#include "utils.h" #include #include #include #include #include #include #if defined(_MSC_VER) || defined(__MINGW32__) #include // using malloc.h with MSC/MINGW #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__) #include #endif bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { // determine sensible default number of threads. // std::thread::hardware_concurrency may not be equal to the number of cores, or may return 0. #ifdef __linux__ std::ifstream cpuinfo("/proc/cpuinfo"); params.n_threads = std::count(std::istream_iterator(cpuinfo), std::istream_iterator(), std::string("processor")); #endif if (params.n_threads == 0) { params.n_threads = std::max(1, (int32_t) std::thread::hardware_concurrency()); } for (int i = 1; i < argc; i++) { std::string arg = argv[i]; if (arg == "-s" || arg == "--seed") { params.seed = std::stoi(argv[++i]); } else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); } else if (arg == "-p" || arg == "--prompt") { params.prompt = argv[++i]; } else if (arg == "-f" || arg == "--file") { std::ifstream file(argv[++i]); std::copy(std::istreambuf_iterator(file), std::istreambuf_iterator(), back_inserter(params.prompt)); if (params.prompt.back() == '\n') { params.prompt.pop_back(); } } else if (arg == "-n" || arg == "--n_predict") { params.n_predict = std::stoi(argv[++i]); } else if (arg == "--top_k") { params.top_k = std::stoi(argv[++i]); } else if (arg == "-c" || arg == "--ctx_size") { params.n_ctx = std::stoi(argv[++i]); } else if (arg == "--memory_f16") { params.memory_f16 = true; } else if (arg == "--top_p") { params.top_p = std::stof(argv[++i]); } else if (arg == "--temp") { params.temp = std::stof(argv[++i]); } else if (arg == "--repeat_last_n") { params.repeat_last_n = std::stoi(argv[++i]); } else if (arg == "--repeat_penalty") { params.repeat_penalty = std::stof(argv[++i]); } else if (arg == "-b" || arg == "--batch_size") { params.n_batch = std::stoi(argv[++i]); } else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; } else if (arg == "-i" || arg == "--interactive") { params.interactive = true; } else if (arg == "--interactive-first") { params.interactive_start = true; } else if (arg == "-ins" || arg == "--instruct") { params.instruct = true; } else if (arg == "--color") { params.use_color = true; } else if (arg == "-r" || arg == "--reverse-prompt") { params.antiprompt.push_back(argv[++i]); } else if (arg == "--perplexity") { params.perplexity = true; } else if (arg == "--ignore-eos") { params.ignore_eos = true; } else if (arg == "--n_parts") { params.n_parts = std::stoi(argv[++i]); #ifndef _WIN32 } else if (arg == "-l" || arg == "--listen") { params.listen_port = argv[++i]; #endif } else if (arg == "-h" || arg == "--help") { gpt_print_usage(argc, argv, params); exit(0); } else if (arg == "--random-prompt") { params.random_prompt = true; } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); gpt_print_usage(argc, argv, params); exit(0); } } return true; } void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help show this help message and exit\n"); fprintf(stderr, " -i, --interactive run in interactive mode\n"); fprintf(stderr, " --interactive-first run in interactive mode and wait for input right away\n"); fprintf(stderr, " -ins, --instruct run in instruction mode (use with Alpaca models)\n"); fprintf(stderr, " -r PROMPT, --reverse-prompt PROMPT\n"); fprintf(stderr, " run in interactive mode and poll user input upon seeing PROMPT (can be\n"); fprintf(stderr, " specified more than once for multiple prompts).\n"); fprintf(stderr, " --color colorise output to distinguish prompt and user input from generations\n"); fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for <= 0)\n"); fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); fprintf(stderr, " -p PROMPT, --prompt PROMPT\n"); fprintf(stderr, " prompt to start generation with (default: empty)\n"); fprintf(stderr, " --random-prompt start with a randomized prompt.\n"); fprintf(stderr, " -f FNAME, --file FNAME\n"); fprintf(stderr, " prompt file to start generation.\n"); fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict); fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k); fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p); fprintf(stderr, " --repeat_last_n N last n tokens to consider for penalize (default: %d)\n", params.repeat_last_n); fprintf(stderr, " --repeat_penalty N penalize repeat sequence of tokens (default: %.1f)\n", params.repeat_penalty); fprintf(stderr, " -c N, --ctx_size N size of the prompt context (default: %d)\n", params.n_ctx); fprintf(stderr, " --ignore-eos ignore end of stream token and continue generating\n"); fprintf(stderr, " --memory_f16 use f16 instead of f32 for memory key+value\n"); fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp); fprintf(stderr, " --n_parts N number of model parts (default: -1 = determine from dimensions)\n"); fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch); fprintf(stderr, " --perplexity compute perplexity over the prompt\n"); fprintf(stderr, " -m FNAME, --model FNAME\n"); fprintf(stderr, " model path (default: %s)\n", params.model.c_str()); #ifndef _WIN32 fprintf(stderr, " -l PORT, --listen PORT\n"); fprintf(stderr, " Run in TCP mode, listening on PORT\n"); #endif fprintf(stderr, "\n"); } std::string gpt_random_prompt(std::mt19937 & rng) { const int r = rng() % 10; switch (r) { case 0: return "So"; case 1: return "Once upon a time"; case 2: return "When"; case 3: return "The"; case 4: return "After"; case 5: return "If"; case 6: return "import"; case 7: return "He"; case 8: return "She"; case 9: return "They"; default: return "To"; } return "The"; } // TODO: not great allocating this every time std::vector llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos) { // initialize to prompt numer of chars, since n_tokens <= n_prompt_chars std::vector res(text.size() + (int)add_bos); int n = llama_tokenize(ctx, text.c_str(), res.data(), res.size(), add_bos); assert(n >= 0); res.resize(n); return res; }