#include "ggml-blas.h" #include "ggml-backend-impl.h" #include #include #if defined(GGML_USE_ACCELERATE) # include #elif defined(GGML_BLAS_USE_MKL) # include #elif defined(GGML_BLAS_USE_BLIS) # include #elif defined(GGML_BLAS_USE_NVPL) # include #else # include #endif struct ggml_backend_blas_context { int n_threads = GGML_DEFAULT_N_THREADS; std::unique_ptr work_data; size_t work_size = 0; #ifndef GGML_USE_OPENMP std::vector> tasks; #endif }; // helper function to determine if it is better to use BLAS or not // for large matrices, BLAS is faster static bool ggml_backend_blas_use_blas(const struct ggml_tensor * dst) { const struct ggml_tensor * src0 = dst->src[0]; const struct ggml_tensor * src1 = dst->src[1]; const int64_t ne10 = src1->ne[0]; const int64_t ne0 = dst->ne[0]; const int64_t ne1 = dst->ne[1]; // TODO: find the optimal values for these if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && src1->type == GGML_TYPE_F32 && (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) { /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/ return true; } return false; } static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) { const struct ggml_tensor * src0 = dst->src[0]; const struct ggml_tensor * src1 = dst->src[1]; GGML_TENSOR_BINARY_OP_LOCALS const enum ggml_type type = src0->type; GGML_ASSERT(ne0 == ne01); GGML_ASSERT(ne1 == ne11); GGML_ASSERT(ne2 == ne12); GGML_ASSERT(ne3 == ne13); // we don't support permuted src0 or src1 GGML_ASSERT(nb00 == ggml_type_size(type)); GGML_ASSERT(nb10 == ggml_type_size(src1->type)); // dst cannot be transposed or permuted GGML_ASSERT(nb0 == sizeof(float)); GGML_ASSERT(nb0 <= nb1); GGML_ASSERT(nb1 <= nb2); GGML_ASSERT(nb2 <= nb3); // broadcast factors const int64_t r2 = ne12/ne02; const int64_t r3 = ne13/ne03; const int64_t ne_plane = ne01*ne00; const size_t desired_wsize = type == GGML_TYPE_F32 ? 0 : ne03*ne02*ne_plane*sizeof(float); if (ctx->work_size < desired_wsize) { ctx->work_data.reset(new char[desired_wsize]); ctx->work_size = desired_wsize; } void * wdata = ctx->work_data.get(); // convert src0 to float if (type != GGML_TYPE_F32) { ggml_type_traits_t type_traits = ggml_internal_get_type_traits(type); ggml_to_float_t const to_float = type_traits.to_float; for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { const void * x = (char *) src0->data + i02*nb02 + i03*nb03; float * const wplane = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane; const int min_cols_per_thread = 4096; const int min_rows_per_thread = std::max((int)(min_cols_per_thread/ne00), 1); const int n_threads = std::max(std::min(ctx->n_threads, (int)(ne01/min_rows_per_thread)), 1); #ifdef GGML_USE_OPENMP #pragma omp parallel for num_threads(n_threads) for (int64_t i01 = 0; i01 < ne01; i01++) { to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00); } #else for (int i = 1; i < n_threads; i++) { const int64_t start = i*ne01/n_threads; const int64_t end = (i + 1)*ne01/n_threads; if (start < end) { ctx->tasks.push_back(std::async(std::launch::async, [=]() { for (int64_t i01 = start; i01 < end; i01++) { to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00); } })); } } { // reuse the current thread for the first task const int64_t start = 0; const int64_t end = ne01/n_threads; for (int64_t i01 = start; i01 < end; i01++) { to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00); } } #endif } } #ifndef GGML_USE_OPENMP // wait for all tasks to finish for (auto & task : ctx->tasks) { task.get(); } ctx->tasks.clear(); #endif } #if defined(OPENBLAS_VERSION) openblas_set_num_threads(ctx->n_threads); #endif #if defined(GGML_BLAS_USE_BLIS) bli_thread_set_num_threads(ctx->n_threads); #endif #if defined(GGML_BLAS_USE_NVPL) nvpl_blas_set_num_threads(ctx->n_threads); #endif for (int64_t i13 = 0; i13 < ne13; i13++) { for (int64_t i12 = 0; i12 < ne12; i12++) { const int64_t i03 = i13/r3; const int64_t i02 = i12/r2; const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03); const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13); float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3); if (type != GGML_TYPE_F32) { x = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane; } cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, ne1, ne01, ne10, 1.0f, y, ne10, x, ne00, 0.0f, d, ne01); } } } static void ggml_backend_blas_out_prod(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) { const struct ggml_tensor * src0 = dst->src[0]; const struct ggml_tensor * src1 = dst->src[1]; GGML_TENSOR_BINARY_OP_LOCALS GGML_ASSERT(ne0 == ne00); GGML_ASSERT(ne1 == ne10); GGML_ASSERT(ne2 == ne02); GGML_ASSERT(ne02 == ne12); GGML_ASSERT(ne3 == ne13); GGML_ASSERT(ne03 == ne13); // we don't support permuted src0 or src1 GGML_ASSERT(nb00 == sizeof(float)); // dst cannot be transposed or permuted GGML_ASSERT(nb0 == sizeof(float)); // GGML_ASSERT(nb0 <= nb1); // GGML_ASSERT(nb1 <= nb2); // GGML_ASSERT(nb2 <= nb3); // Arguments to ggml_compute_forward_out_prod (expressed as major,minor) // src0: (k,n) // src1: (k,m) // dst: (m,n) // // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f) // Also expressed as (major,minor) // a: (m,k): so src1 transposed // b: (k,n): so src0 // c: (m,n) // // However, if ggml_is_transposed(src1) is true, then // src1->data already contains a transposed version, so sgemm mustn't // transpose it further. int n = src0->ne[0]; int k = src0->ne[1]; int m = src1->ne[0]; CBLAS_TRANSPOSE transposeA; int lda; if (!ggml_is_transposed(src1)) { transposeA = CblasTrans; lda = m; } else { transposeA = CblasNoTrans; lda = k; } float * a = (float *) ((char *) src1->data); float * b = (float *) ((char *) src0->data); float * c = (float *) ((char *) dst->data); cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n); GGML_UNUSED(ctx); } // backend interface GGML_CALL static const char * ggml_backend_blas_name(ggml_backend_t backend) { return "BLAS"; GGML_UNUSED(backend); } GGML_CALL static void ggml_backend_blas_free(ggml_backend_t backend) { ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context; delete ctx; delete backend; } GGML_CALL static ggml_backend_buffer_type_t ggml_backend_blas_get_default_buffer_type(ggml_backend_t backend) { return ggml_backend_cpu_buffer_type(); GGML_UNUSED(backend); } GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context; for (int i = 0; i < cgraph->n_nodes; i++) { struct ggml_tensor * node = cgraph->nodes[i]; switch (node->op) { case GGML_OP_MUL_MAT: ggml_backend_blas_mul_mat(ctx, node); break; case GGML_OP_OUT_PROD: ggml_backend_blas_out_prod(ctx, node); break; case GGML_OP_NONE: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: break; default: GGML_ABORT("%s: unsupported op %s\n", __func__, ggml_op_desc(node)); } } return GGML_STATUS_SUCCESS; GGML_UNUSED(backend); } GGML_CALL static bool ggml_backend_blas_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { const struct ggml_tensor * src0 = op->src[0]; const struct ggml_tensor * src1 = op->src[1]; return (op->op == GGML_OP_MUL_MAT && ggml_backend_blas_use_blas(op)) || (op->op == GGML_OP_OUT_PROD && op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && ggml_is_matrix(src0) && ggml_is_matrix(src1) && ggml_is_contiguous(src0) && (ggml_is_contiguous(src1) || ggml_is_transposed(src1))); GGML_UNUSED(backend); } GGML_CALL static bool ggml_backend_blas_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) { return ggml_backend_buft_is_host(buft); GGML_UNUSED(backend); } static struct ggml_backend_i blas_backend_i = { /* .get_name = */ ggml_backend_blas_name, /* .free = */ ggml_backend_blas_free, /* .get_default_buffer_type = */ ggml_backend_blas_get_default_buffer_type, /* .set_tensor_async = */ NULL, /* .get_tensor_async = */ NULL, /* .cpy_tensor_async = */ NULL, /* .synchronize = */ NULL, /* .graph_plan_create = */ NULL, /* .graph_plan_free = */ NULL, /* .graph_plan_update = */ NULL, /* .graph_plan_compute = */ NULL, /* .graph_compute = */ ggml_backend_blas_graph_compute, /* .supports_op = */ ggml_backend_blas_supports_op, /* .supports_buft = */ ggml_backend_blas_supports_buft, /* .offload_op = */ NULL, /* .event_new = */ NULL, /* .event_free = */ NULL, /* .event_record = */ NULL, /* .event_wait = */ NULL, /* .event_synchronize = */ NULL, }; static ggml_guid_t ggml_backend_blas_guid(void) { static ggml_guid guid = { 0x12, 0xa8, 0xae, 0xf4, 0xc0, 0x1e, 0x61, 0x97, 0x8f, 0xeb, 0x33, 0x04, 0xa1, 0x33, 0x51, 0x2d }; return &guid; } ggml_backend_t ggml_backend_blas_init(void) { ggml_backend_blas_context * ctx = new ggml_backend_blas_context; ggml_backend_t backend = new ggml_backend { /* .guid = */ ggml_backend_blas_guid(), /* .interface = */ blas_backend_i, /* .context = */ ctx, }; #if !defined(NDEBUG) && defined(OPENBLAS_VERSION) && defined(GGML_USE_OPENMP) if (openblas_get_parallel() != OPENBLAS_OPENMP) { fprintf(stderr, "%s: warning: ggml is using OpenMP, but OpenBLAS was compiled without OpenMP support\n", __func__); } #endif #if !defined(NDEBUG) && defined(BLIS_ENABLE_CBLAS) && defined(GGML_USE_OPENMP) && !defined(BLIS_ENABLE_OPENMP) fprintf(stderr, "%s: warning: ggml is using OpenMP, but BLIS was compiled without OpenMP support\n", __func__); #endif return backend; } GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend) { return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_blas_guid()); } void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads) { GGML_ASSERT(ggml_backend_is_blas(backend_blas)); ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend_blas->context; ctx->n_threads = n_threads; }