# 7b pth llama --> gguf conversion, GQA/70b not supported # Only models with a single datafile are supported, like 7B # HF files required in the model dir: config.json tokenizer_config.json tokenizer.json tokenizer.model import gguf import gguf_namemap as tmap import os import sys import struct import json import numpy as np import torch from typing import Any, List from pathlib import Path from sentencepiece import SentencePieceProcessor #NDArray = np.ndarray[Any, Any] # compatible with python < 3.9 NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]' def count_model_parts(dir_model: str) -> int: num_parts = 0 for filename in os.listdir(dir_model): if filename.startswith("consolidated."): num_parts += 1 if num_parts > 0: print("gguf: found " + str(num_parts) + " model parts") return num_parts if len(sys.argv) < 3: print("Usage: convert-h5-to-ggml.py dir-model ftype\n") print(" ftype == 0 -> float32") print(" ftype == 1 -> float16") sys.exit(1) # output in the same directory as the model dir_model = sys.argv[1] last_dir = os.path.basename(os.path.normpath(dir_model)) # possible tensor data types # ftype == 0 -> float32 # ftype == 1 -> float16 # # map from ftype to string ftype_str = ["f32", "f16"] ftype = 1 if len(sys.argv) > 2: ftype = int(sys.argv[2]) if ftype < 0 or ftype > 1: print("Invalid ftype: " + str(ftype)) sys.exit(1) fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf" print("gguf: loading model "+last_dir) with open(dir_model + "/config.json", "r", encoding="utf-8") as f: hparams = json.load(f) if hparams["architectures"][0] != "LlamaForCausalLM": print("Model architecture not supported: " + hparams["architectures"][0]) sys.exit() # get number of model parts num_parts = count_model_parts(dir_model) if num_parts > 1: print("gguf: Only models with a single datafile are supported.") sys.exit() gguf_writer = gguf.GGUFWriter.open(fname_out) print("gguf: get model metadata") llm_arch = "llama" block_count = hparams["num_hidden_layers"] head_count = hparams["num_attention_heads"] if "num_key_value_heads" in hparams: head_count_kv = hparams["num_key_value_heads"] else: head_count_kv = head_count if "_name_or_path" in hparams: hf_repo = hparams["_name_or_path"] else: hf_repo="" gguf_writer.add_architecture(llm_arch) gguf_writer.add_name(last_dir) gguf_writer.add_file_type( "All tensors F32" if ftype == 0 else "Most tensors F16, some F32") gguf_writer.add_source_hf_repo(hf_repo) gguf_writer.add_tensor_data_layout(llm_arch, "Meta AI original pth") gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"]) gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"]) gguf_writer.add_block_count(llm_arch, block_count) gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"]) gguf_writer.add_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"]) gguf_writer.add_head_count(llm_arch, head_count) gguf_writer.add_head_count_kv(llm_arch, head_count_kv) gguf_writer.add_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"]) # TOKENIZATION print("gguf: get tokenizer metadata") tokens: List[bytes] = [] scores: List[float] = [] toktypes: List[int] = [] if Path(dir_model + "/tokenizer.model").is_file(): # vocab type sentencepiece print("gguf: get sentencepiece tokenizer vocab and scores") tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model") for i in range(tokenizer.vocab_size()): text: bytes score: float piece = tokenizer.id_to_piece(i) text = piece.encode("utf-8") score = tokenizer.get_score(i) toktype = 1 # defualt to normal token type if tokenizer.is_unknown(i): toktype = 2 if tokenizer.is_control(i): toktype = 3 # TODO: How to determinate if a token is user defined? # ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto # if tokenizer.is_user_defined(i): toktype = 4 if tokenizer.is_unused(i): toktype = 5 if tokenizer.is_byte(i): toktype = 6 tokens.append(text) scores.append(score) toktypes.append(toktype) gguf_writer.add_tokenizer_model("llama") gguf_writer.add_token_list(tokens) gguf_writer.add_token_scores(scores) gguf_writer.add_token_types(toktypes) if Path(dir_model + "/tokenizer.json").is_file(): with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f: tokenizer = json.load(f) if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file(): print("gguf: get special token ids") with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f: tokenizer_config = json.load(f) # find special token ids if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None: for key in tokenizer["added_tokens"]: if key["content"] == tokenizer_config["bos_token"]["content"]: gguf_writer.add_bos_token_id(key["id"]) if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] != None: for key in tokenizer["added_tokens"]: if key["content"] == tokenizer_config["eos_token"]["content"]: gguf_writer.add_eos_token_id(key["id"]) if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] != None: for key in tokenizer["added_tokens"]: if key["content"] == tokenizer_config["unk_token"]["content"]: gguf_writer.add_unk_token_id(key["id"]) if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] != None: for key in tokenizer["added_tokens"]: if key["content"] == tokenizer_config["sep_token"]["content"]: gguf_writer.add_sep_token_id(key["id"]) if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] != None: for key in tokenizer["added_tokens"]: if key["content"] == tokenizer_config["pad_token"]["content"]: gguf_writer.add_pad_token_id(key["id"]) # TENSORS tensor_map = tmap.get_tensor_namemap(block_count) # tensor info print("gguf: get tensor metadata") part_names = ( f"consolidated.{n:02}.pth" for n in range(0, num_parts) ) for part_name in part_names: print("gguf: loading model part '"+ part_name + "'") model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") for name in model_part.keys(): data = model_part[name] # we don't need these if name == "rope.freqs": continue # convert any unsupported data types to float32 if data.dtype != torch.float16 and data.dtype != torch.float32: data = data.to(torch.float32) data = data.squeeze().numpy() # map tensor names if name.endswith(".weight") and name[:-7] in tensor_map: name = tensor_map[name[:-7]] + ".weight" elif name.endswith(".bias") and name[:-5] in tensor_map: name = tensor_map[name[:-5]] + ".bias" else: print( "Can not map tensor '" + name + "'" ) sys.exit() n_dims = len(data.shape) data_dtype = data.dtype # if f32 desired, convert any float16 to float32 if ftype == 0 and data.dtype == np.float16: data_dtype = np.float32 # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 if ftype == 1 and data_dtype == np.float16 and n_dims == 1: data_dtype = np.float32 # if f16 desired, convert any float32 2-dim weight tensors to float16 if ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data_dtype = np.float16 data_nbytes = data.size * 2 if data_dtype == np.float16 else data.size * 4 gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes) print("gguf: write header") gguf_writer.write_header_to_file() print("gguf: write metadata") gguf_writer.write_kv_data_to_file() print("gguf: write tensor metadata") gguf_writer.write_ti_data_to_file() # tensor data print("gguf: convert and write tensor data") part_names = ( f"consolidated.{n:02}.pth" for n in range(0, num_parts) ) for part_name in part_names: print("gguf: loading model part '"+ part_name + "'") model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") for name in model_part.keys(): data = model_part[name] old_dtype = data.dtype # we don't need these if name == "rope.freqs": continue # convert any unsupported data types to float32 if data.dtype != torch.float16 and data.dtype != torch.float32: data = data.to(torch.float32) data = data.squeeze().numpy() # map tensor names if name.endswith(".weight") and name[:-7] in tensor_map: name = tensor_map[name[:-7]] + ".weight" elif name.endswith(".bias") and name[:-5] in tensor_map: name = tensor_map[name[:-5]] + ".bias" else: print( "Can not map tensor '" + name + "'" ) sys.exit() n_dims = len(data.shape) data_dtype = data.dtype # if f32 desired, convert any float16 to float32 if ftype == 0 and data.dtype == np.float16: data = data.astype(np.float32) # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 if ftype == 1 and data_dtype == np.float16 and n_dims == 1: data = data.astype(np.float32) # if f16 desired, convert any float32 2-dim weight tensors to float16 if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) print( name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype)) gguf_writer.write_tensor_to_file(data) gguf_writer.close() print("gguf: model successfully exported to '" + fname_out + "'") print("")