# llama.cpp for SYCL - [Background](#background) - [News](#news) - [OS](#os) - [Hardware](#hardware) - [Docker](#docker) - [Linux](#linux) - [Windows](#windows) - [Environment Variable](#environment-variable) - [Known Issue](#known-issues) - [Q&A](#qa) - [TODO](#todo) ## Background **SYCL** is a high-level parallel programming model designed to improve developers productivity writing code across various hardware accelerators such as CPUs, GPUs, and FPGAs. It is a single-source language designed for heterogeneous computing and based on standard C++17. **oneAPI** is an open ecosystem and a standard-based specification, supporting multiple architectures including but not limited to intel CPUs, GPUs and FPGAs. The key components of the oneAPI ecosystem include: - **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers. - **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL - Math Kernel Library)*. - **oneAPI LevelZero**: A high performance low level interface for fine-grained control over intel iGPUs and dGPUs. - **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets. ### Llama.cpp + SYCL The llama.cpp SYCL backend is designed to support **Intel GPU** firstly. Based on the cross-platform feature of SYCL, it could support other vendor GPUs: Nvidia GPU (*AMD GPU coming*). When targeting **Intel CPU**, it is recommended to use llama.cpp for [Intel oneMKL](README.md#intel-onemkl) backend. It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, cuBLAS, etc..*. In beginning work, the oneAPI's [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) open-source migration tool (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) was used for this purpose. ## News - 2024.4 - Support data types: GGML_TYPE_IQ4_NL, GGML_TYPE_IQ4_XS, GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ3_S, GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M. - 2024.3 - Release binary files of Windows. - A blog is published: **Run LLM on all Intel GPUs Using llama.cpp**: [intel.com](https://www.intel.com/content/www/us/en/developer/articles/technical/run-llm-on-all-gpus-using-llama-cpp-artical.html) or [medium.com](https://medium.com/@jianyu_neo/run-llm-on-all-intel-gpus-using-llama-cpp-fd2e2dcbd9bd). - New base line is ready: [tag b2437](https://github.com/ggerganov/llama.cpp/tree/b2437). - Support multiple cards: **--split-mode**: [none|layer]; not support [row], it's on developing. - Support to assign main GPU by **--main-gpu**, replace $GGML_SYCL_DEVICE. - Support detecting all GPUs with level-zero and same top **Max compute units**. - Support OPs - hardsigmoid - hardswish - pool2d - 2024.1 - Create SYCL backend for Intel GPU. - Support Windows build ## OS | OS | Status | Verified | |---------|---------|------------------------------------------------| | Linux | Support | Ubuntu 22.04, Fedora Silverblue 39, Arch Linux | | Windows | Support | Windows 11 | ## Hardware ### Intel GPU **Verified devices** | Intel GPU | Status | Verified Model | |-------------------------------|---------|---------------------------------------| | Intel Data Center Max Series | Support | Max 1550, 1100 | | Intel Data Center Flex Series | Support | Flex 170 | | Intel Arc Series | Support | Arc 770, 730M, Arc A750 | | Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake | | Intel iGPU | Support | iGPU in i5-1250P, i7-1260P, i7-1165G7 | *Notes:* - **Memory** - The device memory is a limitation when running a large model. The loaded model size, *`llm_load_tensors: buffer_size`*, is displayed in the log when running `./bin/llama`. - Please make sure the GPU shared memory from the host is large enough to account for the model's size. For e.g. the *llama-2-7b.Q4_0* requires at least 8.0GB for integrated GPU and 4.0GB for discrete GPU. - **Execution Unit (EU)** - If the iGPU has less than 80 EUs, the inference speed will likely be too slow for practical use. ### Other Vendor GPU **Verified devices** | Nvidia GPU | Status | Verified Model | |--------------------------|---------|----------------| | Ampere Series | Support | A100, A4000 | | Ampere Series *(Mobile)* | Support | RTX 40 Series | ## Docker The docker build option is currently limited to *intel GPU* targets. ### Build image ```sh # Using FP16 docker build -t llama-cpp-sycl --build-arg="LLAMA_SYCL_F16=ON" -f .devops/llama-intel.Dockerfile . ``` *Notes*: To build in default FP32 *(Slower than FP16 alternative)*, you can remove the `--build-arg="LLAMA_SYCL_F16=ON"` argument from the previous command. You can also use the `.devops/llama-server-intel.Dockerfile`, which builds the *"server"* alternative. ### Run container ```sh # First, find all the DRI cards ls -la /dev/dri # Then, pick the card that you want to use (here for e.g. /dev/dri/card1). docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-sycl -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 ``` *Notes:* - Docker has been tested successfully on native Linux. WSL support has not been verified yet. - You may need to install Intel GPU driver on the **host** machine *(Please refer to the [Linux configuration](#linux) for details)*. ## Linux ### I. Setup Environment 1. **Install GPU drivers** - **Intel GPU** Intel data center GPUs drivers installation guide and download page can be found here: [Get intel dGPU Drivers](https://dgpu-docs.intel.com/driver/installation.html#ubuntu-install-steps). *Note*: for client GPUs *(iGPU & Arc A-Series)*, please refer to the [client iGPU driver installation](https://dgpu-docs.intel.com/driver/client/overview.html). Once installed, add the user(s) to the `video` and `render` groups. ```sh sudo usermod -aG render $USER sudo usermod -aG video $USER ``` *Note*: logout/re-login for the changes to take effect. Verify installation through `clinfo`: ```sh sudo apt install clinfo sudo clinfo -l ``` Sample output: ```sh Platform #0: Intel(R) OpenCL Graphics `-- Device #0: Intel(R) Arc(TM) A770 Graphics Platform #0: Intel(R) OpenCL HD Graphics `-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49] ``` - **Nvidia GPU** In order to target Nvidia GPUs through SYCL, please make sure the CUDA/CUBLAS native requirements *-found [here](README.md#cuda)-* are installed. 2. **Install Intel® oneAPI Base toolkit** - **For Intel GPU** The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page. Please follow the instructions for downloading and installing the Toolkit for Linux, and preferably keep the default installation values unchanged, notably the installation path *(`/opt/intel/oneapi` by default)*. Following guidelines/code snippets assume the default installation values. Otherwise, please make sure the necessary changes are reflected where applicable. Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI MKL for intel GPUs. - **Adding support to Nvidia GPUs** **oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup. **oneMKL for cuBlas**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* do not contain the cuBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *cuBLAS* backend enabled is thus required to run it on Nvidia GPUs. ```sh git clone https://github.com/oneapi-src/oneMKL cd oneMKL cmake -B buildWithCublas -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_CUBLAS_BACKEND=ON -DTARGET_DOMAINS=blas cmake --build buildWithCublas --config Release ``` 3. **Verify installation and environment** In order to check the available SYCL devices on the machine, please use the `sycl-ls` command. ```sh source /opt/intel/oneapi/setvars.sh sycl-ls ``` - **Intel GPU** When targeting an intel GPU, the user should expect one or more level-zero devices among the available SYCL devices. Please make sure that at least one GPU is present, for instance [`ext_oneapi_level_zero:gpu:0`] in the sample output below: ``` [opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000] [opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000] [opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50] [ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918] ``` - **Nvidia GPU** Similarly, user targeting Nvidia GPUs should expect at least one SYCL-CUDA device [`ext_oneapi_cuda:gpu`] as bellow: ``` [opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.12.0.12_195853.xmain-hotfix] [opencl:cpu:1] Intel(R) OpenCL, Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz OpenCL 3.0 (Build 0) [2023.16.12.0.12_195853.xmain-hotfix] [ext_oneapi_cuda:gpu:0] NVIDIA CUDA BACKEND, NVIDIA A100-PCIE-40GB 8.0 [CUDA 12.2] ``` ### II. Build llama.cpp #### Intel GPU ```sh # Export relevant ENV variables source /opt/intel/oneapi/setvars.sh # Build LLAMA with MKL BLAS acceleration for intel GPU # Option 1: Use FP32 (recommended for better performance in most cases) cmake -B build -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx # Option 2: Use FP16 cmake -B build -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON # build all binary cmake --build build --config Release -j -v ``` #### Nvidia GPU ```sh # Export relevant ENV variables export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LD_LIBRARY_PATH export LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LIBRARY_PATH export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithCublas/include:$CPLUS_INCLUDE_DIR export CPLUS_INCLUDE_DIR=/path/to/oneMKL/include:$CPLUS_INCLUDE_DIR # Build LLAMA with Nvidia BLAS acceleration through SYCL # Option 1: Use FP32 (recommended for better performance in most cases) cmake -B build -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx # Option 2: Use FP16 cmake -B build -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON # build all binary cmake --build build --config Release -j -v ``` ### III. Run the inference 1. Retrieve and prepare model You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example. 2. Enable oneAPI running environment ```sh source /opt/intel/oneapi/setvars.sh ``` 3. List devices information Similar to the native `sycl-ls`, available SYCL devices can be queried as follow: ```sh ./build/bin/ls-sycl-device ``` A example of such log in a system with 1 *intel CPU* and 1 *intel GPU* can look like the following: ``` found 6 SYCL devices: | | | |Compute |Max compute|Max work|Max sub| | |ID| Device Type| Name|capability|units |group |group |Global mem size| |--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------| | 0|[level_zero:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 1.3| 512| 1024| 32| 16225243136| | 1|[level_zero:gpu:1]| Intel(R) UHD Graphics 770| 1.3| 32| 512| 32| 53651849216| | 2| [opencl:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 3.0| 512| 1024| 32| 16225243136| | 3| [opencl:gpu:1]| Intel(R) UHD Graphics 770| 3.0| 32| 512| 32| 53651849216| | 4| [opencl:cpu:0]| 13th Gen Intel(R) Core(TM) i7-13700K| 3.0| 24| 8192| 64| 67064815616| | 5| [opencl:acc:0]| Intel(R) FPGA Emulation Device| 1.2| 24|67108864| 64| 67064815616| ``` | Attribute | Note | |------------------------|-------------------------------------------------------------| | compute capability 1.3 | Level-zero driver/runtime, recommended | | compute capability 3.0 | OpenCL driver/runtime, slower than level-zero in most cases | 4. Launch inference There are two device selection modes: - Single device: Use one device target specified by the user. - Multiple devices: Automatically select the devices with the same largest Max compute-units. | Device selection | Parameter | |------------------|----------------------------------------| | Single device | --split-mode none --main-gpu DEVICE_ID | | Multiple devices | --split-mode layer (default) | Examples: - Use device 0: ```sh ZES_ENABLE_SYSMAN=1 ./build/bin/llama -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0 ``` or run by script: ```sh ./examples/sycl/run_llama2.sh 0 ``` - Use multiple devices: ```sh ZES_ENABLE_SYSMAN=1 ./build/bin/llama -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer ``` Otherwise, you can run the script: ```sh ./examples/sycl/run_llama2.sh ``` *Notes:* - Upon execution, verify the selected device(s) ID(s) in the output log, which can for instance be displayed as follow: ```sh detect 1 SYCL GPUs: [0] with top Max compute units:512 ``` Or ```sh use 1 SYCL GPUs: [0] with Max compute units:512 ``` ## Windows ### I. Setup Environment 1. Install GPU driver Intel GPU drivers instructions guide and download page can be found here: [Get intel GPU Drivers](https://www.intel.com/content/www/us/en/products/docs/discrete-gpus/arc/software/drivers.html). 2. Install Visual Studio If you already have a recent version of Microsoft Visual Studio, you can skip this step. Otherwise, please refer to the official download page for [Microsoft Visual Studio](https://visualstudio.microsoft.com/). 3. Install Intel® oneAPI Base toolkit The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page. Please follow the instructions for downloading and installing the Toolkit for Windows, and preferably keep the default installation values unchanged, notably the installation path *(`C:\Program Files (x86)\Intel\oneAPI` by default)*. Following guidelines/code snippets assume the default installation values. Otherwise, please make sure the necessary changes are reflected where applicable. b. Enable oneAPI running environment: - Type "oneAPI" in the search bar, then open the `Intel oneAPI command prompt for Intel 64 for Visual Studio 2022` App. - On the command prompt, enable the runtime environment with the following: ``` "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 ``` c. Verify installation In the oneAPI command line, run the following to print the available SYCL devices: ``` sycl-ls ``` There should be one or more *level-zero* GPU devices displayed as **[ext_oneapi_level_zero:gpu]**. Below is example of such output detecting an *intel Iris Xe* GPU as a Level-zero SYCL device: Output (example): ``` [opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000] [opencl:cpu:1] Intel(R) OpenCL, 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000] [opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Iris(R) Xe Graphics OpenCL 3.0 NEO [31.0.101.5186] [ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Iris(R) Xe Graphics 1.3 [1.3.28044] ``` 4. Install build tools a. Download & install cmake for Windows: https://cmake.org/download/ b. Download & install mingw-w64 make for Windows provided by w64devkit - Download the 1.19.0 version of [w64devkit](https://github.com/skeeto/w64devkit/releases/download/v1.19.0/w64devkit-1.19.0.zip). - Extract `w64devkit` on your pc. - Add the **bin** folder path in the Windows system PATH environment (for e.g. `C:\xxx\w64devkit\bin\`). ### II. Build llama.cpp On the oneAPI command line window, step into the llama.cpp main directory and run the following: ``` @call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force # Option 1: Use FP32 (recommended for better performance in most cases) cmake -B build -G "MinGW Makefiles" -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release # Option 2: Or FP16 cmake -B build -G "MinGW Makefiles" -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON cmake --build build --config Release -j ``` Otherwise, run the `win-build-sycl.bat` wrapper which encapsulates the former instructions: ```sh .\examples\sycl\win-build-sycl.bat ``` *Notes:* - By default, calling `make` will build all target binary files. In case of a minimal experimental setup, the user can build the inference executable only through `make llama`. ### III. Run the inference 1. Retrieve and prepare model You can refer to the general [*Prepare and Quantize*](README#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example. 2. Enable oneAPI running environment On the oneAPI command line window, run the following and step into the llama.cpp directory: ``` "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 ``` 3. List devices information Similar to the native `sycl-ls`, available SYCL devices can be queried as follow: ``` build\bin\ls-sycl-device.exe ``` The output of this command in a system with 1 *intel CPU* and 1 *intel GPU* would look like the following: ``` found 6 SYCL devices: | | | |Compute |Max compute|Max work|Max sub| | |ID| Device Type| Name|capability|units |group |group |Global mem size| |--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------| | 0|[level_zero:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 1.3| 512| 1024| 32| 16225243136| | 1|[level_zero:gpu:1]| Intel(R) UHD Graphics 770| 1.3| 32| 512| 32| 53651849216| | 2| [opencl:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 3.0| 512| 1024| 32| 16225243136| | 3| [opencl:gpu:1]| Intel(R) UHD Graphics 770| 3.0| 32| 512| 32| 53651849216| | 4| [opencl:cpu:0]| 13th Gen Intel(R) Core(TM) i7-13700K| 3.0| 24| 8192| 64| 67064815616| | 5| [opencl:acc:0]| Intel(R) FPGA Emulation Device| 1.2| 24|67108864| 64| 67064815616| ``` | Attribute | Note | |------------------------|-----------------------------------------------------------| | compute capability 1.3 | Level-zero running time, recommended | | compute capability 3.0 | OpenCL running time, slower than level-zero in most cases | 4. Launch inference There are two device selection modes: - Single device: Use one device assigned by user. - Multiple devices: Automatically choose the devices with the same biggest Max compute units. | Device selection | Parameter | |------------------|----------------------------------------| | Single device | --split-mode none --main-gpu DEVICE_ID | | Multiple devices | --split-mode layer (default) | Examples: - Use device 0: ``` build\bin\llama.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0 ``` - Use multiple devices: ``` build\bin\llama.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer ``` Otherwise, run the following wrapper script: ``` .\examples\sycl\win-run-llama2.bat ``` Note: - Upon execution, verify the selected device(s) ID(s) in the output log, which can for instance be displayed as follow: ```sh detect 1 SYCL GPUs: [0] with top Max compute units:512 ``` Or ```sh use 1 SYCL GPUs: [0] with Max compute units:512 ``` ## Environment Variable #### Build | Name | Value | Function | |--------------------|-----------------------------------|---------------------------------------------| | LLAMA_SYCL | ON (mandatory) | Enable build with SYCL code path. | | LLAMA_SYCL_TARGET | INTEL *(default)* \| NVIDIA | Set the SYCL target device type. | | LLAMA_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. | | CMAKE_C_COMPILER | icx | Set *icx* compiler for SYCL code path. | | CMAKE_CXX_COMPILER | icpx *(Linux)*, icx *(Windows)* | Set `icpx/icx` compiler for SYCL code path. | #### Runtime | Name | Value | Function | |-------------------|------------------|---------------------------------------------------------------------------------------------------------------------------| | GGML_SYCL_DEBUG | 0 (default) or 1 | Enable log function by macro: GGML_SYCL_DEBUG | | ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.
Recommended to use when --split-mode = layer | ## Known Issues - `Split-mode:[row]` is not supported. ## Q&A - Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`. - Potential cause: Unavailable oneAPI installation or not set ENV variables. - Solution: Install *oneAPI base toolkit* and enable its ENV through: `source /opt/intel/oneapi/setvars.sh`. - General compiler error: - Remove **build** folder or try a clean-build. - I can **not** see `[ext_oneapi_level_zero:gpu]` afer installing the GPU driver on Linux. Please double-check with `sudo sycl-ls`. If it's present in the list, please add video/render group to your user then **logout/login** or restart your system: ``` sudo usermod -aG render $USER sudo usermod -aG video $USER ``` Otherwise, please double-check the GPU driver installation steps. ### **GitHub contribution**: Please add the **[SYCL]** prefix/tag in issues/PRs titles to help the SYCL-team check/address them without delay. ## TODO - Support row layer split for multiple card runs.