep; } SpaceHandling parsePostSpace(const std::string& s) const { if (s == "-") return SpaceHandling::Strip; return SpaceHandling::Keep; } using TemplateTokenVector = std::vector>; using TemplateTokenIterator = TemplateTokenVector::const_iterator; std::vector parseVarNames() { static std::regex varnames_regex(R"(((?:\w+)(?:[\n\s]*,[\n\s]*(?:\w+))*)[\n\s]*)"); std::vector group; if ((group = consumeTokenGroups(varnames_regex)).empty()) throw std::runtime_error("Expected variable names"); std::vector varnames; std::istringstream iss(group[1]); std::string varname; while (std::getline(iss, varname, ',')) { varnames.push_back(strip(varname)); } return varnames; } std::runtime_error unexpected(const TemplateToken & token) const { return std::runtime_error("Unexpected " + TemplateToken::typeToString(token.type) + error_location_suffix(*template_str, token.location.pos)); } std::runtime_error unterminated(const TemplateToken & token) const { return std::runtime_error("Unterminated " + TemplateToken::typeToString(token.type) + error_location_suffix(*template_str, token.location.pos)); } TemplateTokenVector tokenize() { static std::regex comment_tok(R"(\{#([-~]?)(.*?)([-~]?)#\})"); static std::regex expr_open_regex(R"(\{\{([-~])?)"); static std::regex block_open_regex(R"(^\{%([-~])?[\s\n]*)"); static std::regex block_keyword_tok(R"((if|else|elif|endif|for|endfor|set|endset|block|endblock|macro|endmacro)\b)"); static std::regex text_regex(R"([\s\S\n]*?($|(?=\{\{|\{%|\{#)))"); static std::regex expr_close_regex(R"([\s\n]*([-~])?\}\})"); static std::regex block_close_regex(R"([\s\n]*([-~])?%\})"); TemplateTokenVector tokens; std::vector group; std::string text; try { while (it != end) { auto location = get_location(); if (!(group = consumeTokenGroups(comment_tok, SpaceHandling::Keep)).empty()) { auto pre_space = parsePreSpace(group[1]); auto content = group[2]; auto post_space = parsePostSpace(group[3]); tokens.push_back(nonstd_make_unique(location, pre_space, post_space, content)); } else if (!(group = consumeTokenGroups(expr_open_regex, SpaceHandling::Keep)).empty()) { auto pre_space = parsePreSpace(group[1]); auto expr = parseExpression(); if ((group = consumeTokenGroups(expr_close_regex)).empty()) { throw std::runtime_error("Expected closing expression tag"); } auto post_space = parsePostSpace(group[1]); tokens.push_back(nonstd_make_unique(location, pre_space, post_space, std::move(expr))); } else if (!(group = consumeTokenGroups(block_open_regex, SpaceHandling::Keep)).empty()) { auto pre_space = parsePreSpace(group[1]); std::string keyword; auto parseBlockClose = [&]() -> SpaceHandling { if ((group = consumeTokenGroups(block_close_regex)).empty()) throw std::runtime_error("Expected closing block tag"); return parsePostSpace(group[1]); }; if ((keyword = consumeToken(block_keyword_tok)).empty()) throw std::runtime_error("Expected block keyword"); if (keyword == "if") { auto condition = parseExpression(); if (!condition) throw std::runtime_error("Expected condition in if block"); auto post_space = parseBlockClose(); tokens.push_back(nonstd_make_unique(location, pre_space, post_space, std::move(condition))); } else if (keyword == "elif") { auto condition = parseExpression(); if (!condition) throw std::runtime_error("Expected condition in elif block"); auto post_space = parseBlockClose(); tokens.push_back(nonstd_make_unique(location, pre_space, post_space, std::move(condition))); } else if (keyword == "else") { auto post_space = parseBlockClose(); tokens.push_back(nonstd_make_unique(location, pre_space, post_space)); } else if (keyword == "endif") { auto post_space = parseBlockClose(); tokens.push_back(nonstd_make_unique(location, pre_space, post_space)); } else if (keyword == "for") { static std::regex recursive_tok(R"(recursive\b)"); static std::regex if_tok(R"(if\b)"); auto varnames = parseVarNames(); static std::regex in_tok(R"(in\b)"); if (consumeToken(in_tok).empty()) throw std::runtime_error("Expected 'in' keyword in for block"); auto iterable = parseExpression(/* allow_if_expr = */ false); if (!iterable) throw std::runtime_error("Expected iterable in for block"); std::unique_ptr condition; if (!consumeToken(if_tok).empty()) { condition = parseExpression(); } auto recursive = !consumeToken(recursive_tok).empty(); auto post_space = parseBlockClose(); tokens.push_back(nonstd_make_unique(location, pre_space, post_space, std::move(varnames), std::move(iterable), std::move(condition), recursive)); } else if (keyword == "endfor") { auto post_space = parseBlockClose(); tokens.push_back(nonstd_make_unique(location, pre_space, post_space)); } else if (keyword == "set") { static std::regex namespaced_var_regex(R"((\w+)[\s\n]*\.[\s\n]*(\w+))"); std::string ns; std::vector var_names; std::unique_ptr value; if (!(group = consumeTokenGroups(namespaced_var_regex)).empty()) { ns = group[1]; var_names.push_back(group[2]); if (consumeToken("=").empty()) throw std::runtime_error("Expected equals sign in set block"); value = parseExpression(); if (!value) throw std::runtime_error("Expected value in set block"); } else { var_names = parseVarNames(); if (!consumeToken("=").empty()) { value = parseExpression(); if (!value) throw std::runtime_error("Expected value in set block"); } } auto post_space = parseBlockClose(); tokens.push_back(nonstd_make_unique(location, pre_space, post_space, ns, var_names, std::move(value))); } else if (keyword == "endset") { auto post_space = parseBlockClose(); tokens.push_back(nonstd_make_unique(location, pre_space, post_space)); } else if (keyword == "macro") { auto macroname = parseIdentifier(); if (!macroname) throw std::runtime_error("Expected macro name in macro block"); auto params = parseParameters(); auto post_space = parseBlockClose(); tokens.push_back(nonstd_make_unique(location, pre_space, post_space, std::move(macroname), std::move(params))); } else if (keyword == "endmacro") { auto post_space = parseBlockClose(); tokens.push_back(nonstd_make_unique(location, pre_space, post_space)); } else { throw std::runtime_error("Unexpected block: " + keyword); } } else if (!(text = consumeToken(text_regex, SpaceHandling::Keep)).empty()) { tokens.push_back(nonstd_make_unique(location, SpaceHandling::Keep, SpaceHandling::Keep, text)); } else { if (it != end) throw std::runtime_error("Unexpected character"); } } return tokens; } catch (const std::runtime_error & e) { throw std::runtime_error(e.what() + error_location_suffix(*template_str, std::distance(start, it))); } } std::unique_ptr parseTemplate( const TemplateTokenIterator & begin, TemplateTokenIterator & it, const TemplateTokenIterator & end, bool fully = false) const { std::vector> children; while (it != end) { const auto start = it; const auto & token = *(it++); if (auto if_token = dynamic_cast(token.get())) { std::vector, std::unique_ptr>> cascade; cascade.emplace_back(std::move(if_token->condition), parseTemplate(begin, it, end)); while (it != end && (*it)->type == TemplateToken::Type::Elif) { auto elif_token = dynamic_cast((*(it++)).get()); cascade.emplace_back(std::move(elif_token->condition), parseTemplate(begin, it, end)); } if (it != end && (*it)->type == TemplateToken::Type::Else) { cascade.emplace_back(nullptr, parseTemplate(begin, ++it, end)); } if (it == end || (*(it++))->type != TemplateToken::Type::EndIf) { throw unterminated(**start); } children.emplace_back(nonstd_make_unique(token->location, std::move(cascade))); } else if (auto for_token = dynamic_cast(token.get())) { auto body = parseTemplate(begin, it, end); auto else_body = std::unique_ptr(); if (it != end && (*it)->type == TemplateToken::Type::Else) { else_body = parseTemplate(begin, ++it, end); } if (it == end || (*(it++))->type != TemplateToken::Type::EndFor) { throw unterminated(**start); } children.emplace_back(nonstd_make_unique(token->location, std::move(for_token->var_names), std::move(for_token->iterable), std::move(for_token->condition), std::move(body), for_token->recursive, std::move(else_body))); } else if (auto text_token = dynamic_cast(token.get())) { SpaceHandling pre_space = (it - 1) != begin ? (*(it - 2))->post_space : SpaceHandling::Keep; SpaceHandling post_space = it != end ? (*it)->pre_space : SpaceHandling::Keep; auto text = text_token->text; if (pre_space == SpaceHandling::Strip) { static std::regex leading_space_regex(R"(^(\s|\r|\n)+)"); text = std::regex_replace(text, leading_space_regex, ""); } else if (options.trim_blocks && (it - 1) != begin && !dynamic_cast((*(it - 2)).get())) { static std::regex leading_line(R"(^[ \t]*\n)"); text = std::regex_replace(text, leading_line, ""); } if (post_space == SpaceHandling::Strip) { static std::regex trailing_space_regex(R"((\s|\r|\n)+$)"); text = std::regex_replace(text, trailing_space_regex, ""); } else if (options.lstrip_blocks && it != end) { static std::regex trailing_last_line_space_regex(R"((^|\n)[ \t]*$)"); text = std::regex_replace(text, trailing_last_line_space_regex, "$1"); } if (it == end && !options.keep_trailing_newline) { static std::regex r(R"([\n\r]$)"); text = std::regex_replace(text, r, ""); // Strip one trailing newline } children.emplace_back(nonstd_make_unique(token->location, text)); } else if (auto expr_token = dynamic_cast(token.get())) { children.emplace_back(nonstd_make_unique(token->location, std::move(expr_token->expr))); } else if (auto set_token = dynamic_cast(token.get())) { if (set_token->value) { children.emplace_back(nonstd_make_unique(token->location, set_token->ns, set_token->var_names, std::move(set_token->value), nullptr)); } else { auto value_template = parseTemplate(begin, it, end); if (it == end || (*(it++))->type != TemplateToken::Type::EndSet) { throw unterminated(**start); } children.emplace_back(nonstd_make_unique(token->location, set_token->ns, set_token->var_names, nullptr, std::move(value_template))); } } else if (auto macro_token = dynamic_cast(token.get())) { auto body = parseTemplate(begin, it, end); if (it == end || (*(it++))->type != TemplateToken::Type::EndMacro) { throw unterminated(**start); } children.emplace_back(nonstd_make_unique(token->location, std::move(macro_token->name), std::move(macro_token->params), std::move(body))); } else if (dynamic_cast(token.get())) { // Ignore comments } else if (dynamic_cast(token.get()) || dynamic_cast(token.get()) || dynamic_cast(token.get()) || dynamic_cast(token.get()) || dynamic_cast(token.get()) || dynamic_cast(token.get())) { it--; // unconsume the token break; // exit the loop } else { throw unexpected(**(it-1)); } } if (fully && it != end) { throw unexpected(**it); } if (children.empty()) { return nonstd_make_unique(Location { template_str, 0 }, std::string()); } else if (children.size() == 1) { return std::move(children[0]); } else { return nonstd_make_unique(children[0]->location(), std::move(children)); } } public: static std::unique_ptr parse(const std::string& template_str, const Options & options) { Parser parser(std::make_shared(template_str), options); auto tokens = parser.tokenize(); TemplateTokenIterator begin = tokens.begin(); auto it = begin; TemplateTokenIterator end = tokens.end(); return parser.parseTemplate(begin, it, end, /* full= */ true); } }; static Value simple_function(const std::string & fn_name, const std::vector & params, const std::function &, Value & args)> & fn) { std::map named_positions; for (size_t i = 0, n = params.size(); i < n; i++) named_positions[params[i]] = i; return Value::callable([=](const std::shared_ptr & context, Value::Arguments & args) -> Value { auto args_obj = Value::object(); std::vector provided_args(params.size()); for (size_t i = 0, n = args.args.size(); i < n; i++) { auto & arg = args.args[i]; if (i < params.size()) { args_obj.set(params[i], arg); provided_args[i] = true; } else { throw std::runtime_error("Too many positional params for " + fn_name); } } for (size_t i = 0, n = args.kwargs.size(); i < n; i++) { auto & arg = args.kwargs[i]; auto named_pos_it = named_positions.find(arg.first); if (named_pos_it == named_positions.end()) { throw std::runtime_error("Unknown argument " + arg.first + " for function " + fn_name); } provided_args[named_pos_it->second] = true; args_obj.set(arg.first, arg.second); } return fn(context, args_obj); }); } inline std::shared_ptr Context::builtins() { auto globals = Value::object(); globals.set("raise_exception", simple_function("raise_exception", { "message" }, [](const std::shared_ptr &, Value & args) -> Value { throw std::runtime_error(args.at("message").get()); })); globals.set("tojson", simple_function("tojson", { "value", "indent" }, [](const std::shared_ptr &, Value & args) { return Value(args.at("value").dump(args.get("indent", -1), /* tojson= */ true)); })); globals.set("items", simple_function("items", { "object" }, [](const std::shared_ptr &, Value & args) { auto items = Value::array(); if (args.contains("object")) { auto & obj = args.at("object"); if (!obj.is_null()) { for (auto & key : obj.keys()) { items.push_back(Value::array({key, obj.at(key)})); } } } return items; })); globals.set("last", simple_function("last", { "items" }, [](const std::shared_ptr &, Value & args) { auto items = args.at("items"); if (!items.is_array()) throw std::runtime_error("object is not a list"); if (items.size() == 0) return Value(); return items.at(items.size() - 1); })); globals.set("trim", simple_function("trim", { "text" }, [](const std::shared_ptr &, Value & args) { auto & text = args.at("text"); return text.is_null() ? text : Value(strip(text.get())); })); auto escape = simple_function("escape", { "text" }, [](const std::shared_ptr &, Value & args) { return Value(html_escape(args.at("text").get())); }); globals.set("e", escape); globals.set("escape", escape); globals.set("joiner", simple_function("joiner", { "sep" }, [](const std::shared_ptr &, Value & args) { auto sep = args.get("sep", ""); auto first = std::make_shared(true); return simple_function("", {}, [sep, first](const std::shared_ptr &, const Value &) -> Value { if (*first) { *first = false; return ""; } return sep; }); return Value(html_escape(args.at("text").get())); })); globals.set("count", simple_function("count", { "items" }, [](const std::shared_ptr &, Value & args) { return Value((int64_t) args.at("items").size()); })); globals.set("dictsort", simple_function("dictsort", { "value" }, [](const std::shared_ptr &, Value & args) { if (args.size() != 1) throw std::runtime_error("dictsort expects exactly 1 argument (TODO: fix implementation)"); auto & value = args.at("value"); auto keys = value.keys(); std::sort(keys.begin(), keys.end()); auto res = Value::array(); for (auto & key : keys) { res.push_back(Value::array({key, value.at(key)})); } return res; })); globals.set("join", simple_function("join", { "items", "d" }, [](const std::shared_ptr &, Value & args) { auto do_join = [](Value & items, const std::string & sep) { std::ostringstream oss; auto first = true; for (size_t i = 0, n = items.size(); i < n; ++i) { if (first) first = false; else oss << sep; oss << items.at(i).to_str(); } return Value(oss.str()); }; auto sep = args.get("d", ""); if (args.contains("items")) { auto & items = args.at("items"); return do_join(items, sep); } else { return simple_function("", {"items"}, [sep, do_join](const std::shared_ptr &, Value & args) { auto & items = args.at("items"); if (!items.to_bool() || !items.is_array()) throw std::runtime_error("join expects an array for items, got: " + items.dump()); return do_join(items, sep); }); } })); globals.set("namespace", Value::callable([=](const std::shared_ptr &, Value::Arguments & args) { auto ns = Value::object(); args.expectArgs("namespace", {0, 0}, {0, std::numeric_limits::max()}); for (auto & arg : args.kwargs) { ns.set(arg.first, arg.second); } return ns; })); auto equalto = simple_function("equalto", { "expected", "actual" }, [](const std::shared_ptr &, Value & args) -> Value { return args.at("actual") == args.at("expected"); }); globals.set("equalto", equalto); globals.set("==", equalto); globals.set("length", simple_function("length", { "items" }, [](const std::shared_ptr &, Value & args) -> Value { auto & items = args.at("items"); return (int64_t) items.size(); })); globals.set("safe", simple_function("safe", { "value" }, [](const std::shared_ptr &, Value & args) -> Value { return args.at("value"); })); globals.set("list", simple_function("list", { "items" }, [](const std::shared_ptr &, Value & args) -> Value { auto & items = args.at("items"); if (!items.is_array()) throw std::runtime_error("object is not iterable"); return items; })); globals.set("unique", simple_function("unique", { "items" }, [](const std::shared_ptr &, Value & args) -> Value { auto & items = args.at("items"); if (!items.is_array()) throw std::runtime_error("object is not iterable"); std::unordered_set seen; auto result = Value::array(); for (size_t i = 0, n = items.size(); i < n; i++) { auto pair = seen.insert(items.at(i)); if (pair.second) { result.push_back(items.at(i)); } } return result; })); auto make_filter = [](const Value & filter, Value & extra_args) -> Value { return simple_function("", { "value" }, [=](const std::shared_ptr & context, Value & args) { auto & value = args.at("value"); Value::Arguments actual_args; actual_args.args.emplace_back(value); for (size_t i = 0, n = extra_args.size(); i < n; i++) { actual_args.args.emplace_back(extra_args.at(i)); } return filter.call(context, actual_args); }); }; // https://jinja.palletsprojects.com/en/3.0.x/templates/#jinja-filters.reject globals.set("reject", Value::callable([=](const std::shared_ptr & context, Value::Arguments & args) { args.expectArgs("reject", {2, std::numeric_limits::max()}, {0, 0}); auto & items = args.args[0]; auto filter_fn = context->get(args.args[1]); if (filter_fn.is_null()) throw std::runtime_error("Undefined filter: " + args.args[1].dump()); auto filter_args = Value::array(); for (size_t i = 2, n = args.args.size(); i < n; i++) { filter_args.push_back(args.args[i]); } auto filter = make_filter(filter_fn, filter_args); auto res = Value::array(); for (size_t i = 0, n = items.size(); i < n; i++) { auto & item = items.at(i); Value::Arguments filter_args; filter_args.args.emplace_back(item); auto pred_res = filter.call(context, filter_args); if (!pred_res.to_bool()) { res.push_back(item); } } return res; })); globals.set("map", Value::callable([=](const std::shared_ptr & context, Value::Arguments & args) { auto res = Value::array(); if (args.args.size() == 1 && ((args.has_named("attribute") && args.kwargs.size() == 1) || (args.has_named("default") && args.kwargs.size() == 2))) { auto & items = args.args[0]; auto attr_name = args.get_named("attribute"); auto default_value = args.get_named("default"); for (size_t i = 0, n = items.size(); i < n; i++) { auto & item = items.at(i); auto attr = item.get(attr_name); res.push_back(attr.is_null() ? default_value : attr); } } else if (args.kwargs.empty() && args.args.size() >= 2) { auto fn = context->get(args.args[1]); if (fn.is_null()) throw std::runtime_error("Undefined filter: " + args.args[1].dump()); Value::Arguments filter_args { {Value()}, {} }; for (size_t i = 2, n = args.args.size(); i < n; i++) { filter_args.args.emplace_back(args.args[i]); } for (size_t i = 0, n = args.args[0].size(); i < n; i++) { auto & item = args.args[0].at(i); filter_args.args[0] = item; res.push_back(fn.call(context, filter_args)); } } else { throw std::runtime_error("Invalid or unsupported arguments for map"); } return res; })); globals.set("selectattr", Value::callable([=](const std::shared_ptr & context, Value::Arguments & args) { args.expectArgs("selectattr", {2, std::numeric_limits::max()}, {0, 0}); auto & items = args.args[0]; if (items.is_null()) return Value::array(); auto attr_name = args.args[1].get(); bool has_test = false; Value test_fn; Value::Arguments test_args {{Value()}, {}}; if (args.args.size() >= 3) { has_test = true; test_fn = context->get(args.args[2]); if (test_fn.is_null()) throw std::runtime_error("Undefined test: " + args.args[2].dump()); for (size_t i = 3, n = args.args.size(); i < n; i++) { test_args.args.emplace_back(args.args[i]); } test_args.kwargs = args.kwargs; } auto res = Value::array(); for (size_t i = 0, n = items.size(); i < n; i++) { auto & item = items.at(i); auto attr = item.get(attr_name); if (has_test) { test_args.args[0] = attr; if (test_fn.call(context, test_args).to_bool()) { res.push_back(item); } } else { res.push_back(attr); } } return res; })); globals.set("range", Value::callable([=](const std::shared_ptr &, Value::Arguments & args) { std::vector startEndStep(3); std::vector param_set(3); if (args.args.size() == 1) { startEndStep[1] = args.args[0].get(); param_set[1] = true; } else { for (size_t i = 0; i < args.args.size(); i++) { auto & arg = args.args[i]; auto v = arg.get(); startEndStep[i] = v; param_set[i] = true; } } for (auto & arg : args.kwargs) { size_t i; if (arg.first == "start") i = 0; else if (arg.first == "end") i = 1; else if (arg.first == "step") i = 2; else throw std::runtime_error("Unknown argument " + arg.first + " for function range"); if (param_set[i]) { throw std::runtime_error("Duplicate argument " + arg.first + " for function range"); } startEndStep[i] = arg.second.get(); param_set[i] = true; } if (!param_set[1]) { throw std::runtime_error("Missing required argument 'end' for function range"); } int64_t start = param_set[0] ? startEndStep[0] : 0; int64_t end = startEndStep[1]; int64_t step = param_set[2] ? startEndStep[2] : 1; auto res = Value::array(); if (step > 0) { for (int64_t i = start; i < end; i += step) { res.push_back(Value(i)); } } else { for (int64_t i = start; i > end; i += step) { res.push_back(Value(i)); } } return res; })); return std::make_shared(std::move(globals)); } inline std::shared_ptr Context::make(Value && values, const std::shared_ptr & parent) { return std::make_shared(values.is_null() ? Value::object() : std::move(values), parent); } } // namespace minja