#include "common.h" #include "llama.h" #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif static std::vector split_lines(const std::string & s) { std::string line; std::vector lines; std::stringstream ss(s); while (std::getline(ss, line)) { lines.push_back(line); } return lines; } static void batch_add_seq(llama_batch & batch, const std::vector & tokens, int seq_id) { for (size_t i = 0; i < tokens.size(); i++) { llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1); } } static void normalize(const float * vec, float * out, int n) { float norm = 0; for (int i = 0; i < n; i++) { norm += vec[i] * vec[i]; } norm = sqrt(norm); for (int i = 0; i < n; i++) { out[i] = vec[i] / norm; } } static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) { // clear previous kv_cache values (irrelevant for embeddings) llama_kv_cache_clear(ctx); // run model fprintf(stderr, "%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq); if (llama_decode(ctx, batch) < 0) { fprintf(stderr, "%s : failed to decode\n", __func__); } // normalize on copy for (int i = 0; i < batch.n_tokens; i++) { if (!batch.logits[i]) { continue; } // try to get sequence embeddings - supported only when pooling_type is not NONE const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]); if (embd == NULL) { embd = llama_get_embeddings_ith(ctx, i); if (embd == NULL) { fprintf(stderr, "%s: failed to get embeddings for token %d\n", __func__, i); continue; } } float * out = output + batch.seq_id[i][0] * n_embd; normalize(embd, out, n_embd); } } int main(int argc, char ** argv) { gpt_params params; if (!gpt_params_parse(argc, argv, params)) { return 1; } params.embedding = true; print_build_info(); if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); } fprintf(stderr, "%s: seed = %u\n", __func__, params.seed); std::mt19937 rng(params.seed); if (params.random_prompt) { params.prompt = gpt_random_prompt(rng); } llama_backend_init(); llama_numa_init(params.numa); llama_model * model; llama_context * ctx; // load the model std::tie(model, ctx) = llama_init_from_gpt_params(params); if (model == NULL) { fprintf(stderr, "%s: error: unable to load model\n", __func__); return 1; } const int n_ctx_train = llama_n_ctx_train(model); const int n_ctx = llama_n_ctx(ctx); if (n_ctx > n_ctx_train) { fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx); } // print system information { fprintf(stderr, "\n"); fprintf(stderr, "%s\n", get_system_info(params).c_str()); } // split the prompt into lines std::vector prompts = split_lines(params.prompt); // max batch size const uint64_t n_batch = params.n_batch; GGML_ASSERT(params.n_batch == params.n_ctx); // tokenize the prompts and trim std::vector> inputs; for (const auto & prompt : prompts) { auto inp = ::llama_tokenize(ctx, prompt, true); if (inp.size() > n_batch) { inp.resize(n_batch); } inputs.push_back(inp); } // tokenization stats if (params.verbose_prompt) { for (int i = 0; i < (int) inputs.size(); i++) { fprintf(stderr, "%s: prompt %d: '%s'\n", __func__, i, prompts[i].c_str()); fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, inputs[i].size()); for (int j = 0; j < (int) inputs[i].size(); j++) { fprintf(stderr, "%6d -> '%s'\n", inputs[i][j], llama_token_to_piece(ctx, inputs[i][j]).c_str()); } fprintf(stderr, "\n\n"); } } // initialize batch const int n_prompts = prompts.size(); struct llama_batch batch = llama_batch_init(n_batch, 0, 1); // allocate output const int n_embd = llama_n_embd(model); std::vector embeddings(n_prompts * n_embd, 0); float * emb = embeddings.data(); // break into batches int p = 0; // number of prompts processed already int s = 0; // number of prompts in current batch for (int k = 0; k < n_prompts; k++) { // clamp to n_batch tokens auto & inp = inputs[k]; const uint64_t n_toks = inp.size(); // encode if at capacity if (batch.n_tokens + n_toks > n_batch) { float * out = emb + p * n_embd; batch_decode(ctx, batch, out, s, n_embd); llama_batch_clear(batch); p += s; s = 0; } // add to batch batch_add_seq(batch, inp, s); s += 1; } // final batch float * out = emb + p * n_embd; batch_decode(ctx, batch, out, s, n_embd); // print first 3 embeddings for (int j = 0; j < std::min(3, n_prompts); j++) { fprintf(stderr, "embedding %d: ", j); for (int i = 0; i < n_embd; i++) { fprintf(stderr, "%f ", emb[j * n_embd + i]); } fprintf(stderr, "\n\n"); } fprintf(stderr, "\n"); // clean up llama_print_timings(ctx); llama_free(ctx); llama_free_model(model); llama_backend_free(); return 0; }