#include "mmvq.hpp" #include "vecdotq.hpp" template static void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows, const sycl::nd_item<3> &item_ct1) { const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1); if (row >= nrows) { return; } const int blocks_per_row = ncols / qk; const int blocks_per_warp = vdr * WARP_SIZE / qi; // partial sum for each thread float tmp = 0.0f; const block_q_t * x = (const block_q_t *) vx; const block_q8_1 * y = (const block_q8_1 *) vy; for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row; i += blocks_per_warp) { const int ibx = row*blocks_per_row + i; // x block index const int iby = i * (qk/QK8_1); // y block index that aligns with ibx const int iqs = vdr * (item_ct1.get_local_id(2) % (qi / vdr)); // x block quant index when casting the quants to int tmp += vec_dot_q_sycl(&x[ibx], &y[iby], iqs); } // sum up partial sums and write back result #pragma unroll for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } if (item_ct1.get_local_id(2) == 0) { dst[row] = tmp; } } template static void mul_mat_vec_q_iq2_xxs_q8_1(const void *__restrict__ vx, const void *__restrict__ vy, float *__restrict__ dst, const int ncols, const int nrows, const sycl::nd_item<3> &item_ct1) { const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1); if (row >= nrows) { return; } const int blocks_per_row = ncols / qk; const int blocks_per_warp = vdr * WARP_SIZE / qi; // partial sum for each thread float tmp = 0.0f; const block_q_t * x = (const block_q_t *) vx; const block_q8_1 * y = (const block_q8_1 *) vy; for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row; i += blocks_per_warp) { const int ibx = row*blocks_per_row + i; // x block index const int iby = i * (qk/QK8_1); // y block index that aligns with ibx const int iqs = vdr * (item_ct1.get_local_id(2) % (qi / vdr)); // x block quant index when casting the quants to int tmp += vec_dot_iq2_xxs_q8_1(&x[ibx], &y[iby], iqs, iq2xxs_grid, ksigns_iq2xs, kmask_iq2xs); } // sum up partial sums and write back result #pragma unroll for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } if (item_ct1.get_local_id(2) == 0) { dst[row] = tmp; } } template static void mul_mat_vec_q_iq2_xs_q8_1(const void *__restrict__ vx, const void *__restrict__ vy, float *__restrict__ dst, const int ncols, const int nrows, const sycl::nd_item<3> &item_ct1) { const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1); if (row >= nrows) { return; } const int blocks_per_row = ncols / qk; const int blocks_per_warp = vdr * WARP_SIZE / qi; // partial sum for each thread float tmp = 0.0f; const block_q_t * x = (const block_q_t *) vx; const block_q8_1 * y = (const block_q8_1 *) vy; for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row; i += blocks_per_warp) { const int ibx = row*blocks_per_row + i; // x block index const int iby = i * (qk/QK8_1); // y block index that aligns with ibx const int iqs = vdr * (item_ct1.get_local_id(2) % (qi / vdr)); // x block quant index when casting the quants to int tmp += vec_dot_iq2_xs_q8_1(&x[ibx], &y[iby], iqs, iq2xs_grid, ksigns64); } // sum up partial sums and write back result #pragma unroll for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } if (item_ct1.get_local_id(2) == 0) { dst[row] = tmp; } } template static void mul_mat_vec_q_iq2_s_q8_1(const void *__restrict__ vx, const void *__restrict__ vy, float *__restrict__ dst, const int ncols, const int nrows, const sycl::nd_item<3> &item_ct1) { const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1); if (row >= nrows) { return; } const int blocks_per_row = ncols / qk; const int blocks_per_warp = vdr * WARP_SIZE / qi; // partial sum for each thread float tmp = 0.0f; const block_q_t * x = (const block_q_t *) vx; const block_q8_1 * y = (const block_q8_1 *) vy; for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row; i += blocks_per_warp) { const int ibx = row*blocks_per_row + i; // x block index const int iby = i * (qk/QK8_1); // y block index that aligns with ibx const int iqs = vdr * (item_ct1.get_local_id(2) % (qi / vdr)); // x block quant index when casting the quants to int tmp += vec_dot_iq2_s_q8_1(&x[ibx], &y[iby], iqs); } // sum up partial sums and write back result #pragma unroll for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } if (item_ct1.get_local_id(2) == 0) { dst[row] = tmp; } } template static void mul_mat_vec_q_iq3_xxs_q8_1(const void *__restrict__ vx, const void *__restrict__ vy, float *__restrict__ dst, const int ncols, const int nrows, const sycl::nd_item<3> &item_ct1) { const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1); if (row >= nrows) { return; } const int blocks_per_row = ncols / qk; const int blocks_per_warp = vdr * WARP_SIZE / qi; // partial sum for each thread float tmp = 0.0f; const block_q_t * x = (const block_q_t *) vx; const block_q8_1 * y = (const block_q8_1 *) vy; for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row; i += blocks_per_warp) { const int ibx = row*blocks_per_row + i; // x block index const int iby = i * (qk/QK8_1); // y block index that aligns with ibx const int iqs = vdr * (item_ct1.get_local_id(2) % (qi / vdr)); // x block quant index when casting the quants to int tmp += vec_dot_iq3_xxs_q8_1(&x[ibx], &y[iby], iqs, iq3xxs_grid, ksigns64); } // sum up partial sums and write back result #pragma unroll for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } if (item_ct1.get_local_id(2) == 0) { dst[row] = tmp; } } template static void mul_mat_vec_q_iq3_s_q8_1(const void *__restrict__ vx, const void *__restrict__ vy, float *__restrict__ dst, const int ncols, const int nrows, const sycl::nd_item<3> &item_ct1) { const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1); if (row >= nrows) { return; } const int blocks_per_row = ncols / qk; const int blocks_per_warp = vdr * WARP_SIZE / qi; // partial sum for each thread float tmp = 0.0f; const block_q_t * x = (const block_q_t *) vx; const block_q8_1 * y = (const block_q8_1 *) vy; for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row; i += blocks_per_warp) { const int ibx = row*blocks_per_row + i; // x block index const int iby = i * (qk/QK8_1); // y block index that aligns with ibx const int iqs = vdr * (item_ct1.get_local_id(2) % (qi / vdr)); // x block quant index when casting the quants to int tmp += vec_dot_iq3_s_q8_1(&x[ibx], &y[iby], iqs, iq3s_grid); } // sum up partial sums and write back result #pragma unroll for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } if (item_ct1.get_local_id(2) == 0) { dst[row] = tmp; } } template static void mul_mat_vec_q_iq1_s_q8_1(const void *__restrict__ vx, const void *__restrict__ vy, float *__restrict__ dst, const int ncols, const int nrows, const sycl::nd_item<3> &item_ct1) { const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1); if (row >= nrows) { return; } const int blocks_per_row = ncols / qk; const int blocks_per_warp = vdr * WARP_SIZE / qi; // partial sum for each thread float tmp = 0.0f; const block_q_t * x = (const block_q_t *) vx; const block_q8_1 * y = (const block_q8_1 *) vy; for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row; i += blocks_per_warp) { const int ibx = row*blocks_per_row + i; // x block index const int iby = i * (qk/QK8_1); // y block index that aligns with ibx const int iqs = vdr * (item_ct1.get_local_id(2) % (qi / vdr)); // x block quant index when casting the quants to int tmp += vec_dot_iq1_s_q8_1(&x[ibx], &y[iby], iqs, iq1s_grid_gpu); } // sum up partial sums and write back result #pragma unroll for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } if (item_ct1.get_local_id(2) == 0) { dst[row] = tmp; } } template static void mul_mat_vec_q_iq1_m_q8_1(const void *__restrict__ vx, const void *__restrict__ vy, float *__restrict__ dst, const int ncols, const int nrows, const sycl::nd_item<3> &item_ct1) { const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1); if (row >= nrows) { return; } const int blocks_per_row = ncols / qk; const int blocks_per_warp = vdr * WARP_SIZE / qi; // partial sum for each thread float tmp = 0.0f; const block_q_t * x = (const block_q_t *) vx; const block_q8_1 * y = (const block_q8_1 *) vy; for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row; i += blocks_per_warp) { const int ibx = row*blocks_per_row + i; // x block index const int iby = i * (qk/QK8_1); // y block index that aligns with ibx const int iqs = vdr * (item_ct1.get_local_id(2) % (qi / vdr)); // x block quant index when casting the quants to int tmp += vec_dot_iq1_m_q8_1(&x[ibx], &y[iby], iqs); } // sum up partial sums and write back result #pragma unroll for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } if (item_ct1.get_local_id(2) == 0) { dst[row] = tmp; } } template static void mul_mat_vec_q_iq4_nl_q8_1(const void *__restrict__ vx, const void *__restrict__ vy, float *__restrict__ dst, const int ncols, const int nrows, const sycl::nd_item<3> &item_ct1) { const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1); if (row >= nrows) { return; } const int blocks_per_row = ncols / qk; const int blocks_per_warp = vdr * WARP_SIZE / qi; // partial sum for each thread float tmp = 0.0f; const block_q_t * x = (const block_q_t *) vx; const block_q8_1 * y = (const block_q8_1 *) vy; for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row; i += blocks_per_warp) { const int ibx = row*blocks_per_row + i; // x block index const int iby = i * (qk/QK8_1); // y block index that aligns with ibx const int iqs = vdr * (item_ct1.get_local_id(2) % (qi / vdr)); // x block quant index when casting the quants to int tmp += vec_dot_iq4_nl_q8_1(&x[ibx], &y[iby], iqs); } // sum up partial sums and write back result #pragma unroll for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } if (item_ct1.get_local_id(2) == 0) { dst[row] = tmp; } } template static void mul_mat_vec_q_iq4_xs_q8_1(const void *__restrict__ vx, const void *__restrict__ vy, float *__restrict__ dst, const int ncols, const int nrows, const sycl::nd_item<3> &item_ct1) { const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1); if (row >= nrows) { return; } const int blocks_per_row = ncols / qk; const int blocks_per_warp = vdr * WARP_SIZE / qi; // partial sum for each thread float tmp = 0.0f; const block_q_t * x = (const block_q_t *) vx; const block_q8_1 * y = (const block_q8_1 *) vy; for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row; i += blocks_per_warp) { const int ibx = row*blocks_per_row + i; // x block index const int iby = i * (qk/QK8_1); // y block index that aligns with ibx const int iqs = vdr * (item_ct1.get_local_id(2) % (qi / vdr)); // x block quant index when casting the quants to int tmp += vec_dot_iq4_xs_q8_1(&x[ibx], &y[iby], iqs); } // sum up partial sums and write back result #pragma unroll for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } if (item_ct1.get_local_id(2) == 0) { dst[row] = tmp; } } static void mul_mat_vec_q4_0_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols, const int nrows, dpct::queue_ptr stream) { GGML_ASSERT(ncols % QK4_0 == 0); const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; const sycl::range<3> block_nums(1, 1, block_num_y); const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); { stream->submit([&](sycl::handler &cgh) { cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q( vx, vy, dst, ncols, nrows, item_ct1); }); }); } } static void mul_mat_vec_q4_1_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols, const int nrows, dpct::queue_ptr stream) { GGML_ASSERT(ncols % QK4_1 == 0); const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; const sycl::range<3> block_nums(1, 1, block_num_y); const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); { stream->submit([&](sycl::handler &cgh) { cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q( vx, vy, dst, ncols, nrows, item_ct1); }); }); } } static void mul_mat_vec_q5_0_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols, const int nrows, dpct::queue_ptr stream) { GGML_ASSERT(ncols % QK5_0 == 0); const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; const sycl::range<3> block_nums(1, 1, block_num_y); const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); { stream->submit([&](sycl::handler &cgh) { cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q( vx, vy, dst, ncols, nrows, item_ct1); }); }); } } static void mul_mat_vec_q5_1_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols, const int nrows, dpct::queue_ptr stream) { GGML_ASSERT(ncols % QK5_1 == 0); const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; const sycl::range<3> block_nums(1, 1, block_num_y); const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); { stream->submit([&](sycl::handler &cgh) { cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q( vx, vy, dst, ncols, nrows, item_ct1); }); }); } } static void mul_mat_vec_q8_0_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols, const int nrows, dpct::queue_ptr stream) { GGML_ASSERT(ncols % QK8_0 == 0); const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; const sycl::range<3> block_nums(1, 1, block_num_y); const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); { stream->submit([&](sycl::handler &cgh) { cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q( vx, vy, dst, ncols, nrows, item_ct1); }); }); } } static void mul_mat_vec_q2_K_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols, const int nrows, dpct::queue_ptr stream) { GGML_ASSERT(ncols % QK_K == 0); const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; const sycl::range<3> block_nums(1, 1, block_num_y); const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); { stream->submit([&](sycl::handler &cgh) { cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q( vx, vy, dst, ncols, nrows, item_ct1); }); }); } } static void mul_mat_vec_q3_K_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols, const int nrows, dpct::queue_ptr stream) { GGML_ASSERT(ncols % QK_K == 0); const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; const sycl::range<3> block_nums(1, 1, block_num_y); const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); { stream->submit([&](sycl::handler &cgh) { cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q( vx, vy, dst, ncols, nrows, item_ct1); }); }); } } static void mul_mat_vec_q4_K_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols, const int nrows, dpct::queue_ptr stream) { GGML_ASSERT(ncols % QK_K == 0); const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; const sycl::range<3> block_nums(1, 1, block_num_y); const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); { stream->submit([&](sycl::handler &cgh) { cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q( vx, vy, dst, ncols, nrows, item_ct1); }); }); } } static void mul_mat_vec_q5_K_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols, const int nrows, dpct::queue_ptr stream) { GGML_ASSERT(ncols % QK_K == 0); const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; const sycl::range<3> block_nums(1, 1, block_num_y); const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); { stream->submit([&](sycl::handler &cgh) { cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q( vx, vy, dst, ncols, nrows, item_ct1); }); }); } } static void mul_mat_vec_q6_K_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols, const int nrows, dpct::queue_ptr stream) { GGML_ASSERT(ncols % QK_K == 0); const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; const sycl::range<3> block_nums(1, 1, block_num_y); const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); { stream->submit([&](sycl::handler &cgh) { cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q( vx, vy, dst, ncols, nrows, item_ct1); }); }); } } static void mul_mat_vec_iq2_xxs_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols, const int nrows, dpct::queue_ptr stream) { GGML_ASSERT(ncols % QK_K == 0); const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; const sycl::range<3> block_nums(1, 1, block_num_y); const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); { stream->submit([&](sycl::handler &cgh) { cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q_iq2_xxs_q8_1( vx, vy, dst, ncols, nrows, item_ct1); }); }); } } static void mul_mat_vec_iq2_xs_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols, const int nrows, dpct::queue_ptr stream) { GGML_ASSERT(ncols % QK_K == 0); const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; const sycl::range<3> block_nums(1, 1, block_num_y); const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); { stream->submit([&](sycl::handler &cgh) { auto iq2xs_grid_ptr_ct1 = &iq2xs_grid[0]; auto ksigns64_ptr_ct1 = &ksigns64[0]; cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q_iq2_xs_q8_1( vx, vy, dst, ncols, nrows, item_ct1); }); }); } } static void mul_mat_vec_iq2_s_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols, const int nrows, dpct::queue_ptr stream) { GGML_ASSERT(ncols % QK_K == 0); const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; const sycl::range<3> block_nums(1, 1, block_num_y); const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); { stream->submit([&](sycl::handler &cgh) { auto iq2xs_grid_ptr_ct1 = &iq2xs_grid[0]; auto ksigns64_ptr_ct1 = &ksigns64[0]; cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q_iq2_s_q8_1( vx, vy, dst, ncols, nrows, item_ct1); }); }); } } static void mul_mat_vec_iq3_xxs_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols, const int nrows, dpct::queue_ptr stream) { GGML_ASSERT(ncols % QK_K == 0); const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; const sycl::range<3> block_nums(1, 1, block_num_y); const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); { stream->submit([&](sycl::handler &cgh) { auto iq3xxs_grid_ptr_ct1 = &iq3xxs_grid[0]; auto ksigns64_ptr_ct1 = &ksigns64[0]; cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q_iq3_xxs_q8_1( vx, vy, dst, ncols, nrows, item_ct1); }); }); } } static void mul_mat_vec_iq3_s_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols, const int nrows, dpct::queue_ptr stream) { GGML_ASSERT(ncols % QK_K == 0); const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; const sycl::range<3> block_nums(1, 1, block_num_y); const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); { stream->submit([&](sycl::handler &cgh) { auto iq3s_grid_ptr_ct1 = &iq3s_grid[0]; cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q_iq3_s_q8_1( vx, vy, dst, ncols, nrows, item_ct1); }); }); } } static void mul_mat_vec_iq1_s_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols, const int nrows, dpct::queue_ptr stream) { GGML_ASSERT(ncols % QK_K == 0); const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; const sycl::range<3> block_nums(1, 1, block_num_y); const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); { stream->submit([&](sycl::handler &cgh) { auto iq1s_grid_ptr_ct1 = &iq1s_grid_gpu[0]; auto ksigns64_ptr_ct1 = &ksigns64[0]; cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q_iq1_s_q8_1( vx, vy, dst, ncols, nrows, item_ct1); }); }); } } static void mul_mat_vec_iq1_m_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols, const int nrows, dpct::queue_ptr stream) { GGML_ASSERT(ncols % QK_K == 0); const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; const sycl::range<3> block_nums(1, 1, block_num_y); const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); { stream->submit([&](sycl::handler &cgh) { cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q_iq1_m_q8_1( vx, vy, dst, ncols, nrows, item_ct1); }); }); } } static void mul_mat_vec_iq4_nl_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols, const int nrows, dpct::queue_ptr stream) { GGML_ASSERT(ncols % QK4_NL == 0); const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; const sycl::range<3> block_nums(1, 1, block_num_y); const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); { stream->submit([&](sycl::handler &cgh) { cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q_iq4_nl_q8_1( vx, vy, dst, ncols, nrows, item_ct1); }); }); } } static void mul_mat_vec_iq4_xs_q8_1_sycl(const void *vx, const void *vy, float *dst, const int ncols, const int nrows, dpct::queue_ptr stream) { GGML_ASSERT(ncols % QK_K == 0); const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; const sycl::range<3> block_nums(1, 1, block_num_y); const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); { stream->submit([&](sycl::handler &cgh) { cgh.parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { mul_mat_vec_q_iq4_xs_q8_1( vx, vy, dst, ncols, nrows, item_ct1); }); }); } } void ggml_sycl_op_mul_mat_vec_q( ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst, const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i, float *dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, const int64_t src1_padded_col_size, const dpct::queue_ptr &stream) { const int64_t ne10 = src1->ne[0]; GGML_ASSERT(ne10 % QK8_1 == 0); const int64_t ne00 = src0->ne[0]; const int64_t row_diff = row_high - row_low; int id; SYCL_CHECK( CHECK_TRY_ERROR(id = get_current_device_id())); const size_t q8_1_ts = sizeof(block_q8_1); const size_t q8_1_bs = QK8_1; // the main device has a larger memory buffer to hold the results from all GPUs // nrows_dst == nrows of the matrix that the kernel writes into const int64_t nrows_dst = id == ctx.device ? ne00 : row_diff; for (int i = 0; i < src1_ncols; i++) { const size_t src1_ddq_i_offset = i * src1_padded_col_size * q8_1_ts / q8_1_bs; const char* src1_ddq_i_bs = src1_ddq_i + src1_ddq_i_offset; float* dst_dd_i_bs = dst_dd_i + i * dst->ne[0]; switch (src0->type) { case GGML_TYPE_Q4_0: mul_mat_vec_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_Q4_1: mul_mat_vec_q4_1_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_Q5_0: mul_mat_vec_q5_0_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_Q5_1: mul_mat_vec_q5_1_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_Q8_0: mul_mat_vec_q8_0_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_Q2_K: mul_mat_vec_q2_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_Q3_K: mul_mat_vec_q3_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_Q4_K: mul_mat_vec_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_Q5_K: mul_mat_vec_q5_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_Q6_K: mul_mat_vec_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_IQ1_S: mul_mat_vec_iq1_s_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_IQ1_M: mul_mat_vec_iq1_m_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_IQ2_XXS: mul_mat_vec_iq2_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_IQ2_XS: mul_mat_vec_iq2_xs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_IQ2_S: mul_mat_vec_iq2_s_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_IQ3_XXS: mul_mat_vec_iq3_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_IQ3_S: mul_mat_vec_iq3_s_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_IQ4_NL: mul_mat_vec_iq4_nl_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; case GGML_TYPE_IQ4_XS: mul_mat_vec_iq4_xs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream); break; default: GGML_ASSERT(false); break; } } (void) src1; (void) dst; (void) src1_ddf_i; }