#include "ggml-backend.h" #include #include #include #include #include #define UNUSED(x) (void)(x) // backend buffer struct ggml_buffer ggml_backend_alloc_buffer(struct ggml_backend * backend, size_t size, size_t max_tensors) { struct ggml_buffer buffer; buffer.mem_size = ggml_tensor_overhead() * max_tensors; buffer.mem_buffer = malloc(buffer.mem_size); buffer.backend = backend; size += 128 * max_tensors; // alignment overhead buffer.backend_buffer = backend->interface->alloc_buffer(backend->context, size); return buffer; } void ggml_backend_free_buffer(struct ggml_buffer * buffer) { struct ggml_backend * backend = buffer->backend; backend->interface->free_buffer(backend->context, buffer->backend_buffer); free(buffer->mem_buffer); } // backend copy static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { if (a->type != b->type) { return false; } for (int i = 0; i < GGML_MAX_DIMS; i++) { if (a->ne[i] != b->ne[i]) { return false; } if (a->nb[i] != b->nb[i]) { return false; } } return true; } void ggml_backend_cpy_tensor(struct ggml_tensor * dst, struct ggml_tensor * src) { //printf("src: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", src->name, (int)src->ne[0], (int)src->ne[1], (int)src->ne[2], (int)src->ne[3], (int)src->nb[0], (int)src->nb[1], (int)src->nb[2], (int)src->nb[3]); //printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]); GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts"); // printf("cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src)); if (src == dst) { return; } if (dst->backend->interface->cpy_tensor_from != NULL) { dst->backend->interface->cpy_tensor_from(dst->backend->context, src, dst); } else if (src->backend->interface->cpy_tensor_to != NULL) { src->backend->interface->cpy_tensor_to(src->backend->context, src, dst); } else { // not ideal, but shouldn't be hit when copying from/to CPU // TODO: print a performance warning in debug builds size_t nbytes = ggml_nbytes(src); void * data = malloc(nbytes); ggml_backend_get_tensor(src, data, 0, nbytes); ggml_backend_set_tensor(dst, data, 0, nbytes); free(data); } } // backend CPU struct ggml_backend_cpu_context { int n_threads; void * work_data; size_t work_size; }; static const char * ggml_backend_cpu_name(ggml_backend_context_t ctx) { return "CPU"; UNUSED(ctx); } static void ggml_backend_cpu_free_context(ggml_backend_context_t ctx) { struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)ctx; free(cpu_ctx->work_data); free(ctx); } struct cpu_backend_buffer { void * data; size_t offset; size_t size; }; static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512 static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) { assert(alignment && !(alignment & (alignment - 1))); // power of 2 size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment; return offset + align; } static ggml_backend_buffer_t ggml_backend_cpu_alloc_buffer(ggml_backend_context_t ctx, size_t size) { struct cpu_backend_buffer * buffer = malloc(sizeof(struct cpu_backend_buffer)); buffer->data = malloc(size); buffer->offset = aligned_offset(buffer->data, 0, TENSOR_ALIGNMENT); buffer->size = size; return buffer; UNUSED(ctx); } static void ggml_backend_cpu_free_buffer(ggml_backend_context_t ctx, ggml_backend_buffer_t buffer) { struct cpu_backend_buffer * cpu_buffer = (struct cpu_backend_buffer *)buffer; free(cpu_buffer->data); free(cpu_buffer); UNUSED(ctx); } static void ggml_backend_cpu_reset_buffer(ggml_backend_context_t ctx, ggml_backend_buffer_t buffer) { struct cpu_backend_buffer * cpu_buffer = (struct cpu_backend_buffer *)buffer; cpu_buffer->offset = aligned_offset(cpu_buffer->data, 0, TENSOR_ALIGNMENT); UNUSED(ctx); } static void ggml_backend_cpu_alloc_tensor(ggml_backend_context_t ctx, ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { struct cpu_backend_buffer * cpu_buffer = (struct cpu_backend_buffer *)buffer; // TODO: make this error recoverable if (cpu_buffer->offset + ggml_nbytes(tensor) > cpu_buffer->size) { fprintf(stderr, "%s: not enough space in the buffer (needed %zu, available %zu)\n", __func__, ggml_nbytes(tensor), cpu_buffer->size - cpu_buffer->offset); GGML_ASSERT(false); } tensor->data = (char*)cpu_buffer->data + cpu_buffer->offset; cpu_buffer->offset = aligned_offset(cpu_buffer->data, cpu_buffer->offset + ggml_nbytes(tensor), TENSOR_ALIGNMENT); UNUSED(ctx); } static void ggml_backend_cpu_set_tensor_async(ggml_backend_context_t ctx, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds"); GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); memcpy((char *)tensor->data + offset, data, size); UNUSED(ctx); } static void ggml_backend_cpu_get_tensor_async(ggml_backend_context_t ctx, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds"); GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); memcpy(data, (const char *)tensor->data + offset, size); UNUSED(ctx); } static void ggml_backend_cpu_synchronize(ggml_backend_context_t ctx) { UNUSED(ctx); } static void ggml_backend_cpu_cpy_tensor_from(ggml_backend_context_t ctx, struct ggml_tensor * src, struct ggml_tensor * dst) { ggml_backend_get_tensor(src, dst->data, 0, ggml_nbytes(src)); UNUSED(ctx); } static void ggml_backend_cpu_cpy_tensor_to(ggml_backend_context_t ctx, struct ggml_tensor * src, struct ggml_tensor * dst) { ggml_backend_set_tensor_async(dst, src->data, 0, ggml_nbytes(src)); UNUSED(ctx); } struct ggml_backend_cpu_plan { struct ggml_cplan cplan; struct ggml_cgraph cgraph; }; static ggml_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_context_t ctx, struct ggml_cgraph * cgraph) { struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)ctx; struct ggml_backend_cpu_plan * cpu_plan = malloc(sizeof(struct ggml_backend_cpu_plan)); cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads); cpu_plan->cgraph = *cgraph; if (cpu_plan->cplan.work_size > 0) { cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size); } return cpu_plan; } static void ggml_backend_cpu_graph_plan_free(ggml_backend_context_t ctx, ggml_graph_plan_t plan) { struct ggml_backend_cpu_plan * cpu_plan = (struct ggml_backend_cpu_plan *)plan; free(cpu_plan->cplan.work_data); free(cpu_plan); UNUSED(ctx); } static void ggml_backend_cpu_graph_plan_compute(ggml_backend_context_t ctx, ggml_graph_plan_t plan) { struct ggml_backend_cpu_plan * cpu_plan = (struct ggml_backend_cpu_plan *)plan; ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan); UNUSED(ctx); } static void ggml_backend_cpu_graph_compute(ggml_backend_context_t ctx, struct ggml_cgraph * cgraph) { struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)ctx; struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads); if (cpu_ctx->work_size < cplan.work_size) { // TODO: may be faster to free and use malloc to avoid the copy cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size); cpu_ctx->work_size = cplan.work_size; } cplan.work_data = cpu_ctx->work_data; ggml_graph_compute(cgraph, &cplan); } static struct ggml_backend_interface cpu_backend_interface = { /* .get_name = */ ggml_backend_cpu_name, /* .free_context = */ ggml_backend_cpu_free_context, /* .alloc_buffer = */ ggml_backend_cpu_alloc_buffer, /* .free_buffer = */ ggml_backend_cpu_free_buffer, /* .reset_buffer = */ ggml_backend_cpu_reset_buffer, /* .alloc_tensor = */ ggml_backend_cpu_alloc_tensor, /* .set_tensor_async = */ ggml_backend_cpu_set_tensor_async, /* .get_tensor_async = */ ggml_backend_cpu_get_tensor_async, /* .synchronize = */ ggml_backend_cpu_synchronize, /* .cpy_tensor_from = */ ggml_backend_cpu_cpy_tensor_from, /* .cpy_tensor_to = */ ggml_backend_cpu_cpy_tensor_to, /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create, /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free, /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute, /* .graph_compute = */ ggml_backend_cpu_graph_compute }; struct ggml_backend ggml_backend_cpu_init(void) { struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context)); ctx->n_threads = GGML_DEFAULT_N_THREADS; ctx->work_data = NULL; ctx->work_size = 0; struct ggml_backend cpu_backend = { /* .interface = */ &cpu_backend_interface, /* .context = */ ctx }; return cpu_backend; } void ggml_backend_cpu_set_n_threads(struct ggml_backend * backend_cpu, int n_threads) { struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context; ctx->n_threads = n_threads; } // splits struct ggml_graph_splits ggml_graph_split_init(void) { struct ggml_graph_splits splits = {0}; return splits; } // TODO: this can be removed after allocating the graphs in a ggml_context void ggml_graph_splits_free(struct ggml_graph_splits * splits) { for (int i = 0; i < splits->n_splits; i++) { if (splits->splits[i].graph) { free(splits->splits[i].graph); } } } void ggml_graph_splits_add_n_va(struct ggml_graph_splits * splits, struct ggml_tensor *** inputs, struct ggml_context * ctx, const char * fmt, va_list args) { GGML_ASSERT(splits->n_splits < GGML_MAX_SPLITS); struct ggml_graph_split * split = &splits->splits[splits->n_splits]; if ((*inputs[0])->backend == ggml_get_ctx_backend(ctx)) { if (splits->n_splits > 0) { char name[GGML_MAX_NAME - 1]; // silence -Wformat-truncation vsnprintf(name, sizeof(name), fmt, args); char new_name[GGML_MAX_NAME]; snprintf(new_name, sizeof(new_name), "%s,%s", splits->splits[splits->n_splits - 1].name, name); strcpy(splits->splits[splits->n_splits - 1].name, new_name); return; } // always add the first split int i = 0; while (inputs[i] != NULL) { GGML_ASSERT(i < GGML_MAX_SPLIT_INPUTS); split->src_inputs[i] = *inputs[i]; split->dst_inputs[i] = *inputs[i]; i++; } split->src_inputs[i] = NULL; split->dst_inputs[i] = NULL; } else { int i = 0; while (inputs[i] != NULL) { GGML_ASSERT(i < GGML_MAX_SPLIT_INPUTS); split->src_inputs[i] = *inputs[i]; split->dst_inputs[i] = ggml_dup_tensor(ctx, *inputs[i]); // TODO: maybe support different layings in ggml_backend_cpy_tensor instead for (int j = 0; j < GGML_MAX_DIMS; j++) { split->dst_inputs[i]->nb[j] = split->src_inputs[i]->nb[j]; } ggml_set_name(split->dst_inputs[i], ggml_get_name(*inputs[i])); *inputs[i] = split->dst_inputs[i]; i++; } split->src_inputs[i] = NULL; split->dst_inputs[i] = NULL; } vsnprintf(split->name, GGML_MAX_NAME, fmt, args); split->graph = NULL; splits->n_splits++; } void ggml_graph_splits_add_n(struct ggml_graph_splits * splits, struct ggml_tensor *** input, struct ggml_context * ctx, const char * fmt, ...) { va_list args; va_start(args, fmt); ggml_graph_splits_add_n_va(splits, input, ctx, fmt, args); va_end(args); } void ggml_graph_splits_add(struct ggml_graph_splits * splits, struct ggml_tensor ** input, struct ggml_context * ctx, const char * fmt, ...) { va_list args; va_start(args, fmt); ggml_graph_splits_add_n_va(splits, (struct ggml_tensor**[2]){ input, NULL }, ctx, fmt, args); va_end(args); } void ggml_graph_splits_build_forward(struct ggml_graph_splits * splits, struct ggml_tensor * output) { struct ggml_tensor *last_outputs[2] = { output, NULL }; struct ggml_tensor ** outputs; for (int i = 0; i < splits->n_splits; i++) { struct ggml_graph_split * split = &splits->splits[i]; if (i < splits->n_splits - 1) { outputs = splits->splits[i + 1].src_inputs; } else { outputs = last_outputs; } // build the graph // TODO: allocate graphs in context split->graph = (struct ggml_cgraph *) malloc(sizeof(struct ggml_cgraph)); memset(split->graph, 0, sizeof(struct ggml_cgraph)); // *split->graph = ggml_build_forward_range(output, split->input); // *split->graph = ggml_build_forward(output); for (int j = 0; outputs[j] != NULL; j++) { ggml_build_forward_expand(split->graph, outputs[j]); } for (int j = 1; j < split->graph->n_nodes; j++) { if (split->graph->nodes[j]->backend != split->graph->nodes[0]->backend) { fprintf(stderr, "split %s: node %s has different backend (%s) than the first node (%s)\n", split->name, split->graph->nodes[j]->name, ggml_backend_name(split->graph->nodes[j]->backend), ggml_backend_name(split->graph->nodes[0]->backend)); } } for (int j = 1; j < split->graph->n_leafs; j++) { if (split->graph->leafs[j]->backend != split->graph->leafs[0]->backend) { fprintf(stderr, "split %s: leaf %s has different backend (%s) than the first leaf (%s)\n", split->name, split->graph->leafs[j]->name, ggml_backend_name(split->graph->leafs[j]->backend), ggml_backend_name(split->graph->leafs[0]->backend)); } } } // close graphs for (int i = 0; i < splits->n_splits; i++) { struct ggml_graph_split * split = &splits->splits[i]; ggml_graph_close(split->graph); } } void ggml_graph_splits_compute(struct ggml_graph_splits * splits) { uint64_t copy_us = 0; uint64_t compute_cpu_us = 0; uint64_t compute_gpu_us = 0; int n_nodes = 0; for (int i = 0; i < splits->n_splits; i++) { struct ggml_graph_split * split = &splits->splits[i]; //printf("computing split %i (%s) on backend %s (%i nodes)\n", i, split->name, ggml_backend_name(split->dst_inputs[0]->backend), split->graph->n_nodes); // copy the input tensor to the backend uint64_t copy_start_us = ggml_time_us(); for (int j = 0; split->src_inputs[j] != NULL; j++) { if (split->src_inputs[j] != split->dst_inputs[j]) { //printf("\tcopying tensor %d (%s) (%lu bytes)\n", j, split->src_inputs[j]->name, ggml_nbytes(split->src_inputs[j])); ggml_backend_cpy_tensor(split->dst_inputs[j], split->src_inputs[j]); } } // ggml_backend_synchronize(split->dst_inputs[0]->backend); copy_us += ggml_time_us() - copy_start_us; #if 0 char split_filename[GGML_MAX_NAME]; snprintf(split_filename, GGML_MAX_NAME, "split_%i.dot", i); ggml_graph_dump_dot(split->graph, NULL, split_filename); #endif uint64_t start = ggml_time_us(); ggml_backend_graph_compute(split->dst_inputs[0]->backend, split->graph); //ggml_backend_synchronize(split->dst_inputs[0]->backend); uint64_t end = ggml_time_us(); if (strcmp(ggml_backend_name(split->dst_inputs[0]->backend), "CPU") == 0) { compute_cpu_us += end - start; } else { compute_gpu_us += end - start; } n_nodes += split->graph->n_nodes; } //printf("splits: %d, nodes: %d, copy: %.2fms, compute_cpu: %.2fms, compute_gpu: %.2fms\n", splits->n_splits, n_nodes, copy_us / 1000.0, compute_cpu_us / 1000.0, compute_gpu_us / 1000.0); //exit(0); }