### Server benchmark tools Benchmark is using [k6](https://k6.io/). ##### Install k6 and sse extension SSE is not supported by default in k6, you have to build k6 with the [xk6-sse](https://github.com/phymbert/xk6-sse) extension. Example (assuming golang >= 1.21 is installed): ```shell go install go.k6.io/xk6/cmd/xk6@latest $GOPATH/bin/xk6 build master \ --with github.com/phymbert/xk6-sse ``` #### Download a dataset This dataset was originally proposed in [vLLM benchmarks](https://github.com/vllm-project/vllm/blob/main/benchmarks/README.md). ```shell wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json ``` #### Download a model Example for PHI-2 ```shell ../../../scripts/hf.sh --repo ggml-org/models --file phi-2/ggml-model-q4_0.gguf ``` #### Start the server The server must answer OAI Chat completion requests on `http://localhost:8080/v1` or according to the environment variable `SERVER_BENCH_URL`. Example: ```shell llama-server --host localhost --port 8080 \ --model ggml-model-q4_0.gguf \ --cont-batching \ --metrics \ --parallel 8 \ --batch-size 512 \ --ctx-size 4096 \ -ngl 33 ``` #### Run the benchmark For 500 chat completions request with 8 concurrent users during maximum 10 minutes, run: ```shell ./k6 run script.js --duration 10m --iterations 500 --vus 8 ``` The benchmark values can be overridden with: - `SERVER_BENCH_URL` server url prefix for chat completions, default `http://localhost:8080/v1` - `SERVER_BENCH_N_PROMPTS` total prompts to randomly select in the benchmark, default `480` - `SERVER_BENCH_MODEL_ALIAS` model alias to pass in the completion request, default `my-model` - `SERVER_BENCH_MAX_TOKENS` max tokens to predict, default: `512` - `SERVER_BENCH_DATASET` path to the benchmark dataset file - `SERVER_BENCH_MAX_PROMPT_TOKENS` maximum prompt tokens to filter out in the dataset: default `1024` - `SERVER_BENCH_MAX_CONTEXT` maximum context size of the completions request to filter out in the dataset: prompt + predicted tokens, default `2048` Note: the local tokenizer is just a string space split, real number of tokens will differ. Or with [k6 options](https://k6.io/docs/using-k6/k6-options/reference/): ```shell SERVER_BENCH_N_PROMPTS=500 k6 run script.js --duration 10m --iterations 500 --vus 8 ``` To [debug http request](https://k6.io/docs/using-k6/http-debugging/) use `--http-debug="full"`. #### Metrics Following metrics are available computed from the OAI chat completions response `usage`: - `llamacpp_tokens_second` Trend of `usage.total_tokens / request duration` - `llamacpp_prompt_tokens` Trend of `usage.prompt_tokens` - `llamacpp_prompt_tokens_total_counter` Counter of `usage.prompt_tokens` - `llamacpp_completion_tokens` Trend of `usage.completion_tokens` - `llamacpp_completion_tokens_total_counter` Counter of `usage.completion_tokens` - `llamacpp_completions_truncated_rate` Rate of completions truncated, i.e. if `finish_reason === 'length'` - `llamacpp_completions_stop_rate` Rate of completions stopped by the model, i.e. if `finish_reason === 'stop'` The script will fail if too many completions are truncated, see `llamacpp_completions_truncated_rate`. K6 metrics might be compared against [server metrics](../README.md), with: ```shell curl http://localhost:8080/metrics ``` ### Using the CI python script The `bench.py` script does several steps: - start the server - define good variable for k6 - run k6 script - extract metrics from prometheus It aims to be used in the CI, but you can run it manually: ```shell LLAMA_SERVER_BIN_PATH=../../../cmake-build-release/bin/llama-server python bench.py \ --runner-label local \ --name local \ --branch `git rev-parse --abbrev-ref HEAD` \ --commit `git rev-parse HEAD` \ --scenario script.js \ --duration 5m \ --hf-repo ggml-org/models \ --hf-file phi-2/ggml-model-q4_0.gguf \ --model-path-prefix models \ --parallel 4 \ -ngl 33 \ --batch-size 2048 \ --ubatch-size 256 \ --ctx-size 4096 \ --n-prompts 200 \ --max-prompt-tokens 256 \ --max-tokens 256 ```