#define LLAMA_API_INTERNAL #include "llama.h" #include "unicode.h" #include "ggml.h" #include "ggml-alloc.h" #include "ggml-backend.h" #ifdef GGML_USE_CUDA # include "ggml-cuda.h" #elif defined(GGML_USE_CLBLAST) # include "ggml-opencl.h" #elif defined(GGML_USE_VULKAN) # include "ggml-vulkan.h" #elif defined(GGML_USE_SYCL) # include "ggml-sycl.h" #elif defined(GGML_USE_KOMPUTE) # include "ggml-kompute.h" #endif #ifdef GGML_USE_METAL # include "ggml-metal.h" #endif #ifdef GGML_USE_MPI # include "ggml-mpi.h" #endif #ifndef QK_K # ifdef GGML_QKK_64 # define QK_K 64 # else # define QK_K 256 # endif #endif #ifdef __has_include #if __has_include() #include #if defined(_POSIX_MAPPED_FILES) #include #include #endif #if defined(_POSIX_MEMLOCK_RANGE) #include #endif #endif #endif #if defined(_WIN32) #define WIN32_LEAN_AND_MEAN #ifndef NOMINMAX #define NOMINMAX #endif #include #ifndef PATH_MAX #define PATH_MAX MAX_PATH #endif #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif #ifdef __GNUC__ #ifdef __MINGW32__ #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__))) #else #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__))) #endif #else #define LLAMA_ATTRIBUTE_FORMAT(...) #endif #define LLAMA_MAX_NODES 8192 #define LLAMA_MAX_EXPERTS 8 // // logging // LLAMA_ATTRIBUTE_FORMAT(2, 3) static void llama_log_internal (ggml_log_level level, const char* format, ...); static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data); #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__) #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__) #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__) // // helpers // static size_t utf8_len(char src) { const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 }; uint8_t highbits = static_cast(src) >> 4; return lookup[highbits]; } static void replace_all(std::string & s, const std::string & search, const std::string & replace) { std::string result; for (size_t pos = 0; ; pos += search.length()) { auto new_pos = s.find(search, pos); if (new_pos == std::string::npos) { result += s.substr(pos, s.size() - pos); break; } result += s.substr(pos, new_pos - pos) + replace; pos = new_pos; } s = std::move(result); } static bool is_float_close(float a, float b, float abs_tol) { // Check for non-negative tolerance if (abs_tol < 0.0) { throw std::invalid_argument("Tolerance must be non-negative"); } // Exact equality check if (a == b) { return true; } // Check for infinities if (std::isinf(a) || std::isinf(b)) { return false; } // Regular comparison using the provided absolute tolerance return std::fabs(b - a) <= abs_tol; } static void zeros(std::ofstream & file, size_t n) { char zero = 0; for (size_t i = 0; i < n; ++i) { file.write(&zero, 1); } } LLAMA_ATTRIBUTE_FORMAT(1, 2) static std::string format(const char * fmt, ...) { va_list ap; va_list ap2; va_start(ap, fmt); va_copy(ap2, ap); int size = vsnprintf(NULL, 0, fmt, ap); GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT std::vector buf(size + 1); int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); GGML_ASSERT(size2 == size); va_end(ap2); va_end(ap); return std::string(buf.data(), size); } // // gguf constants (sync with gguf.py) // enum llm_arch { LLM_ARCH_LLAMA, LLM_ARCH_FALCON, LLM_ARCH_BAICHUAN, LLM_ARCH_GROK, LLM_ARCH_GPT2, LLM_ARCH_GPTJ, LLM_ARCH_GPTNEOX, LLM_ARCH_MPT, LLM_ARCH_STARCODER, LLM_ARCH_PERSIMMON, LLM_ARCH_REFACT, LLM_ARCH_BERT, LLM_ARCH_NOMIC_BERT, LLM_ARCH_BLOOM, LLM_ARCH_STABLELM, LLM_ARCH_QWEN, LLM_ARCH_QWEN2, LLM_ARCH_PHI2, LLM_ARCH_PLAMO, LLM_ARCH_CODESHELL, LLM_ARCH_ORION, LLM_ARCH_INTERNLM2, LLM_ARCH_MINICPM, LLM_ARCH_GEMMA, LLM_ARCH_STARCODER2, LLM_ARCH_MAMBA, LLM_ARCH_XVERSE, LLM_ARCH_COMMAND_R, LLM_ARCH_UNKNOWN, }; static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_LLAMA, "llama" }, { LLM_ARCH_FALCON, "falcon" }, { LLM_ARCH_GROK, "grok" }, { LLM_ARCH_GPT2, "gpt2" }, { LLM_ARCH_GPTJ, "gptj" }, { LLM_ARCH_GPTNEOX, "gptneox" }, { LLM_ARCH_MPT, "mpt" }, { LLM_ARCH_BAICHUAN, "baichuan" }, { LLM_ARCH_STARCODER, "starcoder" }, { LLM_ARCH_PERSIMMON, "persimmon" }, { LLM_ARCH_REFACT, "refact" }, { LLM_ARCH_BERT, "bert" }, { LLM_ARCH_NOMIC_BERT, "nomic-bert" }, { LLM_ARCH_BLOOM, "bloom" }, { LLM_ARCH_STABLELM, "stablelm" }, { LLM_ARCH_QWEN, "qwen" }, { LLM_ARCH_QWEN2, "qwen2" }, { LLM_ARCH_PHI2, "phi2" }, { LLM_ARCH_PLAMO, "plamo" }, { LLM_ARCH_CODESHELL, "codeshell" }, { LLM_ARCH_ORION, "orion" }, { LLM_ARCH_INTERNLM2, "internlm2" }, { LLM_ARCH_MINICPM, "minicpm" }, { LLM_ARCH_GEMMA, "gemma" }, { LLM_ARCH_STARCODER2, "starcoder2" }, { LLM_ARCH_MAMBA, "mamba" }, { LLM_ARCH_XVERSE, "xverse" }, { LLM_ARCH_COMMAND_R, "command-r" }, { LLM_ARCH_UNKNOWN, "(unknown)" }, }; enum llm_kv { LLM_KV_GENERAL_ARCHITECTURE, LLM_KV_GENERAL_QUANTIZATION_VERSION, LLM_KV_GENERAL_ALIGNMENT, LLM_KV_GENERAL_NAME, LLM_KV_GENERAL_AUTHOR, LLM_KV_GENERAL_VERSION, LLM_KV_GENERAL_URL, LLM_KV_GENERAL_DESCRIPTION, LLM_KV_GENERAL_LICENSE, LLM_KV_GENERAL_SOURCE_URL, LLM_KV_GENERAL_SOURCE_HF_REPO, LLM_KV_VOCAB_SIZE, LLM_KV_CONTEXT_LENGTH, LLM_KV_EMBEDDING_LENGTH, LLM_KV_BLOCK_COUNT, LLM_KV_FEED_FORWARD_LENGTH, LLM_KV_USE_PARALLEL_RESIDUAL, LLM_KV_TENSOR_DATA_LAYOUT, LLM_KV_EXPERT_COUNT, LLM_KV_EXPERT_USED_COUNT, LLM_KV_POOLING_TYPE, LLM_KV_LOGIT_SCALE, LLM_KV_ATTENTION_HEAD_COUNT, LLM_KV_ATTENTION_HEAD_COUNT_KV, LLM_KV_ATTENTION_MAX_ALIBI_BIAS, LLM_KV_ATTENTION_CLAMP_KQV, LLM_KV_ATTENTION_KEY_LENGTH, LLM_KV_ATTENTION_VALUE_LENGTH, LLM_KV_ATTENTION_LAYERNORM_EPS, LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, LLM_KV_ATTENTION_CAUSAL, LLM_KV_ROPE_DIMENSION_COUNT, LLM_KV_ROPE_FREQ_BASE, LLM_KV_ROPE_SCALE_LINEAR, LLM_KV_ROPE_SCALING_TYPE, LLM_KV_ROPE_SCALING_FACTOR, LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, LLM_KV_ROPE_SCALING_FINETUNED, LLM_KV_SPLIT_NO, LLM_KV_SPLIT_COUNT, LLM_KV_SPLIT_TENSORS_COUNT, LLM_KV_SSM_INNER_SIZE, LLM_KV_SSM_CONV_KERNEL, LLM_KV_SSM_STATE_SIZE, LLM_KV_SSM_TIME_STEP_RANK, LLM_KV_TOKENIZER_MODEL, LLM_KV_TOKENIZER_LIST, LLM_KV_TOKENIZER_TOKEN_TYPE, LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, LLM_KV_TOKENIZER_SCORES, LLM_KV_TOKENIZER_MERGES, LLM_KV_TOKENIZER_BOS_ID, LLM_KV_TOKENIZER_EOS_ID, LLM_KV_TOKENIZER_UNK_ID, LLM_KV_TOKENIZER_SEP_ID, LLM_KV_TOKENIZER_PAD_ID, LLM_KV_TOKENIZER_ADD_BOS, LLM_KV_TOKENIZER_ADD_EOS, LLM_KV_TOKENIZER_ADD_PREFIX, LLM_KV_TOKENIZER_HF_JSON, LLM_KV_TOKENIZER_RWKV, }; static const std::map LLM_KV_NAMES = { { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" }, { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" }, { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" }, { LLM_KV_GENERAL_NAME, "general.name" }, { LLM_KV_GENERAL_AUTHOR, "general.author" }, { LLM_KV_GENERAL_VERSION, "general.version" }, { LLM_KV_GENERAL_URL, "general.url" }, { LLM_KV_GENERAL_DESCRIPTION, "general.description" }, { LLM_KV_GENERAL_LICENSE, "general.license" }, { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" }, { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" }, { LLM_KV_VOCAB_SIZE, "%s.vocab_size" }, { LLM_KV_CONTEXT_LENGTH, "%s.context_length" }, { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" }, { LLM_KV_BLOCK_COUNT, "%s.block_count" }, { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" }, { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" }, { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" }, { LLM_KV_EXPERT_COUNT, "%s.expert_count" }, { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" }, { LLM_KV_POOLING_TYPE , "%s.pooling_type" }, { LLM_KV_LOGIT_SCALE, "%s.logit_scale" }, { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" }, { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" }, { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" }, { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" }, { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" }, { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" }, { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" }, { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" }, { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" }, { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" }, { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" }, { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" }, { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" }, { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" }, { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" }, { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" }, { LLM_KV_SPLIT_NO, "split.no" }, { LLM_KV_SPLIT_COUNT, "split.count" }, { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" }, { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" }, { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" }, { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" }, { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" }, { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" }, { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" }, { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" }, { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" }, { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" }, { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" }, { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" }, { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" }, { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" }, { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" }, { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" }, { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" }, { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" }, { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" }, { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" }, { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" }, }; struct LLM_KV { LLM_KV(llm_arch arch) : arch(arch) {} llm_arch arch; std::string operator()(llm_kv kv) const { return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch)); } }; enum llm_tensor { LLM_TENSOR_TOKEN_EMBD, LLM_TENSOR_TOKEN_EMBD_NORM, LLM_TENSOR_TOKEN_TYPES, LLM_TENSOR_POS_EMBD, LLM_TENSOR_OUTPUT, LLM_TENSOR_OUTPUT_NORM, LLM_TENSOR_ROPE_FREQS, LLM_TENSOR_ATTN_Q, LLM_TENSOR_ATTN_K, LLM_TENSOR_ATTN_V, LLM_TENSOR_ATTN_QKV, LLM_TENSOR_ATTN_OUT, LLM_TENSOR_ATTN_NORM, LLM_TENSOR_ATTN_NORM_2, LLM_TENSOR_ATTN_OUT_NORM, LLM_TENSOR_ATTN_ROT_EMBD, LLM_TENSOR_FFN_GATE_INP, LLM_TENSOR_FFN_NORM, LLM_TENSOR_FFN_GATE, LLM_TENSOR_FFN_DOWN, LLM_TENSOR_FFN_UP, LLM_TENSOR_FFN_ACT, LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility LLM_TENSOR_FFN_GATE_EXP, LLM_TENSOR_FFN_UP_EXP, LLM_TENSOR_FFN_DOWN_EXPS, // merged experts LLM_TENSOR_FFN_GATE_EXPS, LLM_TENSOR_FFN_UP_EXPS, LLM_TENSOR_ATTN_Q_NORM, LLM_TENSOR_ATTN_K_NORM, LLM_TENSOR_LAYER_OUT_NORM, LLM_TENSOR_SSM_IN, LLM_TENSOR_SSM_CONV1D, LLM_TENSOR_SSM_X, LLM_TENSOR_SSM_DT, LLM_TENSOR_SSM_A, LLM_TENSOR_SSM_D, LLM_TENSOR_SSM_OUT, }; static const std::map> LLM_TENSOR_NAMES = { { LLM_ARCH_LLAMA, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" }, { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" }, { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, }, }, { LLM_ARCH_BAICHUAN, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_FALCON, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_GROK, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" }, { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" }, { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, }, }, { LLM_ARCH_GPT2, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_POS_EMBD, "position_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, }, }, { LLM_ARCH_GPTJ, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, }, }, { LLM_ARCH_GPTNEOX, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_PERSIMMON, { { LLM_TENSOR_TOKEN_EMBD, "token_embd"}, { LLM_TENSOR_OUTPUT_NORM, "output_norm"}, { LLM_TENSOR_OUTPUT, "output"}, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"}, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"}, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"}, { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"}, { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"}, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"}, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"}, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"}, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"}, }, }, { LLM_ARCH_MPT, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output"}, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" }, { LLM_TENSOR_POS_EMBD, "position_embd" }, { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"}, { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"}, }, }, { LLM_ARCH_STARCODER, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_POS_EMBD, "position_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, }, }, { LLM_ARCH_REFACT, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_BERT, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, { LLM_TENSOR_TOKEN_TYPES, "token_types" }, { LLM_TENSOR_POS_EMBD, "position_embd" }, { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_NOMIC_BERT, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, { LLM_TENSOR_TOKEN_TYPES, "token_types" }, { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_BLOOM, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, }, }, { LLM_ARCH_STABLELM, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_QWEN, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_QWEN2, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_PHI2, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_PLAMO, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_CODESHELL, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_ORION, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_INTERNLM2, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_MINICPM, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" }, { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" }, { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, }, }, { LLM_ARCH_GEMMA, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_STARCODER2, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_MAMBA, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" }, { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" }, { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" }, { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" }, { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" }, { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" }, { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" }, }, }, { LLM_ARCH_XVERSE, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_COMMAND_R, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { LLM_ARCH_UNKNOWN, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, }, }, }; static llm_arch llm_arch_from_string(const std::string & name) { for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT if (kv.second == name) { return kv.first; } } return LLM_ARCH_UNKNOWN; } // helper to handle gguf constants // usage: // // const auto tn = LLM_TN(LLM_ARCH_LLAMA); // // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output" // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias" // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight" // struct LLM_TN { LLM_TN(llm_arch arch) : arch(arch) {} llm_arch arch; std::string operator()(llm_tensor tensor) const { if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { return "__missing__"; } return LLM_TENSOR_NAMES.at(arch).at(tensor); } std::string operator()(llm_tensor tensor, const std::string & suffix) const { if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { return "__missing__"; } return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix; } std::string operator()(llm_tensor tensor, int bid) const { if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { return "__missing__"; } return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid); } std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const { if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { return "__missing__"; } return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix; } std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const { if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { return "__missing__"; } return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix; } }; // // gguf helpers // static const std::map LLAMA_ROPE_SCALING_TYPES = { { LLAMA_ROPE_SCALING_TYPE_NONE, "none" }, { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" }, { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" }, }; static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) { for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) { if (kv.second == name) { return (llama_rope_scaling_type) kv.first; } } return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED; } static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) { switch (type) { case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]); case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]); case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]); case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]); case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]); case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]); case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]); case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]); case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]); case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]); case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false"; default: return format("unknown type %d", type); } } static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) { const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i); switch (type) { case GGUF_TYPE_STRING: return gguf_get_val_str(ctx_gguf, i); case GGUF_TYPE_ARRAY: { const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i); int arr_n = gguf_get_arr_n(ctx_gguf, i); const void * data = gguf_get_arr_data(ctx_gguf, i); std::stringstream ss; ss << "["; for (int j = 0; j < arr_n; j++) { if (arr_type == GGUF_TYPE_STRING) { std::string val = gguf_get_arr_str(ctx_gguf, i, j); // escape quotes replace_all(val, "\\", "\\\\"); replace_all(val, "\"", "\\\""); ss << '"' << val << '"'; } else if (arr_type == GGUF_TYPE_ARRAY) { ss << "???"; } else { ss << gguf_data_to_str(arr_type, data, j); } if (j < arr_n - 1) { ss << ", "; } } ss << "]"; return ss.str(); } default: return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0); } } // // llama helpers // #if defined(_WIN32) static std::string llama_format_win_err(DWORD err) { LPSTR buf; size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL); if (!size) { return "FormatMessageA failed"; } std::string ret(buf, size); LocalFree(buf); return ret; } #endif template struct no_init { T value; no_init() { /* do nothing */ } }; struct llama_file { // use FILE * so we don't have to re-open the file to mmap FILE * fp; size_t size; llama_file(const char * fname, const char * mode) { fp = ggml_fopen(fname, mode); if (fp == NULL) { throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno))); } seek(0, SEEK_END); size = tell(); seek(0, SEEK_SET); } size_t tell() const { #ifdef _WIN32 __int64 ret = _ftelli64(fp); #else long ret = std::ftell(fp); #endif GGML_ASSERT(ret != -1); // this really shouldn't fail return (size_t) ret; } void seek(size_t offset, int whence) const { #ifdef _WIN32 int ret = _fseeki64(fp, (__int64) offset, whence); #else int ret = std::fseek(fp, (long) offset, whence); #endif GGML_ASSERT(ret == 0); // same } void read_raw(void * ptr, size_t len) const { if (len == 0) { return; } errno = 0; std::size_t ret = std::fread(ptr, len, 1, fp); if (ferror(fp)) { throw std::runtime_error(format("read error: %s", strerror(errno))); } if (ret != 1) { throw std::runtime_error("unexpectedly reached end of file"); } } uint32_t read_u32() const { uint32_t ret; read_raw(&ret, sizeof(ret)); return ret; } void write_raw(const void * ptr, size_t len) const { if (len == 0) { return; } errno = 0; size_t ret = std::fwrite(ptr, len, 1, fp); if (ret != 1) { throw std::runtime_error(format("write error: %s", strerror(errno))); } } void write_u32(std::uint32_t val) const { write_raw(&val, sizeof(val)); } ~llama_file() { if (fp) { std::fclose(fp); } } }; using llama_files = std::vector>; struct llama_mmap { void * addr; size_t size; llama_mmap(const llama_mmap &) = delete; #ifdef _POSIX_MAPPED_FILES static constexpr bool SUPPORTED = true; // list of mapped fragments (first_offset, last_offset) std::vector> mapped_fragments; llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) { size = file->size; int fd = fileno(file->fp); int flags = MAP_SHARED; // prefetch/readahead impairs performance on NUMA systems if (numa) { prefetch = 0; } #ifdef __linux__ // advise the kernel to read the file sequentially (increases readahead) if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) { LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n", strerror(errno)); } if (prefetch) { flags |= MAP_POPULATE; } #endif addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0); if (addr == MAP_FAILED) { // NOLINT throw std::runtime_error(format("mmap failed: %s", strerror(errno))); } if (prefetch > 0) { // advise the kernel to preload the mapped memory if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) { LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n", strerror(errno)); } } if (numa) { // advise the kernel not to use readahead // (because the next page might not belong on the same node) if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) { LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n", strerror(errno)); } } // initialize list of mapped_fragments mapped_fragments.emplace_back(0, file->size); } static void align_range(size_t * first, size_t * last, size_t page_size) { // align first to the next page size_t offset_in_page = *first & (page_size - 1); size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page; *first += offset_to_page; // align last to the previous page *last = *last & ~(page_size - 1); if (*last <= *first) { *last = *first; } } // partially unmap the file in the range [first, last) void unmap_fragment(size_t first, size_t last) { // note: this function must not be called multiple times with overlapping ranges // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings int page_size = sysconf(_SC_PAGESIZE); align_range(&first, &last, page_size); size_t len = last - first; if (len == 0) { return; } GGML_ASSERT(first % page_size == 0); GGML_ASSERT(last % page_size == 0); GGML_ASSERT(last > first); void * next_page_start = (uint8_t *) addr + first; // unmap the range if (munmap(next_page_start, len)) { LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno)); } // update the list of mapped fragments to avoid unmapping the same range again in the destructor std::vector> new_mapped_fragments; for (const auto & frag : mapped_fragments) { if (frag.first < first && frag.second > last) { // the range is in the middle of the fragment, split it new_mapped_fragments.emplace_back(frag.first, first); new_mapped_fragments.emplace_back(last, frag.second); } else if (frag.first < first && frag.second > first) { // the range starts in the middle of the fragment new_mapped_fragments.emplace_back(frag.first, first); } else if (frag.first < last && frag.second > last) { // the range ends in the middle of the fragment new_mapped_fragments.emplace_back(last, frag.second); } else if (frag.first >= first && frag.second <= last) { // the range covers the entire fragment } else { // the range is outside the fragment new_mapped_fragments.push_back(frag); } } mapped_fragments = std::move(new_mapped_fragments); } ~llama_mmap() { for (const auto & frag : mapped_fragments) { if (munmap((char *) addr + frag.first, frag.second - frag.first)) { LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno)); } } } #elif defined(_WIN32) static constexpr bool SUPPORTED = true; llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) { GGML_UNUSED(numa); size = file->size; HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp)); HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL); if (hMapping == NULL) { DWORD error = GetLastError(); throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str())); } addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0); DWORD error = GetLastError(); CloseHandle(hMapping); if (addr == NULL) { throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str())); } if (prefetch > 0) { #if _WIN32_WINNT >= 0x602 // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG); HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll"); // may fail on pre-Windows 8 systems pPrefetchVirtualMemory = reinterpret_cast (GetProcAddress(hKernel32, "PrefetchVirtualMemory")); if (pPrefetchVirtualMemory) { // advise the kernel to preload the mapped memory WIN32_MEMORY_RANGE_ENTRY range; range.VirtualAddress = addr; range.NumberOfBytes = (SIZE_T) std::min(size, prefetch); if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) { LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n", llama_format_win_err(GetLastError()).c_str()); } } #else throw std::runtime_error("PrefetchVirtualMemory unavailable"); #endif } } void unmap_fragment(size_t first, size_t last) { // not supported GGML_UNUSED(first); GGML_UNUSED(last); } ~llama_mmap() { if (!UnmapViewOfFile(addr)) { LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n", llama_format_win_err(GetLastError()).c_str()); } } #else static constexpr bool SUPPORTED = false; llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) { GGML_UNUSED(file); GGML_UNUSED(prefetch); GGML_UNUSED(numa); throw std::runtime_error("mmap not supported"); } void unmap_fragment(size_t first, size_t last) { GGML_UNUSED(first); GGML_UNUSED(last); throw std::runtime_error("mmap not supported"); } #endif }; using llama_mmaps = std::vector>; // Represents some region of memory being locked using mlock or VirtualLock; // will automatically unlock on destruction. struct llama_mlock { void * addr = NULL; size_t size = 0; bool failed_already = false; llama_mlock() {} llama_mlock(const llama_mlock &) = delete; ~llama_mlock() { if (size) { raw_unlock(addr, size); } } void init(void * ptr) { GGML_ASSERT(addr == NULL && size == 0); // NOLINT addr = ptr; } void grow_to(size_t target_size) { GGML_ASSERT(addr); if (failed_already) { return; } size_t granularity = lock_granularity(); target_size = (target_size + granularity - 1) & ~(granularity - 1); if (target_size > size) { if (raw_lock((uint8_t *) addr + size, target_size - size)) { size = target_size; } else { failed_already = true; } } } #ifdef _POSIX_MEMLOCK_RANGE static constexpr bool SUPPORTED = true; static size_t lock_granularity() { return (size_t) sysconf(_SC_PAGESIZE); } #ifdef __APPLE__ #define MLOCK_SUGGESTION \ "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \ "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n" #else #define MLOCK_SUGGESTION \ "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n" #endif bool raw_lock(const void * addr, size_t size) const { if (!mlock(addr, size)) { return true; } char* errmsg = std::strerror(errno); bool suggest = (errno == ENOMEM); // Check if the resource limit is fine after all struct rlimit lock_limit; if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) { suggest = false; } if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) { suggest = false; } LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s", size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : ""); return false; } #undef MLOCK_SUGGESTION static void raw_unlock(void * addr, size_t size) { if (munlock(addr, size)) { LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno)); } } #elif defined(_WIN32) static constexpr bool SUPPORTED = true; static size_t lock_granularity() { SYSTEM_INFO si; GetSystemInfo(&si); return (size_t) si.dwPageSize; } bool raw_lock(void * ptr, size_t len) const { for (int tries = 1; ; tries++) { if (VirtualLock(ptr, len)) { return true; } if (tries == 2) { LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n", len, size, llama_format_win_err(GetLastError()).c_str()); return false; } // It failed but this was only the first try; increase the working // set size and try again. SIZE_T min_ws_size, max_ws_size; if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) { LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n", llama_format_win_err(GetLastError()).c_str()); return false; } // Per MSDN: "The maximum number of pages that a process can lock // is equal to the number of pages in its minimum working set minus // a small overhead." // Hopefully a megabyte is enough overhead: size_t increment = len + 1048576; // The minimum must be <= the maximum, so we need to increase both: min_ws_size += increment; max_ws_size += increment; if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) { LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n", llama_format_win_err(GetLastError()).c_str()); return false; } } } static void raw_unlock(void * ptr, size_t len) { if (!VirtualUnlock(ptr, len)) { LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n", llama_format_win_err(GetLastError()).c_str()); } } #else static constexpr bool SUPPORTED = false; static size_t lock_granularity() { return (size_t) 65536; } bool raw_lock(const void * addr, size_t len) const { LLAMA_LOG_WARN("warning: mlock not supported on this system\n"); return false; } static void raw_unlock(const void * addr, size_t len) {} #endif }; using llama_mlocks = std::vector>; static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) { std::vector result(8, 0); const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); if (n_tokens < 0) { result.resize(-n_tokens); int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); GGML_ASSERT(check == -n_tokens); } else { result.resize(n_tokens); } return std::string(result.data(), result.size()); } static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) { ggml_backend_buffer_type_t buft = nullptr; #if defined(GGML_USE_CUDA) // host buffers should only be used when data is expected to be copied to/from the GPU if (host_buffer) { buft = ggml_backend_cuda_host_buffer_type(); } #elif defined(GGML_USE_SYCL) if (host_buffer) { buft = ggml_backend_sycl_host_buffer_type(); } #elif defined(GGML_USE_CPU_HBM) buft = ggml_backend_cpu_hbm_buffer_type(); #elif defined(GGML_USE_VULKAN) if (host_buffer) { buft = ggml_backend_vk_host_buffer_type(); } #endif if (buft == nullptr) { buft = ggml_backend_cpu_buffer_type(); } return buft; GGML_UNUSED(host_buffer); } static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) { ggml_backend_buffer_type_t buft = nullptr; #ifdef GGML_USE_METAL buft = ggml_backend_metal_buffer_type(); #elif defined(GGML_USE_CUDA) buft = ggml_backend_cuda_buffer_type(gpu); #elif defined(GGML_USE_VULKAN) buft = ggml_backend_vk_buffer_type(gpu); #elif defined(GGML_USE_SYCL) buft = ggml_backend_sycl_buffer_type(gpu); #elif defined(GGML_USE_CLBLAST) buft = ggml_backend_opencl_buffer_type(); #elif defined(GGML_USE_KOMPUTE) buft = ggml_backend_kompute_buffer_type(gpu); if (buft == nullptr) { LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu); } #endif if (buft == nullptr) { buft = llama_default_buffer_type_cpu(true); } return buft; GGML_UNUSED(gpu); } static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_gpu, const float * tensor_split) { ggml_backend_buffer_type_t buft = nullptr; #ifdef GGML_USE_CUDA if (ggml_backend_cuda_get_device_count() > 1) { buft = ggml_backend_cuda_split_buffer_type(tensor_split); } #endif #ifdef GGML_USE_SYCL if (ggml_backend_sycl_get_device_count() > 1) { buft = ggml_backend_sycl_split_buffer_type(tensor_split); } #endif if (buft == nullptr) { buft = llama_default_buffer_type_offload(fallback_gpu); } return buft; GGML_UNUSED(tensor_split); } static size_t llama_get_device_count() { #if defined(GGML_USE_CUDA) return ggml_backend_cuda_get_device_count(); #elif defined(GGML_USE_SYCL) return ggml_backend_sycl_get_device_count(); #elif defined(GGML_USE_VULKAN) return ggml_backend_vk_get_device_count(); #else return 1; #endif } static size_t llama_get_device_memory(int device) { #if defined(GGML_USE_CUDA) size_t total; size_t free; ggml_backend_cuda_get_device_memory(device, &total, &free); return free; #elif defined(GGML_USE_SYCL) size_t total; size_t free; ggml_backend_sycl_get_device_memory(device, &total, &free); return free; #elif defined(GGML_USE_VULKAN) size_t total; size_t free; ggml_backend_vk_get_device_memory(device, &total, &free); return free; #else return 1; GGML_UNUSED(device); #endif } // // globals // struct llama_state { llama_state() { #ifdef GGML_USE_METAL ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data); #endif } // We save the log callback globally ggml_log_callback log_callback = llama_log_callback_default; void * log_callback_user_data = nullptr; }; static llama_state g_state; // available llama models enum e_model { MODEL_UNKNOWN, MODEL_17M, MODEL_22M, MODEL_33M, MODEL_109M, MODEL_137M, MODEL_335M, MODEL_0_5B, MODEL_1B, MODEL_2B, MODEL_3B, MODEL_4B, MODEL_7B, MODEL_8B, MODEL_13B, MODEL_14B, MODEL_15B, MODEL_20B, MODEL_30B, MODEL_34B, MODEL_35B, MODEL_40B, MODEL_65B, MODEL_70B, MODEL_314B, MODEL_SMALL, MODEL_MEDIUM, MODEL_LARGE, MODEL_XL, }; static const size_t kiB = 1024; static const size_t MiB = 1024*kiB; static const size_t GiB = 1024*MiB; struct llama_hparams { bool vocab_only; bool rope_finetuned; uint32_t n_vocab; uint32_t n_ctx_train; // context size the model was trained on uint32_t n_embd; uint32_t n_head; uint32_t n_head_kv; uint32_t n_layer; uint32_t n_rot; uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head uint32_t n_ff; uint32_t n_expert = 0; uint32_t n_expert_used = 0; uint32_t n_vocab_type = 0; // for BERT-style token types float f_norm_eps; float f_norm_rms_eps; float rope_freq_base_train; float rope_freq_scale_train; uint32_t n_yarn_orig_ctx; // for State Space Models uint32_t ssm_d_conv = 0; uint32_t ssm_d_inner = 0; uint32_t ssm_d_state = 0; uint32_t ssm_dt_rank = 0; float f_clamp_kqv = 0.0f; float f_max_alibi_bias = 0.0f; float f_logit_scale = 0.0f; bool causal_attn = true; bool need_kq_pos = false; enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE; enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE; enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE; bool operator!=(const llama_hparams & other) const { if (this->vocab_only != other.vocab_only) return true; if (this->n_vocab != other.n_vocab) return true; if (this->n_ctx_train != other.n_ctx_train) return true; if (this->n_embd != other.n_embd) return true; if (this->n_head != other.n_head) return true; if (this->n_head_kv != other.n_head_kv) return true; if (this->n_layer != other.n_layer) return true; if (this->n_rot != other.n_rot) return true; if (this->n_embd_head_k != other.n_embd_head_k) return true; if (this->n_embd_head_v != other.n_embd_head_v) return true; if (this->n_ff != other.n_ff) return true; if (this->n_expert != other.n_expert) return true; if (this->n_expert_used != other.n_expert_used) return true; if (this->rope_finetuned != other.rope_finetuned) return true; if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true; if (this->ssm_d_conv != other.ssm_d_conv) return true; if (this->ssm_d_inner != other.ssm_d_inner) return true; if (this->ssm_d_state != other.ssm_d_state) return true; if (this->ssm_dt_rank != other.ssm_dt_rank) return true; const float EPSILON = 1e-9f; if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true; if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true; if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true; if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true; return false; } uint32_t n_gqa() const { if (n_head_kv == 0) { return 0; } return n_head/n_head_kv; } uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads return n_embd_head_k * n_head_kv; } uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads return n_embd_head_v * n_head_kv; } uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings // corresponds to Mamba's conv_states size // TODO: maybe support other convolution strides than 1 // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner; } uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings // corresponds to Mamba's ssm_states size return ssm_d_state * ssm_d_inner; } }; struct llama_cparams { uint32_t n_ctx; // context size used during inference uint32_t n_batch; uint32_t n_ubatch; uint32_t n_seq_max; uint32_t n_threads; // number of threads to use for generation uint32_t n_threads_batch; // number of threads to use for batch processing float rope_freq_base; float rope_freq_scale; uint32_t n_yarn_orig_ctx; // These hyperparameters are not exposed in GGUF, because all // existing YaRN models use the same values for them. float yarn_ext_factor; float yarn_attn_factor; float yarn_beta_fast; float yarn_beta_slow; float defrag_thold; bool embeddings; bool causal_attn; bool offload_kqv; enum llama_pooling_type pooling_type; ggml_backend_sched_eval_callback cb_eval; void * cb_eval_user_data; }; struct llama_layer { // normalization struct ggml_tensor * attn_norm; struct ggml_tensor * attn_norm_b; struct ggml_tensor * attn_norm_2; struct ggml_tensor * attn_norm_2_b; struct ggml_tensor * attn_q_norm; struct ggml_tensor * attn_q_norm_b; struct ggml_tensor * attn_k_norm; struct ggml_tensor * attn_k_norm_b; struct ggml_tensor * attn_out_norm; struct ggml_tensor * attn_out_norm_b; // attention struct ggml_tensor * wq; struct ggml_tensor * wk; struct ggml_tensor * wv; struct ggml_tensor * wo; struct ggml_tensor * wqkv; // attention bias struct ggml_tensor * bq; struct ggml_tensor * bk; struct ggml_tensor * bv; struct ggml_tensor * bo; struct ggml_tensor * bqkv; // normalization struct ggml_tensor * ffn_norm; struct ggml_tensor * ffn_norm_b; struct ggml_tensor * layer_out_norm; struct ggml_tensor * layer_out_norm_b; // ff struct ggml_tensor * ffn_gate; // w1 struct ggml_tensor * ffn_down; // w2 struct ggml_tensor * ffn_up; // w3 // ff MoE struct ggml_tensor * ffn_gate_inp; struct ggml_tensor * ffn_gate_exps; struct ggml_tensor * ffn_down_exps; struct ggml_tensor * ffn_up_exps ; // ff bias struct ggml_tensor * ffn_down_b; // b2 struct ggml_tensor * ffn_up_b; // b3 struct ggml_tensor * ffn_act; // mamba proj struct ggml_tensor * ssm_in; struct ggml_tensor * ssm_x; struct ggml_tensor * ssm_dt; struct ggml_tensor * ssm_out; // mamba struct ggml_tensor * ssm_conv1d; struct ggml_tensor * ssm_a; struct ggml_tensor * ssm_d; // mamba bias struct ggml_tensor * ssm_conv1d_b; struct ggml_tensor * ssm_dt_b; }; struct llama_kv_cell { llama_pos pos = -1; llama_pos delta = 0; int32_t src = 0; // used by recurrent state models to copy states std::set seq_id; bool has_seq_id(const llama_seq_id & id) const { return seq_id.find(id) != seq_id.end(); } bool is_empty() const { return seq_id.empty(); } bool is_same_seq(const llama_kv_cell & other) const { return seq_id == other.seq_id; } }; // ring-buffer of cached KV data struct llama_kv_cache { bool has_shift = false; bool do_defrag = false; bool do_copy = false; // with recurrent state models, a cell can hold the state for more than one past token bool recurrent = false; // Note: The value of head isn't only used to optimize searching // for a free KV slot. llama_decode_internal also uses it, so it // cannot be freely changed after a slot has been allocated. uint32_t head = 0; uint32_t size = 0; uint32_t used = 0; // used cells (i.e. at least one seq_id) // computed before each graph build uint32_t n = 0; ggml_type type_k = GGML_TYPE_F16; ggml_type type_v = GGML_TYPE_F16; std::vector cells; std::vector k_l; // per layer std::vector v_l; std::vector ctxs; std::vector bufs; size_t total_size() const { size_t size = 0; for (ggml_backend_buffer_t buf : bufs) { size += ggml_backend_buffer_get_size(buf); } return size; } ~llama_kv_cache() { for (struct ggml_context * ctx : ctxs) { ggml_free(ctx); } for (ggml_backend_buffer_t buf : bufs) { ggml_backend_buffer_free(buf); } } }; struct llama_control_vector { std::vector tensors; // per layer std::vector ctxs; std::vector bufs; int32_t layer_start = -1; int32_t layer_end = -1; ggml_tensor * tensor_for(int il) const { if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) { return nullptr; } return tensors[il]; } ~llama_control_vector() { for (struct ggml_context * ctx : ctxs) { ggml_free(ctx); } for (ggml_backend_buffer_t buf : bufs) { ggml_backend_buffer_free(buf); } } }; struct llama_vocab { using id = int32_t; using token = std::string; using ttype = llama_token_type; struct token_data { token text; float score; ttype type; }; enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM; std::unordered_map token_to_id; std::vector id_to_token; std::unordered_map special_tokens_cache; std::map, int> bpe_ranks; // default LLaMA special tokens id special_bos_id = 1; id special_eos_id = 2; id special_unk_id = 0; id special_sep_id = -1; id special_pad_id = -1; int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add. id linefeed_id = 13; id special_prefix_id = 32007; id special_middle_id = 32009; id special_suffix_id = 32008; id special_eot_id = 32010; bool add_space_prefix = true; int find_bpe_rank(const std::string & token_left, const std::string & token_right) const { GGML_ASSERT(token_left.find(' ') == std::string::npos); GGML_ASSERT(token_left.find('\n') == std::string::npos); GGML_ASSERT(token_right.find(' ') == std::string::npos); GGML_ASSERT(token_right.find('\n') == std::string::npos); auto it = bpe_ranks.find(std::make_pair(token_left, token_right)); if (it == bpe_ranks.end()) { return -1; } return it->second; } }; struct llama_model { e_model type = MODEL_UNKNOWN; llm_arch arch = LLM_ARCH_UNKNOWN; llama_ftype ftype = LLAMA_FTYPE_ALL_F32; std::string name = "n/a"; llama_hparams hparams = {}; llama_vocab vocab; struct ggml_tensor * tok_embd; struct ggml_tensor * type_embd; struct ggml_tensor * pos_embd; struct ggml_tensor * tok_norm; struct ggml_tensor * tok_norm_b; struct ggml_tensor * output_norm; struct ggml_tensor * output_norm_b; struct ggml_tensor * output; struct ggml_tensor * output_b; std::vector layers; llama_split_mode split_mode; int main_gpu; int n_gpu_layers; // gguf metadata std::unordered_map gguf_kv; // layer -> buffer type mapping struct layer_buft { layer_buft() : buft_matrix(nullptr), buft(nullptr) {} layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {} layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {} ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication ggml_backend_buffer_type_t buft; // everything else }; layer_buft buft_input; layer_buft buft_output; std::vector buft_layer; // contexts where the model tensors metadata is stored std::vector ctxs; // the model memory buffers for the tensor data std::vector bufs; // model memory mapped files llama_mmaps mappings; // objects representing data potentially being locked in memory llama_mlocks mlock_bufs; llama_mlocks mlock_mmaps; // for quantize-stats only std::vector> tensors_by_name; int64_t t_load_us = 0; int64_t t_start_us = 0; ~llama_model() { for (struct ggml_context * ctx : ctxs) { ggml_free(ctx); } for (ggml_backend_buffer_t buf : bufs) { #ifdef GGML_USE_CUDA if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) { ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf)); } #endif ggml_backend_buffer_free(buf); } } }; struct llama_context { llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {} ~llama_context() { ggml_backend_sched_free(sched); for (ggml_backend_t backend : backends) { ggml_backend_free(backend); } ggml_backend_buffer_free(buf_output); } llama_cparams cparams; std::vector backends; #ifdef GGML_USE_METAL ggml_backend_t backend_metal = nullptr; #endif ggml_backend_t backend_cpu = nullptr; const llama_model & model; // key + value cache for the self attention struct llama_kv_cache kv_self; std::mt19937 rng; bool has_evaluated_once = false; int64_t t_start_us; int64_t t_load_us; int64_t t_sample_us = 0; int64_t t_p_eval_us = 0; int64_t t_eval_us = 0; int64_t t_compute_start_us = 0; int64_t n_queued_tokens = 0; int32_t n_sample = 0; // number of tokens sampled int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1) int32_t n_eval = 0; // number of eval calls // host buffer for the model output (logits and embeddings) ggml_backend_buffer_t buf_output = nullptr; // decode output (2-dimensional array: [n_outputs][n_vocab]) size_t logits_size = 0; // capacity (of floats) for logits float * logits = nullptr; std::vector output_ids; // map batch token positions to ids of the logits and embd buffers size_t output_size = 0; // capacity (of tokens positions) for the output buffers int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch bool logits_all = false; // embeddings output (2-dimensional array: [n_outputs][n_embd]) // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE size_t embd_size = 0; // capacity (of floats) for embeddings float * embd = nullptr; // sequence embeddings output (map of [n_embd] vectors) // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE std::map> embd_seq; // memory buffers used to evaluate the model std::vector buf_compute_meta; ggml_backend_sched_t sched = nullptr; ggml_abort_callback abort_callback = nullptr; void * abort_callback_data = nullptr; // input tensors struct ggml_tensor * inp_tokens; // I32 [n_batch] struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch] struct ggml_tensor * inp_pos; // I32 [n_batch] struct ggml_tensor * inp_out_ids; // I32 [n_outputs] struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch] struct ggml_tensor * inp_KQ_pos; // F32 [n_kv] struct ggml_tensor * inp_K_shift; // I32 [kv_size] struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch] struct ggml_tensor * inp_cls; // I32 [n_batch] struct ggml_tensor * inp_s_copy; // I32 [kv_size] struct ggml_tensor * inp_s_mask; // F32 [1, n_kv] struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch] // control vectors struct llama_control_vector cvec; #ifdef GGML_USE_MPI ggml_mpi_context * ctx_mpi = NULL; #endif }; // // kv cache helpers // static bool llama_kv_cache_init( struct llama_kv_cache & cache, const llama_model & model, ggml_type type_k, ggml_type type_v, uint32_t kv_size, bool offload) { const struct llama_hparams & hparams = model.hparams; const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s(); const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s(); const int64_t n_layer = hparams.n_layer; cache.has_shift = false; // TODO: find a nicer way to add other recurrent model architectures cache.recurrent = model.arch == LLM_ARCH_MAMBA; // TODO: support mixed reccurent Transformer architectues // NOTE: (!a || b) is a logical implication (a -> b) GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s()); GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s()); GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa()); GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa()); cache.head = 0; cache.size = kv_size; cache.used = 0; cache.type_k = type_k; cache.type_v = type_v; cache.cells.clear(); cache.cells.resize(kv_size); if (cache.recurrent) { // init state copy sources for (uint32_t i = 0; i < cache.size; ++i) { cache.cells[i].src = i; } } #ifdef GGML_USE_CLBLAST offload = false; #endif // count used buffer types std::map buft_layer_count; if (offload) { for (int64_t i = 0; i < n_layer; ++i) { buft_layer_count[model.buft_layer[i].buft]++; } } else { buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer; } // create a context for each buffer type std::map ctx_map; for (auto & it : buft_layer_count) { int n_layers = it.second; struct ggml_init_params params = { /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; ggml_context * ctx = ggml_init(params); if (!ctx) { LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__); return false; } ctx_map[it.first] = ctx; cache.ctxs.push_back(ctx); } cache.k_l.reserve(n_layer); cache.v_l.reserve(n_layer); for (int i = 0; i < (int) n_layer; i++) { struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front(); ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size); ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size); ggml_format_name(k, "cache_k_l%d", i); ggml_format_name(v, "cache_v_l%d", i); cache.k_l.push_back(k); cache.v_l.push_back(v); } // allocate tensors and initialize the buffers to avoid NaNs in the padding for (auto it : ctx_map) { ggml_backend_buffer_type_t buft = it.first; ggml_context * ctx = it.second; ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); if (!buf) { LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__); return false; } ggml_backend_buffer_clear(buf, 0); LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0); cache.bufs.push_back(buf); } return true; } // find an empty slot of size "n_tokens" in the cache // updates the cache head // Note: On success, it's important that cache.head points // to the first cell of the slot. static bool llama_kv_cache_find_slot( struct llama_kv_cache & cache, const struct llama_batch & batch) { const uint32_t n_ctx = cache.size; const uint32_t n_tokens = batch.n_tokens; if (cache.recurrent) { // For recurrent state architectures (like Mamba), // each KV cache cell can store the state for a whole sequence. llama_seq_id min = cache.size - 1; llama_seq_id max = 0; for (uint32_t i = 0; i < n_tokens; ++i) { for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) { llama_seq_id seq_id = batch.seq_id[i][j]; // make sure it's a valid seq_id if ((uint32_t) seq_id < cache.size) { if (seq_id > max) { max = seq_id; } if (seq_id < min) { min = seq_id; } // Assuming the tokens are in-order if (batch.pos[i] != cache.cells[seq_id].pos + 1) { // What should happen when the pos backtracks or skips a value? // Clearing the state mid-batch would require special-casing which isn't done. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n", __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id); } if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) { cache.used += 1; } cache.cells[seq_id].pos = batch.pos[i]; // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set } else { // too big seq_id // TODO: would it be possible to resize the KV cache size instead? LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size); return false; } } } // allow getting the range of used cells, from head to head + n cache.head = min; cache.n = max - min + 1; // sanity check return max >= min; } // otherwise, one cell per token. if (n_tokens > n_ctx) { LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx); return false; } uint32_t n_tested = 0; while (true) { if (cache.head + n_tokens > n_ctx) { n_tested += n_ctx - cache.head; cache.head = 0; continue; } bool found = true; for (uint32_t i = 0; i < n_tokens; i++) { if (cache.cells[cache.head + i].pos >= 0) { found = false; cache.head += i + 1; n_tested += i + 1; break; } } if (found) { break; } if (n_tested >= n_ctx) { //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens); return false; } } for (uint32_t i = 0; i < n_tokens; i++) { cache.cells[cache.head + i].pos = batch.pos[i]; for (int32_t j = 0; j < batch.n_seq_id[i]; j++) { cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]); } } cache.used += n_tokens; return true; } // find how many cells are currently in use static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) { for (uint32_t i = cache.size; i > 0; --i) { const llama_kv_cell & cell = cache.cells[i - 1]; if (cell.pos >= 0 && !cell.is_empty()) { return i; } } return 0; } static void llama_kv_cache_clear(struct llama_kv_cache & cache) { for (int32_t i = 0; i < (int32_t) cache.size; ++i) { cache.cells[i].pos = -1; cache.cells[i].seq_id.clear(); } cache.head = 0; cache.used = 0; } static bool llama_kv_cache_seq_rm( struct llama_kv_cache & cache, llama_seq_id seq_id, llama_pos p0, llama_pos p1) { uint32_t new_head = cache.size; if (p0 < 0) p0 = 0; if (p1 < 0) p1 = std::numeric_limits::max(); // models like Mamba can't have a state partially erased if (cache.recurrent) { if (seq_id >= (int64_t) cache.size) { // could be fatal return false; } if (0 <= seq_id) { // partial intersection is invalid if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) { return false; } } else { // seq_id is negative, then the range should include everything or nothing if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits::max())) { return false; } } } for (uint32_t i = 0; i < cache.size; ++i) { if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { if (seq_id < 0) { cache.cells[i].seq_id.clear(); } else if (cache.cells[i].has_seq_id(seq_id)) { cache.cells[i].seq_id.erase(seq_id); } else { continue; } if (cache.cells[i].is_empty()) { // keep count of the number of used cells if (cache.cells[i].pos >= 0) cache.used--; cache.cells[i].pos = -1; if (new_head == cache.size) new_head = i; } } } // If we freed up a slot, set head to it so searching can start there. if (new_head != cache.size && new_head < cache.head) cache.head = new_head; return true; } static void llama_kv_cache_seq_cp( struct llama_kv_cache & cache, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { if (p0 < 0) p0 = 0; if (p1 < 0) p1 = std::numeric_limits::max(); if (cache.recurrent) { if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) { seq_id_src = cache.cells[seq_id_src].src; GGML_ASSERT((uint32_t) seq_id_src < cache.size); // intent to "copy from" // supports copy chains thanks to taking the source of the source cache.cells[seq_id_dst].src = seq_id_src; // preserve the "keep or clear" status of the copied sequence if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) { cache.cells[seq_id_dst].seq_id.insert(seq_id_dst); } else { cache.cells[seq_id_dst].seq_id.erase(seq_id_dst); } cache.do_copy = true; cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos; } return; } // otherwise, this is the KV cache of a Transformer-like model cache.head = 0; for (uint32_t i = 0; i < cache.size; ++i) { if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { cache.cells[i].seq_id.insert(seq_id_dst); } } } static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) { uint32_t new_head = cache.size; for (uint32_t i = 0; i < cache.size; ++i) { if (!cache.cells[i].has_seq_id(seq_id)) { if (cache.cells[i].pos >= 0) cache.used--; cache.cells[i].pos = -1; cache.cells[i].seq_id.clear(); if (new_head == cache.size) new_head = i; } else { cache.cells[i].seq_id.clear(); cache.cells[i].seq_id.insert(seq_id); } } // If we freed up a slot, set head to it so searching can start there. if (new_head != cache.size && new_head < cache.head) cache.head = new_head; } static void llama_kv_cache_seq_add( struct llama_kv_cache & cache, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) { uint32_t new_head = cache.size; if (p0 < 0) p0 = 0; if (p1 < 0) p1 = std::numeric_limits::max(); if (cache.recurrent) { // for Mamba-like models, only the pos needs to be shifted if (0 <= seq_id && seq_id < (int64_t) cache.size) { llama_kv_cell & cell = cache.cells[seq_id]; if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) { cell.pos += delta; } } return; } for (uint32_t i = 0; i < cache.size; ++i) { if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { cache.has_shift = true; cache.cells[i].pos += delta; cache.cells[i].delta += delta; if (cache.cells[i].pos < 0) { if (!cache.cells[i].is_empty()) { cache.used--; } cache.cells[i].pos = -1; cache.cells[i].seq_id.clear(); if (new_head == cache.size) { new_head = i; } } } } // If we freed up a slot, set head to it so searching can start there. // Otherwise we just start the next search from the beginning. cache.head = new_head != cache.size ? new_head : 0; } static void llama_kv_cache_seq_div( struct llama_kv_cache & cache, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { if (p0 < 0) p0 = 0; if (p1 < 0) p1 = std::numeric_limits::max(); if (cache.recurrent) { // for Mamba-like models, only the pos needs to be changed if (0 <= seq_id && seq_id < (int64_t) cache.size) { llama_kv_cell & cell = cache.cells[seq_id]; if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) { cell.pos /= d; } } return; } for (uint32_t i = 0; i < cache.size; ++i) { if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { cache.has_shift = true; { llama_pos p_old = cache.cells[i].pos; cache.cells[i].pos /= d; cache.cells[i].delta += cache.cells[i].pos - p_old; } } } } static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) { llama_pos result = 0; for (uint32_t i = 0; i < cache.size; ++i) { if (cache.cells[i].has_seq_id(seq_id)) { result = std::max(result, cache.cells[i].pos); } } return result; } static void llama_kv_cache_defrag(struct llama_kv_cache & cache) { cache.do_defrag = true; } // // model loading and saving // enum llama_fver { GGUF_FILE_VERSION_V1 = 1, GGUF_FILE_VERSION_V2 = 2, GGUF_FILE_VERSION_V3 = 3, }; static const char * llama_file_version_name(llama_fver version) { switch (version) { case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)"; case GGUF_FILE_VERSION_V2: return "GGUF V2"; case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)"; } return "unknown"; } static std::string llama_format_tensor_shape(const std::vector & ne) { char buf[256]; snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0)); for (size_t i = 1; i < ne.size(); i++) { snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i)); } return buf; } static std::string llama_format_tensor_shape(const struct ggml_tensor * t) { char buf[256]; snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]); for (int i = 1; i < GGML_MAX_DIMS; i++) { snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]); } return buf; } namespace GGUFMeta { template struct GKV_Base_Type { static constexpr gguf_type gt = gt_; static T getter(const gguf_context * ctx, const int kid) { return gfun(ctx, kid); } }; template struct GKV_Base; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base: GKV_Base_Type {}; template<> struct GKV_Base { static constexpr gguf_type gt = GGUF_TYPE_STRING; static std::string getter(const gguf_context * ctx, const int kid) { return gguf_get_val_str(ctx, kid); } }; struct ArrayInfo { const gguf_type gt; const size_t length; const void * data; }; template<> struct GKV_Base { public: static constexpr gguf_type gt = GGUF_TYPE_ARRAY; static ArrayInfo getter(const gguf_context *ctx, const int k) { return ArrayInfo { gguf_get_arr_type(ctx, k), size_t(gguf_get_arr_n(ctx, k)), gguf_get_arr_data(ctx, k), }; } }; template class GKV : public GKV_Base { GKV() = delete; public: static T get_kv(const gguf_context * ctx, const int k) { const enum gguf_type kt = gguf_get_kv_type(ctx, k); if (kt != GKV::gt) { throw std::runtime_error(format("key %s has wrong type %s but expected type %s", gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt))); } return GKV::getter(ctx, k); } static const char * override_type_to_str(const llama_model_kv_override_type ty) { switch (ty) { case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool"; case LLAMA_KV_OVERRIDE_TYPE_INT: return "int"; case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float"; } return "unknown"; } static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) { if (!ovrd) { return false; } if (ovrd->tag == expected_type) { LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ", __func__, override_type_to_str(ovrd->tag), ovrd->key); switch (ovrd->tag) { case LLAMA_KV_OVERRIDE_TYPE_BOOL: { LLAMA_LOG_INFO("%s\n", ovrd->bool_value ? "true" : "false"); } break; case LLAMA_KV_OVERRIDE_TYPE_INT: { LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->int_value); } break; case LLAMA_KV_OVERRIDE_TYPE_FLOAT: { LLAMA_LOG_INFO("%.6f\n", ovrd->float_value); } break; default: // Shouldn't be possible to end up here, but just in case... throw std::runtime_error( format("Unsupported attempt to override %s type for metadata key %s\n", override_type_to_str(ovrd->tag), ovrd->key)); } return true; } LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n", __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag)); return false; } template static typename std::enable_if::value, bool>::type try_override(OT & target, const struct llama_model_kv_override * ovrd) { if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) { target = ovrd->bool_value; return true; } return false; } template static typename std::enable_if::value && std::is_integral::value, bool>::type try_override(OT & target, const struct llama_model_kv_override * ovrd) { if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) { target = ovrd->int_value; return true; } return false; } template static typename std::enable_if::value, bool>::type try_override(T & target, const struct llama_model_kv_override * ovrd) { if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) { target = ovrd->float_value; return true; } return false; } template static typename std::enable_if::value, bool>::type try_override(T & target, const struct llama_model_kv_override * ovrd) { (void)target; (void)ovrd; if (!ovrd) { return false; } // Currently, we should never end up here so it would be a bug if we do. throw std::runtime_error(format("Unsupported attempt to override string type for metadata key %s\n", ovrd ? ovrd->key : "NULL")); } static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) { if (try_override(target, ovrd)) { return true; } if (k < 0) { return false; } target = get_kv(ctx, k); return true; } static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) { return set(ctx, gguf_find_key(ctx, key), target, ovrd); } static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) { return set(ctx, key.c_str(), target, ovrd); } }; } using llama_buf_map = std::unordered_map; struct llama_model_loader { int n_kv = 0; int n_tensors = 0; int n_created = 0; int64_t n_elements = 0; size_t n_bytes = 0; bool use_mmap = false; llama_files files; llama_ftype ftype; llama_fver fver; llama_mmaps mappings; // Holds information on a model weight struct llama_tensor_weight { uint16_t idx; // source file index size_t offs; // tensor data offset in the original file ggml_tensor * tensor; llama_tensor_weight(uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) { const int tensor_idx = gguf_find_tensor(gguf_ctx, name); offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx); } }; std::vector weights; std::unordered_map kv_overrides; struct gguf_context * meta = NULL; std::vector contexts; std::string arch_name; LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN); llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) { int trace = 0; if (getenv("LLAMA_TRACE")) { trace = atoi(getenv("LLAMA_TRACE")); } if (param_overrides_p != nullptr) { for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) { kv_overrides.insert({std::string(p->key), *p}); } } struct ggml_context * ctx = NULL; struct gguf_init_params params = { /*.no_alloc = */ true, /*.ctx = */ &ctx, }; meta = gguf_init_from_file(fname.c_str(), params); if (!meta) { throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str())); } get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false); llm_kv = LLM_KV(llm_arch_from_string(arch_name)); // Save tensors data offset of the main file. // For subsidiary files, `meta` tensor data offset must not be used, // so we build a unified tensors index for weights. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { weights.emplace_back(0, cur->name, meta, cur); } files.emplace_back(new llama_file(fname.c_str(), "rb")); contexts.emplace_back(ctx); uint16_t n_split = 0; get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false); // Load additional GGML contexts if (n_split > 1) { uint16_t idx = 0; get_key(llm_kv(LLM_KV_SPLIT_NO), idx); if (idx != 0) { throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx)); } char split_prefix[PATH_MAX] = {0}; if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) { throw std::runtime_error(format("invalid split file: %s", fname.c_str())); } if (trace > 0) { LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split); } char split_path[PATH_MAX] = {0}; for (idx = 1; idx < n_split; idx++) { llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split); struct gguf_init_params split_params = { /*.no_alloc = */ true, /*.ctx = */ &ctx, }; struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params); if (!ctx_gguf) { throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path)); } // Save tensors data offset info of the shard. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { weights.emplace_back(idx, cur->name, ctx_gguf, cur); } files.emplace_back(new llama_file(split_path, "rb")); contexts.emplace_back(ctx); gguf_free(ctx_gguf); } get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors); // sanity check { const int n_tensors_loaded = (int) weights.size(); if (n_tensors != n_tensors_loaded) { throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded)); } } LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1); } n_kv = gguf_get_n_kv(meta); n_tensors = weights.size(); fver = (enum llama_fver) gguf_get_version(meta); for (auto & w : weights) { n_elements += ggml_nelements(w.tensor); n_bytes += ggml_nbytes(w.tensor); } LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n", __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver)); // determine file type based on the number of tensors for each quantization and print meta data // TODO: make optional { std::map n_type; uint32_t n_type_max = 0; enum ggml_type type_max = GGML_TYPE_F32; for (int i = 0; i < n_tensors; i++) { const ggml_tensor * tensor = weights.at(i).tensor; enum ggml_type type = tensor->type; n_type[type]++; if (n_type_max < n_type[type]) { n_type_max = n_type[type]; type_max = type; } if (trace > 0) { const uint16_t sid = weights.at(i).idx; LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str()); } } switch (type_max) { case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break; case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break; case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break; case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break; case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break; case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break; case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break; case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break; case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break; case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break; case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break; case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break; case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break; case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break; case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break; case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break; case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break; case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break; case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break; case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break; case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break; default: { LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max)); ftype = LLAMA_FTYPE_ALL_F32; } break; } // this is a way to mark that we have "guessed" the file type ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED); { const int kid = gguf_find_key(meta, "general.file_type"); if (kid >= 0) { ftype = (llama_ftype) gguf_get_val_u32(meta, kid); } } LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__); for (int i = 0; i < n_kv; i++) { const char * name = gguf_get_key(meta, i); const enum gguf_type type = gguf_get_kv_type(meta, i); const std::string type_name = type == GGUF_TYPE_ARRAY ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i)) : gguf_type_name(type); std::string value = gguf_kv_to_str(meta, i); const size_t MAX_VALUE_LEN = 40; if (value.size() > MAX_VALUE_LEN) { value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str()); } replace_all(value, "\n", "\\n"); LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str()); } // print type counts for (auto & kv : n_type) { if (kv.second == 0) { continue; } LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second); } } if (!llama_mmap::SUPPORTED) { LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__); use_mmap = false; } this->use_mmap = use_mmap; } ~llama_model_loader() { if (meta) { gguf_free(meta); } for (auto * ctx : contexts) { ggml_free(ctx); } } template typename std::enable_if::value, bool>::type get_arr_n(const std::string & key, T & result, const bool required = true) { const int kid = gguf_find_key(meta, key.c_str()); if (kid < 0) { if (required) { throw std::runtime_error(format("key not found in model: %s", key.c_str())); } return false; } struct GGUFMeta::ArrayInfo arr_info = GGUFMeta::GKV::get_kv(meta, kid); result = arr_info.length; return true; } template typename std::enable_if::value, bool>::type get_arr_n(const enum llm_kv kid, T & result, const bool required = true) { return get_arr_n(llm_kv(kid), result, required); } template bool get_key(const std::string & key, T & result, const bool required = true) { auto it = kv_overrides.find(key); const struct llama_model_kv_override * override = it != kv_overrides.end() ? &it->second : nullptr; const bool found = GGUFMeta::GKV::set(meta, key, result, override); if (required && !found) { throw std::runtime_error(format("key not found in model: %s", key.c_str())); } return found; } template bool get_key(const enum llm_kv kid, T & result, const bool required = true) { return get_key(llm_kv(kid), result, required); } std::string get_arch_name() const { return arch_name; } enum llm_arch get_arch() const { return llm_kv.arch; } const char * get_tensor_name(int i) const { return weights.at(i).tensor->name; } const llama_tensor_weight * get_weight(const char * name) const { for (const auto & weight : weights) { if (strcmp(name, weight.tensor->name) == 0) { return &weight; } } return nullptr; } const llama_tensor_weight & require_weight(const char * name) const { const llama_tensor_weight * weight = get_weight(name); if (!weight) { throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name)); } return *weight; } struct ggml_tensor * get_tensor_meta(const char * name) const { const auto * weight = get_weight(name); if (!weight) { return nullptr; } return weight->tensor; } struct ggml_tensor * require_tensor_meta(const char * name) const { struct ggml_tensor * tensor = get_tensor_meta(name); if (!tensor) { throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name)); } return tensor; } struct ggml_tensor * get_tensor_meta(int i) const { return get_tensor_meta(get_tensor_name(i)); } struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur) { struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur); ggml_set_name(tensor, ggml_get_name(cur)); n_created++; return tensor; } const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector & ne, bool required) const { const struct ggml_tensor * cur = get_tensor_meta(name.c_str()); if (cur == NULL) { if (!required) { return NULL; } throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str())); } { bool is_ok = true; for (size_t i = 0; i < GGML_MAX_DIMS; ++i) { if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) { is_ok = false; break; } } if (!is_ok) { throw std::runtime_error( format("%s: tensor '%s' has wrong shape; expected %s, got %s", __func__, name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(cur).c_str())); } } return cur; } struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector & ne, bool required = true) { const struct ggml_tensor * cur = check_tensor_dims(name, ne, required); if (cur == NULL) { return NULL; } return create_tensor_for(ctx, cur); } struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector & ne, size_t offset, bool required = true) { const struct ggml_tensor * cur = check_tensor_dims(name, ne, required); if (cur == NULL) { return NULL; } if (cur->type != base->type) { throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type))); } std::array dims; for (size_t i = 0; i < GGML_MAX_DIMS; ++i) { dims[i] = i < ne.size() ? ne[i] : 1; } struct ggml_tensor * tensor = ggml_view_4d(ctx, base, dims[0], dims[1], dims[2], dims[3], cur->nb[1], cur->nb[2], cur->nb[3], offset); ggml_set_name(tensor, name.c_str()); n_created++; return tensor; } void done_getting_tensors() const { if (n_created != n_tensors) { throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created)); } } void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) { if (use_mmap) { mappings.reserve(files.size()); mmaps_used.reserve(files.size()); for (const auto & file : files) { std::unique_ptr mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa())); mmaps_used.emplace_back(mapping->size, 0); if (mlock_mmaps) { std::unique_ptr mlock_mmap(new llama_mlock()); mlock_mmap->init(mapping->addr); mlock_mmaps->emplace_back(std::move(mlock_mmap)); } mappings.emplace_back(std::move(mapping)); } } // compute the total size of all tensors for progress reporting for (auto & w : weights) { size_data += ggml_nbytes(w.tensor); } } void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const { GGML_ASSERT(!mappings.empty()); const auto & mapping = mappings.at(idx); *first = mapping->size; *last = 0; *addr = mapping->addr; for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) { try { const auto * weight = get_weight(ggml_get_name(tensor)); if (!weight) { continue; } if (weight->idx != idx) { continue; } *first = std::min(*first, weight->offs); *last = std::max(*last, weight->offs + ggml_nbytes(tensor)); } catch(...) { // the tensor is not in the model } } } // for backwards compatibility, does not support ggml-backend void load_data_for(struct ggml_tensor * cur) const { const auto & w = require_weight(ggml_get_name(cur)); if (use_mmap) { const auto & mapping = mappings.at(w.idx); if (cur->data == nullptr) { cur->data = (uint8_t *)mapping->addr + w.offs; } else { memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur)); } } else { GGML_ASSERT(cur->data != nullptr); GGML_ASSERT(w.idx < files.size()); const auto & file = files.at(w.idx); file->seek(w.offs, SEEK_SET); file->read_raw(cur->data, ggml_nbytes(cur)); } } size_t size_done = 0; size_t size_data = 0; std::vector> mmaps_used; // Returns false if cancelled by progress_callback bool load_all_data( struct ggml_context * ctx, llama_buf_map & bufs_mmap, llama_mlocks * lmlocks, llama_progress_callback progress_callback, void * progress_callback_user_data) { GGML_ASSERT(size_data != 0 && "call init_mappings() first"); std::vector> read_buf; for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) { const auto * weight = get_weight(ggml_get_name(cur)); if (weight == nullptr) { // this can happen with split experts models continue; } if (progress_callback) { if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) { return false; } } size_t n_size = ggml_nbytes(cur); if (use_mmap) { const auto & mapping = mappings.at(weight->idx); ggml_backend_buffer_t buf_mmap = nullptr; if (bufs_mmap.count(weight->idx)) { buf_mmap = bufs_mmap.at(weight->idx); } GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated if (buf_mmap && cur->data == nullptr) { ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + weight->offs); if (lmlocks) { const auto & lmlock = lmlocks->at(weight->idx); lmlock->grow_to(weight->offs + ggml_nbytes(cur)); } auto & mmap_used = mmaps_used[weight->idx]; mmap_used.first = std::min(mmap_used.first, weight->offs); mmap_used.second = std::max(mmap_used.second, weight->offs + n_size); } else { ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + weight->offs, 0, n_size); } } else { GGML_ASSERT(weight->idx < files.size()); const auto & file = files.at(weight->idx); if (ggml_backend_buffer_is_host(cur->buffer)) { file->seek(weight->offs, SEEK_SET); file->read_raw(cur->data, ggml_nbytes(cur)); } else { read_buf.resize(ggml_nbytes(cur)); file->seek(weight->offs, SEEK_SET); file->read_raw(read_buf.data(), ggml_nbytes(cur)); ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size); } } size_done += n_size; } // check if this is the last call and do final cleanup if (size_done >= size_data) { // unmap offloaded tensors and metadata if (use_mmap) { for (uint32_t idx = 0; idx < mappings.size(); idx++) { const auto & mmap_used = mmaps_used.at(idx); auto & mapping = mappings.at(idx); mapping->unmap_fragment(0, mmap_used.first); if (mmap_used.second != 0) { mapping->unmap_fragment(mmap_used.second, mapping->size); } } } if (progress_callback) { // Even though the model is done loading, we still honor // cancellation since we need to free allocations. return progress_callback(1.0f, progress_callback_user_data); } } return true; } }; template<> bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) { uint32_t tmp; const bool found = get_key(kid, tmp, required); if (found) { result = (enum llama_pooling_type) tmp; } else { result = LLAMA_POOLING_TYPE_UNSPECIFIED; } return found; } // // load LLaMA models // static const char * llama_model_arch_name(llm_arch arch) { auto it = LLM_ARCH_NAMES.find(arch); if (it == LLM_ARCH_NAMES.end()) { return "unknown"; } return it->second; } static std::string llama_model_ftype_name(llama_ftype ftype) { if (ftype & LLAMA_FTYPE_GUESSED) { return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)"; } switch (ftype) { case LLAMA_FTYPE_ALL_F32: return "all F32"; case LLAMA_FTYPE_MOSTLY_F16: return "F16"; case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0"; case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1"; case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16: return "Q4_1, some F16"; case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0"; case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1"; case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0"; // K-quants case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium"; case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small"; case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small"; case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium"; case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large"; case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small"; case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium"; case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small"; case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium"; case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K"; case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw"; case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw"; case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw"; case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw"; case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw"; case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw"; case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw"; case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw"; case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw"; case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw"; case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw"; case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw"; default: return "unknown, may not work"; } } static const char * llama_model_type_name(e_model type) { switch (type) { case MODEL_22M: return "22M"; case MODEL_33M: return "33M"; case MODEL_109M: return "109M"; case MODEL_137M: return "137M"; case MODEL_0_5B: return "0.5B"; case MODEL_1B: return "1B"; case MODEL_2B: return "2B"; case MODEL_3B: return "3B"; case MODEL_7B: return "7B"; case MODEL_8B: return "8B"; case MODEL_13B: return "13B"; case MODEL_14B: return "14B"; case MODEL_15B: return "15B"; case MODEL_20B: return "20B"; case MODEL_30B: return "30B"; case MODEL_34B: return "34B"; case MODEL_35B: return "35B"; case MODEL_40B: return "40B"; case MODEL_65B: return "65B"; case MODEL_70B: return "70B"; case MODEL_314B: return "314B"; case MODEL_SMALL: return "0.1B"; case MODEL_MEDIUM: return "0.4B"; case MODEL_LARGE: return "0.8B"; case MODEL_XL: return "1.5B"; default: return "?B"; } } static const char * llama_model_vocab_type_name(enum llama_vocab_type type){ switch (type) { case LLAMA_VOCAB_TYPE_NONE: return "no vocab"; case LLAMA_VOCAB_TYPE_SPM: return "SPM"; case LLAMA_VOCAB_TYPE_BPE: return "BPE"; case LLAMA_VOCAB_TYPE_WPM: return "WPM"; default: return "unknown"; } } static void llm_load_arch(llama_model_loader & ml, llama_model & model) { model.arch = ml.get_arch(); if (model.arch == LLM_ARCH_UNKNOWN) { throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'"); } } static void llm_load_hparams( llama_model_loader & ml, llama_model & model) { auto & hparams = model.hparams; const gguf_context * ctx = ml.meta; // get metadata as string for (int i = 0; i < gguf_get_n_kv(ctx); i++) { enum gguf_type type = gguf_get_kv_type(ctx, i); if (type == GGUF_TYPE_ARRAY) { continue; } const char * name = gguf_get_key(ctx, i); const std::string value = gguf_kv_to_str(ctx, i); model.gguf_kv.emplace(name, value); } // get general kv ml.get_key(LLM_KV_GENERAL_NAME, model.name, false); // get hparams kv ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab); ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train); ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd); ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff); ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head); ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer); ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false); ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false); GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS); GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert); if (hparams.n_expert > 0) { GGML_ASSERT(hparams.n_expert_used > 0); } else { GGML_ASSERT(hparams.n_expert_used == 0); } // n_head_kv is optional, default to n_head hparams.n_head_kv = hparams.n_head; ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false); bool rope_finetuned = false; ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false); hparams.rope_finetuned = rope_finetuned; hparams.n_yarn_orig_ctx = hparams.n_ctx_train; ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false); // rope_freq_base (optional) hparams.rope_freq_base_train = 10000.0f; ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false); std::string rope_scaling("linear"); ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false); hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling); GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED); // rope_freq_scale (inverse of the kv) is optional float ropescale = 0.0f; if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) { // try the old key name ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false); } hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale; // sanity check for n_rot (optional) { hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head; ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false); if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) { if (hparams.n_rot != hparams.n_embd / hparams.n_head) { throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head)); } } // gpt-neox n_rot = rotary_pct * (n_embd / n_head) // gpt-j n_rot = rotary_dim } hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head; ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false); hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head; ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false); // arch-specific KVs switch (model.arch) { case LLM_ARCH_LLAMA: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 22: model.type = e_model::MODEL_1B; break; case 26: model.type = e_model::MODEL_3B; break; case 32: model.type = e_model::MODEL_7B; break; case 40: model.type = e_model::MODEL_13B; break; case 48: model.type = e_model::MODEL_34B; break; case 60: model.type = e_model::MODEL_30B; break; case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_MINICPM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 40: model.type = e_model::MODEL_2B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_GROK: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 64: model.type = e_model::MODEL_314B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_FALCON: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_7B; break; case 60: model.type = e_model::MODEL_40B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_BAICHUAN: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_7B; break; case 40: model.type = e_model::MODEL_13B; break; default: model.type = e_model::MODEL_UNKNOWN; } if (model.type == e_model::MODEL_13B) { // TODO: become GGUF KV parameter hparams.f_max_alibi_bias = 8.0f; } } break; case LLM_ARCH_STARCODER: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 24: model.type = e_model::MODEL_1B; break; case 36: model.type = e_model::MODEL_3B; break; case 42: model.type = e_model::MODEL_7B; break; case 40: model.type = e_model::MODEL_15B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_PERSIMMON: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 36: model.type = e_model::MODEL_8B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_REFACT: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_1B; break; default: model.type = e_model::MODEL_UNKNOWN; } // TODO: become GGUF KV parameter hparams.f_max_alibi_bias = 8.0f; } break; case LLM_ARCH_BERT: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type); ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false); switch (hparams.n_layer) { case 3: model.type = e_model::MODEL_17M; break; // bge-micro case 6: model.type = e_model::MODEL_22M; break; // MiniLM-L6 case 12: switch (hparams.n_embd) { case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small case 768: model.type = e_model::MODEL_109M; break; // bge-base } break; case 24: model.type = e_model::MODEL_335M; break; // bge-large } } break; case LLM_ARCH_NOMIC_BERT: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type); ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type); if (hparams.n_layer == 12 && hparams.n_embd == 768) { model.type = e_model::MODEL_137M; } } break; case LLM_ARCH_BLOOM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 24: model.type = e_model::MODEL_1B; break; case 30: switch (hparams.n_embd) { case 2560: model.type = e_model::MODEL_3B; break; case 4096: model.type = e_model::MODEL_7B; break; } break; } // TODO: become GGUF KV parameter hparams.f_max_alibi_bias = 8.0f; } break; case LLM_ARCH_MPT: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false); ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_7B; break; case 48: model.type = e_model::MODEL_30B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_STABLELM: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 24: model.type = e_model::MODEL_1B; break; case 32: model.type = e_model::MODEL_3B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_QWEN: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_7B; break; case 40: model.type = e_model::MODEL_13B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_QWEN2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break; case 32: model.type = e_model::MODEL_7B; break; case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break; case 80: model.type = e_model::MODEL_70B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_PHI2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 24: model.type = e_model::MODEL_1B; break; case 32: model.type = e_model::MODEL_3B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_PLAMO: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 40: model.type = e_model::MODEL_13B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_GPT2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 12: model.type = e_model::MODEL_SMALL; break; case 24: model.type = e_model::MODEL_MEDIUM; break; case 36: model.type = e_model::MODEL_LARGE; break; case 48: model.type = e_model::MODEL_XL; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_CODESHELL: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 42: model.type = e_model::MODEL_SMALL; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_ORION: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 40: model.type = e_model::MODEL_14B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_INTERNLM2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_7B; break; case 48: model.type = e_model::MODEL_20B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_GEMMA: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 18: model.type = e_model::MODEL_2B; break; case 28: model.type = e_model::MODEL_7B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_STARCODER2: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 30: model.type = e_model::MODEL_3B; break; case 32: model.type = e_model::MODEL_7B; break; case 40: model.type = e_model::MODEL_15B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_MAMBA: { ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv); ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner); ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state); ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 24: switch (hparams.n_embd) { case 768: model.type = e_model::MODEL_SMALL; break; default: model.type = e_model::MODEL_UNKNOWN; } break; case 48: switch (hparams.n_embd) { case 1024: model.type = e_model::MODEL_MEDIUM; break; case 1536: model.type = e_model::MODEL_LARGE; break; case 2048: model.type = e_model::MODEL_XL; break; default: model.type = e_model::MODEL_UNKNOWN; } break; case 64: switch (hparams.n_embd) { case 2560: model.type = e_model::MODEL_3B; break; default: model.type = e_model::MODEL_UNKNOWN; } break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_XVERSE: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 32: model.type = e_model::MODEL_7B; break; case 40: model.type = e_model::MODEL_13B; break; case 80: model.type = e_model::MODEL_65B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; case LLM_ARCH_COMMAND_R: { ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale); ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { case 40: model.type = e_model::MODEL_35B; break; default: model.type = e_model::MODEL_UNKNOWN; } } break; default: (void)0; } model.ftype = ml.ftype; if (hparams.f_max_alibi_bias > 0.0f) { hparams.need_kq_pos = true; } hparams.rope_type = llama_rope_type(&model); } // TODO: This should probably be in llama.h static std::vector llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special = false); static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch); static void llm_load_vocab( llama_model_loader & ml, llama_model & model) { auto & vocab = model.vocab; struct gguf_context * ctx = ml.meta; const auto kv = LLM_KV(model.arch); // determine vocab type { std::string tokenizer_name; ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_name); if (tokenizer_name == "no_vocab") { vocab.type = LLAMA_VOCAB_TYPE_NONE; // default special tokens vocab.special_bos_id = -1; vocab.special_eos_id = -1; vocab.special_unk_id = -1; vocab.special_sep_id = -1; vocab.special_pad_id = -1; vocab.linefeed_id = -1; return; } else if (tokenizer_name == "llama") { vocab.type = LLAMA_VOCAB_TYPE_SPM; // default special tokens vocab.special_bos_id = 1; vocab.special_eos_id = 2; vocab.special_unk_id = 0; vocab.special_sep_id = -1; vocab.special_pad_id = -1; const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str()); if (add_space_prefix_keyidx != -1) { vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx); } // The default value of add_space_prefix is true. } else if (tokenizer_name == "gpt2") { vocab.type = LLAMA_VOCAB_TYPE_BPE; // read bpe merges and populate bpe ranks const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str()); if (merges_keyidx == -1) { throw std::runtime_error("cannot find tokenizer merges in model file\n"); } const int n_merges = gguf_get_arr_n(ctx, merges_keyidx); for (int i = 0; i < n_merges; i++) { const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i); GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0); std::string first; std::string second; const size_t pos = word.find(' ', 1); if (pos != std::string::npos) { first = word.substr(0, pos); second = word.substr(pos + 1); } vocab.bpe_ranks.emplace(std::make_pair(first, second), i); } // default special tokens vocab.special_bos_id = 11; vocab.special_eos_id = 11; vocab.special_unk_id = -1; vocab.special_sep_id = -1; vocab.special_pad_id = -1; } else if (tokenizer_name == "bert") { vocab.type = LLAMA_VOCAB_TYPE_WPM; // default special tokens vocab.special_bos_id = 101; vocab.special_eos_id = 102; vocab.special_unk_id = 100; vocab.special_sep_id = -1; vocab.special_pad_id = -1; vocab.add_space_prefix = false; } else { LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str()); LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__); vocab.type = LLAMA_VOCAB_TYPE_SPM; } } const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str()); if (token_idx == -1) { throw std::runtime_error("cannot find tokenizer vocab in model file\n"); } const float * scores = nullptr; const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str()); if (score_idx != -1) { scores = (const float * ) gguf_get_arr_data(ctx, score_idx); } const int * toktypes = nullptr; const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str()); if (toktype_idx != -1) { toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx); } const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx); vocab.id_to_token.resize(n_vocab); for (uint32_t i = 0; i < n_vocab; i++) { std::string word = gguf_get_arr_str(ctx, token_idx, i); GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0); vocab.token_to_id[word] = i; auto & token_data = vocab.id_to_token[i]; token_data.text = std::move(word); token_data.score = scores ? scores[i] : 0.0f; token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL; } GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size()); // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n' if (vocab.type == LLAMA_VOCAB_TYPE_SPM) { try { vocab.linefeed_id = llama_byte_to_token(vocab, '\n'); } catch (const std::exception & e) { LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what()); vocab.linefeed_id = vocab.special_pad_id; } } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) { vocab.linefeed_id = vocab.special_pad_id; } else { const std::vector ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A GGML_ASSERT(!ids.empty() && "model vocab missing newline token"); vocab.linefeed_id = ids[0]; } // special tokens { const std::vector> special_token_types = { { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id }, { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id }, { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id }, { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id }, { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id }, }; for (const auto & it : special_token_types) { const std::string & key = kv(std::get<0>(it)); int32_t & id = std::get<1>(it); uint32_t new_id; if (!ml.get_key(std::get<0>(it), new_id, false)) { continue; } if (new_id >= vocab.id_to_token.size()) { LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n", __func__, key.c_str(), new_id, id); } else { id = new_id; } } // Handle add_bos_token and add_eos_token { bool temp = true; if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) { vocab.special_add_bos = int(temp); } if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) { vocab.special_add_eos = int(temp); } } } // build special tokens cache { // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type, // and will always be correctly labeled in 'added_tokens.json' etc. // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer // are special tokens. // From testing, this appears to correlate 1:1 with special tokens. // // Counting special tokens and verifying in only one direction // is sufficient to detect difference in those two sets. // uint32_t special_tokens_count_by_type = 0; uint32_t special_tokens_count_from_verification = 0; bool special_tokens_definition_mismatch = false; for (const auto & t : vocab.token_to_id) { const auto & token = t.first; const auto & id = t.second; // Count all non-normal tokens in the vocab while iterating if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) { special_tokens_count_by_type++; } // Skip single character tokens if (token.length() > 1) { bool is_tokenizable = false; // Split token string representation in two, in all possible ways // and check if both halves can be matched to a valid token for (unsigned i = 1; i < token.length();) { const auto left = token.substr(0, i); const auto right = token.substr(i); // check if we didnt partition in the middle of a utf sequence auto utf = utf8_len(left.at(left.length() - 1)); if (utf == 1) { if (vocab.token_to_id.find(left) != vocab.token_to_id.end() && vocab.token_to_id.find(right) != vocab.token_to_id.end() ) { is_tokenizable = true; break; } i++; } else { // skip over the rest of multibyte utf sequence i += utf - 1; } } if (!is_tokenizable) { // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1 // it's faster to re-filter them here, since there are way less candidates now // Calculate a total "utf" length of a token string representation size_t utf8_str_len = 0; for (unsigned i = 0; i < token.length();) { utf8_str_len++; i += utf8_len(token.at(i)); } // And skip the ones which are one character if (utf8_str_len > 1) { // At this point what we have left are special tokens only vocab.special_tokens_cache[token] = id; // Count manually found special tokens special_tokens_count_from_verification++; // If this manually found special token is not marked as such, flag a mismatch if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) { special_tokens_definition_mismatch = true; } } } } } if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) { LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n", __func__, special_tokens_count_from_verification, vocab.id_to_token.size(), special_tokens_count_by_type, vocab.id_to_token.size() ); } else { LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n", __func__, special_tokens_count_from_verification, vocab.id_to_token.size() ); } } } static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { const auto & hparams = model.hparams; const auto & vocab = model.vocab; const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train); // hparams LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver)); LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch)); LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type)); LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab); LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size()); LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train); LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd); LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head); LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv); LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer); LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k); LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v); LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa()); LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa()); LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa()); LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps); LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps); LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv); LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias); LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale); LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff); LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert); LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used); LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn); LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type); LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type); LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type); LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train); LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train); LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx); LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown"); LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv); LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner); LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state); LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank); LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type)); LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str()); if (ml.n_elements >= 1e12) { LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12); } else if (ml.n_elements >= 1e9) { LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9); } else if (ml.n_elements >= 1e6) { LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6); } else { LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3); } if (ml.n_bytes < GiB) { LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements); } else { LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements); } // general kv LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str()); // special tokens if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); } if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); } if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); } if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); } if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); } if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); } } // Returns false if cancelled by progress_callback static bool llm_load_tensors( llama_model_loader & ml, llama_model & model, int n_gpu_layers, enum llama_split_mode split_mode, int main_gpu, const float * tensor_split, bool use_mlock, llama_progress_callback progress_callback, void * progress_callback_user_data) { model.t_start_us = ggml_time_us(); auto & hparams = model.hparams; model.split_mode = split_mode; model.main_gpu = main_gpu; model.n_gpu_layers = n_gpu_layers; const int64_t n_layer = hparams.n_layer; const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0); bool use_mmap_buffer = true; // there is very little benefit to offloading the input layer, so always keep it on the CPU model.buft_input = llama_default_buffer_type_cpu(true); //model.buft_input = llama_default_buffer_type_offload(main_gpu); model.buft_layer.resize(n_layer); // assign cpu layers for (int64_t i = 0; i < i_gpu_start; ++i) { model.buft_layer[i] = llama_default_buffer_type_cpu(true); } if (split_mode == LLAMA_SPLIT_MODE_LAYER) { // calculate the split points int device_count = llama_get_device_count(); bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; }); std::vector splits(device_count); if (all_zero) { // default split, by free memory for (int i = 0; i < device_count; ++i) { splits[i] = llama_get_device_memory(i); } } else { std::copy(tensor_split, tensor_split + device_count, splits.begin()); } // sum and normalize the splits to get the split points float split_sum = 0.0f; for (int i = 0; i < device_count; ++i) { split_sum += splits[i]; splits[i] = split_sum; } for (int i = 0; i < device_count; ++i) { splits[i] /= split_sum; } // assign the repeating layers to the devices according to the splits int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1); for (int64_t i = i_gpu_start; i < n_layer; ++i) { int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin(); model.buft_layer[i] = llama_default_buffer_type_offload(layer_gpu); } // assign the output layer if (n_gpu_layers > n_layer) { int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin(); model.buft_output = llama_default_buffer_type_offload(layer_gpu); } else { model.buft_output = llama_default_buffer_type_cpu(true); } } else { ggml_backend_buffer_type_t split_buft; if (split_mode == LLAMA_SPLIT_MODE_ROW) { split_buft = llama_default_buffer_type_split(main_gpu, tensor_split); } else { // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported split_buft = llama_default_buffer_type_offload(main_gpu); } // assign the repeating layers for (int64_t i = i_gpu_start; i < n_layer; ++i) { model.buft_layer[i] = { split_buft, llama_default_buffer_type_offload(main_gpu) }; } // assign the output layer if (n_gpu_layers > n_layer) { model.buft_output = { split_buft, llama_default_buffer_type_offload(main_gpu) }; } else { model.buft_output = llama_default_buffer_type_cpu(true); } } // count used buffer types std::map buft_layer_count; buft_layer_count[model.buft_input.buft]++; buft_layer_count[model.buft_input.buft_matrix]++; buft_layer_count[model.buft_output.buft]++; buft_layer_count[model.buft_output.buft_matrix]++; for (int64_t i = 0; i < n_layer; ++i) { buft_layer_count[model.buft_layer[i].buft]++; buft_layer_count[model.buft_layer[i].buft_matrix]++; } // create one context per buffer type size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output // for moe merged tensors ctx_size += ggml_tensor_overhead()*hparams.n_expert*n_layer; std::map ctx_map; for (auto & it : buft_layer_count) { struct ggml_init_params params = { /*.mem_size =*/ ctx_size, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; ggml_context * ctx = ggml_init(params); if (!ctx) { throw std::runtime_error(format("failed to create context")); } ctx_map[it.first] = ctx; model.ctxs.push_back(ctx); } LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0); // create tensors for the weights { const int64_t n_embd = hparams.n_embd; const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(); const int64_t n_embd_gqa = n_embd_v_gqa; const int64_t n_vocab = hparams.n_vocab; const int64_t n_vocab_type = hparams.n_vocab_type; const int64_t n_ff = hparams.n_ff; const int64_t n_expert = hparams.n_expert; if (n_expert > 0 && hparams.n_expert_used == 0) { throw std::runtime_error("model has expert layers but no expert layers are used"); } GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); ggml_context * ctx_input = ctx_map.at(model.buft_input.buft); ggml_context * ctx_output = ctx_map.at(model.buft_output.buft); ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix); auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); }; auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); }; model.layers.resize(n_layer); const auto tn = LLM_TN(model.arch); switch (model.arch) { case LLM_ARCH_LLAMA: case LLM_ARCH_REFACT: case LLM_ARCH_MINICPM: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // output { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); if (model.arch != LLM_ARCH_MINICPM){ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false); // if output is NULL, init from the input tok embed if (model.output == NULL) { model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); ml.n_created--; // artificial tensor ml.size_data += ggml_nbytes(model.output); } } } for (int i = 0; i < n_layer; ++i) { ggml_context * ctx_layer = ctx_for_layer(i); ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); // optional bias tensors layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false); layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false); layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false); layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false); layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); if (n_expert == 0) { layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); } else { layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false); if (layer.ffn_gate_exps) { layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}); layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}); } else { // merge split expert into a single tensor for compatibility with older models // requires disabling mmap use_mmap_buffer = false; ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type; ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type; ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type; layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert); layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert); layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert); ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str()); ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str()); ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str()); for (uint32_t x = 0; x < n_expert; ++x) { // the individual experts are loaded into a view of the merged tensor ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x); ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x); ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x); } } } } } break; case LLM_ARCH_GROK: { if (n_expert == 0) { throw std::runtime_error("Grok model cannot have zero experts"); } model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // output { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false); // if output is NULL, init from the input tok embed if (model.output == NULL) { model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); ml.n_created--; // artificial tensor ml.size_data += ggml_nbytes(model.output); } } for (int i = 0; i < n_layer; ++i) { ggml_context * ctx_layer = ctx_for_layer(i); ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false); if (layer.ffn_gate_exps) { layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}); layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}); } else { // merge split expert into a single tensor for compatibility with older models // requires disabling mmap use_mmap_buffer = false; ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type; ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type; ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type; layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert); layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert); layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert); ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str()); ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str()); ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str()); for (uint32_t x = 0; x < n_expert; ++x) { // the individual experts are loaded into a view of the merged tensor ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x); ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x); ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x); } } layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}); } } break; case LLM_ARCH_BAICHUAN: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); } for (int i = 0; i < n_layer; ++i) { ggml_context * ctx_layer = ctx_for_layer(i); ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); } } break; case LLM_ARCH_FALCON: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // output { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false); if (!model.output) { model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU ml.n_created--; // artificial tensor ml.size_data += ggml_nbytes(model.output); } } for (int i = 0; i < n_layer; ++i) { ggml_context * ctx_layer = ctx_for_layer(i); ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, false); layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, false); layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); } } break; case LLM_ARCH_STARCODER: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}); // output { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); } for (int i = 0; i < n_layer; ++i) { ggml_context * ctx_layer = ctx_for_layer(i); ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); } } break; case LLM_ARCH_PERSIMMON: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); } for (int i = 0; i < n_layer; ++i) { ggml_context * ctx_layer = ctx_for_layer(i); ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64}); layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64}); layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64}); layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64}); } } break; case LLM_ARCH_BERT: case LLM_ARCH_NOMIC_BERT: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); if (model.arch == LLM_ARCH_BERT) { model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}); } model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); for (int i = 0; i < n_layer; ++i) { ggml_context * ctx_layer = ctx_for_layer(i); ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; if (model.arch == LLM_ARCH_BERT) { layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}); layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}); layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); } else { layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); } layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); if (model.arch == LLM_ARCH_BERT) { layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); } else { layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); } layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}); layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}); } } break; case LLM_ARCH_BLOOM: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); // output { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); } for (int i = 0; i < n_layer; ++i) { ggml_context * ctx_layer = ctx_for_layer(i); ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); } } break; case LLM_ARCH_MPT: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, false); // output { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false); model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false); if (!model.output) { model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU ml.n_created--; // artificial tensor ml.size_data += ggml_nbytes(model.output); } } for (int i = 0; i < n_layer; ++i) { ggml_context * ctx_layer = ctx_for_layer(i); ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, false); layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false); layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, false); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false); layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false); layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false); layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false); layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false); // AWQ ScaleActivation layer layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false); } } break; case LLM_ARCH_STABLELM: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // output { model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); } for (int i = 0; i < n_layer; ++i) { ggml_context * ctx_layer = ctx_for_layer(i); ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); // optional bias tensors, present in Stable LM 2 1.6B layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false); layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false); layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false); layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); } } break; case LLM_ARCH_QWEN: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // output { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); } for (int i = 0; i < n_layer; ++i) { ggml_context * ctx_layer = ctx_for_layer(i); ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3}); layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3}); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2}); } } break; case LLM_ARCH_QWEN2: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // output { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); } for (int i = 0; i < n_layer; ++i) { ggml_context * ctx_layer = ctx_for_layer(i); ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); // optional bias tensors layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}); layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}); layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); } } break; case LLM_ARCH_PHI2: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // output { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}); } for (int i = 0; i < n_layer; ++i) { ggml_context * ctx_layer = ctx_for_layer(i); ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, false); layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false); if (layer.wqkv == nullptr) { layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}); layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}); layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); } layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); } } break; case LLM_ARCH_PLAMO: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // output { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); } for (int i = 0; i < n_layer; ++i) { ggml_context * ctx_layer = ctx_for_layer(i); ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); } } break; case LLM_ARCH_GPT2: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}); // output { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); } for (int i = 0; i < n_layer; ++i) { ggml_context * ctx_layer = ctx_for_layer(i); ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); } } break; case LLM_ARCH_CODESHELL: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // output { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); } for (int i = 0; i < n_layer; ++i) { ggml_context * ctx_layer = ctx_for_layer(i); ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); } } break; case LLM_ARCH_ORION: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); } for (int i = 0; i < n_layer; ++i) { ggml_context * ctx_layer = ctx_for_layer(i); ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); } } break; case LLM_ARCH_INTERNLM2: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // output { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); } for (int i = 0; i < n_layer; ++i) { ggml_context * ctx_layer = ctx_for_layer(i); ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); } } break; case LLM_ARCH_GEMMA: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // output model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading ml.n_created--; // artificial tensor ml.size_data += ggml_nbytes(model.output); const int64_t n_ff = hparams.n_ff; const int64_t n_embd_head_k = hparams.n_embd_head_k; const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(); for (uint32_t i = 0; i < n_layer; ++i) { ggml_context * ctx_layer = ctx_for_layer(i); ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head}); layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}); layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd}); layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); } } break; case LLM_ARCH_STARCODER2: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // output { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false); // if output is NULL, init from the input tok embed if (model.output == NULL) { model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); ml.n_created--; // artificial tensor ml.size_data += ggml_nbytes(model.output); } } for (int i = 0; i < n_layer; ++i) { ggml_context * ctx_layer = ctx_for_layer(i); ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); // optional bias tensors layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}); layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}); layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); // optional bias tensors layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff}); } } break; case LLM_ARCH_MAMBA: { const int64_t d_conv = hparams.ssm_d_conv; const int64_t d_inner = hparams.ssm_d_inner; const int64_t d_state = hparams.ssm_d_state; const int64_t dt_rank = hparams.ssm_dt_rank; // only an expansion factor of 2 is supported for now GGML_ASSERT(2 * n_embd == d_inner); model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // output { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false); // if output is NULL, init from the input tok embed, duplicated to allow offloading if (model.output == NULL) { model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); ml.n_created--; // artificial tensor ml.size_data += ggml_nbytes(model.output); } } for (int i = 0; i < n_layer; ++i) { ggml_context * ctx_layer = ctx_for_layer(i); ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; // norm layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}); layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}); layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}); layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}); layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}); layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}); // no "weight" suffix for these layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}); layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner}); // out_proj layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}); } } break; case LLM_ARCH_XVERSE: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); } for (int i = 0; i < n_layer; ++i) { ggml_context * ctx_layer = ctx_for_layer(i); ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); } } break; case LLM_ARCH_COMMAND_R: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // output { model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); // init output from the input tok embed model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); ml.n_created--; // artificial tensor ml.size_data += ggml_nbytes(model.output); } for (int i = 0; i < n_layer; ++i) { ggml_context * ctx_layer = ctx_for_layer(i); ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); } } break; default: throw std::runtime_error("unknown architecture"); } } ml.done_getting_tensors(); ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr); model.mappings.reserve(ml.mappings.size()); // create the backend buffers std::vector> ctx_bufs; ctx_bufs.reserve(ctx_map.size()); // Ensure we have enough capacity for the maximum backend buffer we will potentially create size_t n_max_backend_buffer = ctx_map.size() * ml.files.size(); model.bufs.reserve(n_max_backend_buffer); for (auto & it : ctx_map) { ggml_backend_buffer_type_t buft = it.first; ggml_context * ctx = it.second; llama_buf_map bufs; bufs.reserve(n_max_backend_buffer); // only the mmap region containing the tensors in the model is mapped to the backend buffer // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) { for (uint32_t idx = 0; idx < ml.files.size(); idx++) { void * addr = nullptr; size_t first, last; ml.get_mapping_range(&first, &last, &addr, idx, ctx); if (first >= last) { continue; } ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first); if (buf == nullptr) { throw std::runtime_error("unable to allocate backend CPU buffer"); } model.bufs.push_back(buf); bufs.emplace(idx, buf); #ifdef GGML_USE_CUDA if (n_layer >= n_gpu_layers) { ggml_backend_cuda_register_host_buffer( ggml_backend_buffer_get_base(buf), ggml_backend_buffer_get_size(buf)); } #endif } } #ifdef GGML_USE_METAL else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) { for (uint32_t idx = 0; idx < ml.files.size(); idx++) { const size_t max_size = ggml_get_max_tensor_size(ctx); void * addr = nullptr; size_t first, last; ml.get_mapping_range(&first, &last, &addr, idx, ctx); if (first >= last) { continue; } ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size); if (buf == nullptr) { throw std::runtime_error("unable to allocate backend metal buffer"); } model.bufs.push_back(buf); bufs.emplace(idx, buf); } } #endif else { ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); if (buf == nullptr) { throw std::runtime_error("unable to allocate backend buffer"); } model.bufs.push_back(buf); if (use_mlock && ggml_backend_buffer_is_host(buf)) { model.mlock_bufs.emplace_back(new llama_mlock); auto & mlock_buf = model.mlock_bufs.back(); mlock_buf->init (ggml_backend_buffer_get_base(buf)); mlock_buf->grow_to(ggml_backend_buffer_get_size(buf)); } for (uint32_t idx = 0; idx < ml.files.size(); idx++) { bufs.emplace(idx, buf); } } if (bufs.empty()) { throw std::runtime_error("failed to allocate buffer"); } for (auto & buf : bufs) { // indicate that this buffer contains weights // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS); } ctx_bufs.emplace_back(ctx, bufs); } if (llama_supports_gpu_offload()) { const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu); if (n_gpu_layers > (int) hparams.n_layer) { LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__); } const int max_backend_supported_layers = hparams.n_layer + 1; const int max_offloadable_layers = hparams.n_layer + 1; LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers); } // print memory requirements for (ggml_backend_buffer_t buf : model.bufs) { LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0); } // populate tensors_by_name for (ggml_context * ctx : model.ctxs) { for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) { model.tensors_by_name.emplace_back(ggml_get_name(cur), cur); } } // load tensor data for (auto & it : ctx_bufs) { ggml_context * ctx = it.first; auto & bufs = it.second; if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) { return false; } } if (use_mmap_buffer) { for (auto & mapping : ml.mappings) { model.mappings.emplace_back(std::move(mapping)); } } // loading time will be recalculate after the first eval, so // we take page faults deferred by mmap() into consideration model.t_load_us = ggml_time_us() - model.t_start_us; return true; } // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) { try { llama_model_loader ml(fname, params.use_mmap, params.kv_overrides); model.hparams.vocab_only = params.vocab_only; try { llm_load_arch(ml, model); } catch(const std::exception & e) { throw std::runtime_error("error loading model architecture: " + std::string(e.what())); } try { llm_load_hparams(ml, model); } catch(const std::exception & e) { throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what())); } try { llm_load_vocab(ml, model); } catch(const std::exception & e) { throw std::runtime_error("error loading model vocabulary: " + std::string(e.what())); } llm_load_print_meta(ml, model); if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE && model.hparams.n_vocab != model.vocab.id_to_token.size()) { throw std::runtime_error("vocab size mismatch"); } if (params.vocab_only) { LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__); return 0; } #ifdef GGML_USE_KOMPUTE if (params.n_gpu_layers > 0 && ( !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) || !( model.ftype == LLAMA_FTYPE_ALL_F32 || model.ftype == LLAMA_FTYPE_MOSTLY_F16 || model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1 ) )) { // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__); params.n_gpu_layers = 0; } #endif #ifdef GGML_USE_SYCL if (params.split_mode == LLAMA_SPLIT_MODE_NONE) { ggml_backend_sycl_set_single_device_mode(params.main_gpu); //SYCL use device index (0, 1, 2) directly, uer input device id, then convert to device index. params.main_gpu = ggml_backend_sycl_get_device_index(params.main_gpu); } else { ggml_backend_sycl_set_mul_device_mode(); } #endif if (!llm_load_tensors( ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock, params.progress_callback, params.progress_callback_user_data )) { return -2; } } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what()); return -1; } return 0; } // // llm_build // using llm_build_cb = std::function; enum llm_ffn_op_type { LLM_FFN_SILU, LLM_FFN_GELU, LLM_FFN_RELU, LLM_FFN_RELU_SQR, }; enum llm_ffn_gate_type { LLM_FFN_SEQ, LLM_FFN_PAR, // ffn_gate is parallel to ffn_up }; enum llm_norm_type { LLM_NORM, LLM_NORM_RMS, }; static struct ggml_tensor * llm_build_inp_embd( struct ggml_context * ctx, struct llama_context & lctx, const llama_hparams & hparams, const llama_batch & batch, struct ggml_tensor * tok_embd, const llm_build_cb & cb) { const int64_t n_embd = hparams.n_embd; struct ggml_tensor * inpL; if (batch.token) { lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens); cb(lctx.inp_tokens, "inp_tokens", -1); ggml_set_input(lctx.inp_tokens); inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens); } else { #ifdef GGML_USE_MPI GGML_ASSERT(false && "not implemented"); #endif lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens); inpL = lctx.inp_embd; ggml_set_input(lctx.inp_embd); } cb(inpL, "inp_embd", -1); return inpL; } static void llm_build_kv_store( struct ggml_context * ctx, const llama_hparams & hparams, const llama_kv_cache & kv, struct ggml_cgraph * graph, struct ggml_tensor * k_cur, struct ggml_tensor * v_cur, int64_t n_ctx, int32_t n_tokens, int32_t kv_head, const llm_build_cb & cb, int64_t il) { const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(kv.size == n_ctx); // compute the transposed [n_tokens, n_embd] V matrix assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens); struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur); cb(v_cur_t, "v_cur_t", il); struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa, (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head); cb(k_cache_view, "k_cache_view", il); struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa, ( n_ctx)*ggml_element_size(kv.v_l[il]), (kv_head)*ggml_element_size(kv.v_l[il])); cb(v_cache_view, "v_cache_view", il); // important: storing RoPE-ed version of K in the KV cache! ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view)); ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur_t, v_cache_view)); } static struct ggml_tensor * llm_build_norm( struct ggml_context * ctx, struct ggml_tensor * cur, const llama_hparams & hparams, struct ggml_tensor * mw, struct ggml_tensor * mb, llm_norm_type type, const llm_build_cb & cb, int il) { switch (type) { case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break; case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break; } if (mw || mb) { cb(cur, "norm", il); } if (mw) { cur = ggml_mul(ctx, cur, mw); if (mb) { cb(cur, "norm_w", il); } } if (mb) { cur = ggml_add(ctx, cur, mb); } return cur; } static struct ggml_tensor * llm_build_ffn( struct ggml_context * ctx, struct ggml_tensor * cur, struct ggml_tensor * up, struct ggml_tensor * up_b, struct ggml_tensor * gate, struct ggml_tensor * gate_b, struct ggml_tensor * down, struct ggml_tensor * down_b, struct ggml_tensor * act_scales, llm_ffn_op_type type_op, llm_ffn_gate_type type_gate, const llm_build_cb & cb, int il) { struct ggml_tensor * tmp = ggml_mul_mat(ctx, up, cur); cb(tmp, "ffn_up", il); if (up_b) { tmp = ggml_add(ctx, tmp, up_b); cb(tmp, "ffn_up_b", il); } if (gate) { switch (type_gate) { case LLM_FFN_SEQ: { cur = ggml_mul_mat(ctx, gate, tmp); cb(cur, "ffn_gate", il); } break; case LLM_FFN_PAR: { cur = ggml_mul_mat(ctx, gate, cur); cb(cur, "ffn_gate", il); } break; } if (gate_b) { cur = ggml_add(ctx, cur, gate_b); cb(cur, "ffn_gate_b", il); } } else { cur = tmp; } switch (type_op) { case LLM_FFN_SILU: { cur = ggml_silu(ctx, cur); cb(cur, "ffn_silu", il); } break; case LLM_FFN_GELU: { cur = ggml_gelu(ctx, cur); cb(cur, "ffn_gelu", il); if (act_scales != NULL) { cur = ggml_div(ctx, cur, act_scales); cb(cur, "ffn_act", il); } } break; case LLM_FFN_RELU: { cur = ggml_relu(ctx, cur); cb(cur, "ffn_relu", il); } break; case LLM_FFN_RELU_SQR: { cur = ggml_relu(ctx, cur); cb(cur, "ffn_relu", il); cur = ggml_sqr(ctx, cur); cb(cur, "ffn_sqr(relu)", il); } break; } if (type_gate == LLM_FFN_PAR) { cur = ggml_mul(ctx, cur, tmp); cb(cur, "ffn_gate_par", il); } cur = ggml_mul_mat(ctx, down, cur); if (down_b) { cb(cur, "ffn_down", il); } if (down_b) { cur = ggml_add(ctx, cur, down_b); } return cur; } // if max_alibi_bias > 0 then apply ALiBi static struct ggml_tensor * llm_build_kqv( struct ggml_context * ctx, const llama_model & model, const llama_hparams & hparams, const llama_kv_cache & kv, struct ggml_cgraph * graph, struct ggml_tensor * wo, struct ggml_tensor * wo_b, struct ggml_tensor * q_cur, struct ggml_tensor * kq_mask, struct ggml_tensor * kq_pos, int64_t n_ctx, int32_t n_tokens, int32_t n_kv, float kq_scale, const llm_build_cb & cb, int il) { const int64_t n_head = hparams.n_head; const int64_t n_head_kv = hparams.n_head_kv; const int64_t n_embd_head_k = hparams.n_embd_head_k; const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); const int64_t n_embd_head_v = hparams.n_embd_head_v; struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3); cb(q, "q", il); struct ggml_tensor * k = ggml_view_3d(ctx, kv.k_l[il], n_embd_head_k, n_kv, n_head_kv, ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa), ggml_row_size(kv.k_l[il]->type, n_embd_head_k), 0); cb(k, "k", il); struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q); cb(kq, "kq", il); if (model.arch == LLM_ARCH_PHI2) { // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847 ggml_mul_mat_set_prec(kq, GGML_PREC_F32); } if (model.arch == LLM_ARCH_GROK) { // need to do the following: // multiply by attn_output_multiplyer of 0.08838834764831845 // and then : // kq = 30 * tanh(kq / 30) // before the softmax below //try from phi2 //ggml_mul_mat_set_prec(kq, GGML_PREC_F32); kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f)); kq = ggml_scale(ctx, kq, 30); } #if defined(GGML_USE_KOMPUTE) #pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Kompute") #pragma message(" Falling back to ggml_alibi(). Will become an error in Mar 2024") #pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5488") if (hparams.f_max_alibi_bias > 0.0f) { kq = ggml_scale(ctx, kq, kq_scale); cb(kq, "kq_scaled", il); kq = ggml_alibi(ctx, kq, /*n_past*/ 0, n_head, hparams.f_max_alibi_bias); cb(kq, "kq_scaled_alibi", il); kq = ggml_add(ctx, kq, kq_mask); cb(kq, "kq_masked", il); kq = ggml_soft_max(ctx, kq); cb(kq, "kq_soft_max", il); } else #endif { kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_pos, kq_scale, hparams.f_max_alibi_bias); cb(kq, "kq_soft_max_ext", il); } GGML_ASSERT(kv.size == n_ctx); // split cached v into n_head heads struct ggml_tensor * v = ggml_view_3d(ctx, kv.v_l[il], n_kv, n_embd_head_v, n_head_kv, ggml_element_size(kv.v_l[il])*n_ctx, ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v, 0); cb(v, "v", il); struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq); cb(kqv, "kqv", il); struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3); cb(kqv_merged, "kqv_merged", il); struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens); cb(cur, "kqv_merged_cont", il); ggml_build_forward_expand(graph, cur); cur = ggml_mul_mat(ctx, wo, cur); if (wo_b) { cb(cur, "kqv_wo", il); } if (wo_b) { cur = ggml_add(ctx, cur, wo_b); } return cur; } static struct ggml_tensor * llm_build_kv( struct ggml_context * ctx, const llama_model & model, const llama_hparams & hparams, const llama_kv_cache & kv, struct ggml_cgraph * graph, struct ggml_tensor * wo, struct ggml_tensor * wo_b, struct ggml_tensor * k_cur, struct ggml_tensor * v_cur, struct ggml_tensor * q_cur, struct ggml_tensor * kq_mask, struct ggml_tensor * kq_pos, int64_t n_ctx, int32_t n_tokens, int32_t kv_head, int32_t n_kv, float kq_scale, const llm_build_cb & cb, int il) { // these nodes are added to the graph together so that they are not reordered // by doing so, the number of splits in the graph is reduced ggml_build_forward_expand(graph, q_cur); ggml_build_forward_expand(graph, k_cur); ggml_build_forward_expand(graph, v_cur); llm_build_kv_store(ctx, hparams, kv, graph, k_cur, v_cur, n_ctx, n_tokens, kv_head, cb, il); struct ggml_tensor * cur; cur = llm_build_kqv(ctx, model, hparams, kv, graph, wo, wo_b, q_cur, kq_mask, kq_pos, n_ctx, n_tokens, n_kv, kq_scale, cb, il); cb(cur, "kqv_out", il); return cur; } struct llm_build_context { const llama_model & model; llama_context & lctx; const llama_hparams & hparams; const llama_cparams & cparams; const llama_batch & batch; const llama_kv_cache & kv_self; const int64_t n_embd; const int64_t n_layer; const int64_t n_rot; const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train) const int64_t n_head; const int64_t n_head_kv; const int64_t n_embd_head_k; const int64_t n_embd_k_gqa; const int64_t n_embd_head_v; const int64_t n_embd_v_gqa; const int64_t n_expert; const int64_t n_expert_used; const float freq_base; const float freq_scale; const float ext_factor; const float attn_factor; const float beta_fast; const float beta_slow; const float norm_eps; const float norm_rms_eps; const int32_t n_tokens; const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size) const int32_t n_outputs; const int32_t kv_head; // index of where we store new KV data in the cache const int32_t n_orig_ctx; const enum llama_pooling_type pooling_type; const enum llama_rope_type rope_type; const llm_build_cb & cb; std::vector & buf_compute_meta; struct ggml_context * ctx0 = nullptr; // TODO: consider making the entire interface noexcept llm_build_context( llama_context & lctx, const llama_batch & batch, const llm_build_cb & cb, bool worst_case) : model (lctx.model), lctx (lctx), hparams (model.hparams), cparams (lctx.cparams), batch (batch), kv_self (lctx.kv_self), n_embd (hparams.n_embd), n_layer (hparams.n_layer), n_rot (hparams.n_rot), n_ctx (cparams.n_ctx), n_head (hparams.n_head), n_head_kv (hparams.n_head_kv), n_embd_head_k (hparams.n_embd_head_k), n_embd_k_gqa (hparams.n_embd_k_gqa()), n_embd_head_v (hparams.n_embd_head_v), n_embd_v_gqa (hparams.n_embd_v_gqa()), n_expert (hparams.n_expert), n_expert_used (hparams.n_expert_used), freq_base (cparams.rope_freq_base), freq_scale (cparams.rope_freq_scale), ext_factor (cparams.yarn_ext_factor), attn_factor (cparams.yarn_attn_factor), beta_fast (cparams.yarn_beta_fast), beta_slow (cparams.yarn_beta_slow), norm_eps (hparams.f_norm_eps), norm_rms_eps (hparams.f_norm_rms_eps), n_tokens (batch.n_tokens), n_kv (worst_case ? kv_self.size : kv_self.n), n_outputs (worst_case ? n_tokens : lctx.n_outputs), kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head), n_orig_ctx (cparams.n_yarn_orig_ctx), pooling_type (cparams.pooling_type), rope_type (hparams.rope_type), cb (cb), buf_compute_meta (lctx.buf_compute_meta) { // all initializations should be done in init() } void init() { struct ggml_init_params params = { /*.mem_size =*/ buf_compute_meta.size(), /*.mem_buffer =*/ buf_compute_meta.data(), /*.no_alloc =*/ true, }; ctx0 = ggml_init(params); lctx.inp_tokens = nullptr; lctx.inp_embd = nullptr; lctx.inp_pos = nullptr; lctx.inp_out_ids = nullptr; lctx.inp_KQ_mask = nullptr; lctx.inp_KQ_pos = nullptr; lctx.inp_K_shift = nullptr; lctx.inp_mean = nullptr; lctx.inp_cls = nullptr; lctx.inp_s_copy = nullptr; lctx.inp_s_mask = nullptr; lctx.inp_s_seq = nullptr; } void free() { if (ctx0) { ggml_free(ctx0); ctx0 = nullptr; } } struct ggml_cgraph * build_k_shift() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); GGML_ASSERT(kv_self.size == n_ctx); lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx); cb(lctx.inp_K_shift, "K_shift", -1); ggml_set_input(lctx.inp_K_shift); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * tmp = // we rotate only the first n_rot dimensions ggml_rope_custom_inplace(ctx0, ggml_view_3d(ctx0, kv_self.k_l[il], n_embd_head_k, n_head_kv, n_ctx, ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k), ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), 0), lctx.inp_K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); cb(tmp, "K_shifted", il); ggml_build_forward_expand(gf, tmp); } return gf; } struct ggml_cgraph * build_s_copy() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); GGML_ASSERT(kv_self.recurrent); struct ggml_tensor * state_copy = build_inp_s_copy(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size); struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size); conv_states = ggml_get_rows(ctx0, conv_states, state_copy); ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy); // TODO: name the intermediate tensors with cb() ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il])); ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il])); } return gf; } struct ggml_cgraph * build_defrag(const std::vector & ids) { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); for (uint32_t i = 0; i < ids.size(); ++i) { const uint32_t id = ids[i]; if (i == id || id == ids.size()) { continue; } uint32_t nm = 1; while (i + nm < ids.size() && ids[i + nm] == id + nm) { nm++; } for (int il = 0; il < n_layer; ++il) { ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il], n_embd_k_gqa, nm, ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i)); ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il], n_embd_k_gqa, nm, ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id)); ggml_tensor * view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il], nm, n_embd_v_gqa, ggml_row_size(kv_self.v_l[il]->type, kv_self.size), ggml_row_size(kv_self.v_l[il]->type, i)); ggml_tensor * view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il], nm, n_embd_v_gqa, ggml_row_size(kv_self.v_l[il]->type, kv_self.size), ggml_row_size(kv_self.v_l[il]->type, id)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst)); } i += nm - 1; } //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes); return gf; } struct ggml_tensor * build_inp_pos() { lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); cb(lctx.inp_pos, "inp_pos", -1); ggml_set_input(lctx.inp_pos); return lctx.inp_pos; } struct ggml_tensor * build_inp_out_ids() { lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs); cb(lctx.inp_out_ids, "inp_out_ids", -1); ggml_set_input(lctx.inp_out_ids); return lctx.inp_out_ids; } struct ggml_tensor * build_inp_KQ_mask(bool causal = true) { if (causal) { lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, n_tokens); } else { lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens); } cb(lctx.inp_KQ_mask, "KQ_mask", -1); ggml_set_input(lctx.inp_KQ_mask); return lctx.inp_KQ_mask; } struct ggml_tensor * build_inp_KQ_pos() { lctx.inp_KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_kv); cb(lctx.inp_KQ_pos, "KQ_pos", -1); ggml_set_input(lctx.inp_KQ_pos); return lctx.inp_KQ_pos; } struct ggml_tensor * build_inp_mean() { lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens); cb(lctx.inp_mean, "inp_mean", -1); ggml_set_input(lctx.inp_mean); return lctx.inp_mean; } struct ggml_tensor * build_inp_cls() { lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); cb(lctx.inp_cls, "inp_cls", -1); ggml_set_input(lctx.inp_cls); return lctx.inp_cls; } struct ggml_tensor * build_inp_s_copy() { lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size); cb(lctx.inp_s_copy, "inp_s_copy", -1); ggml_set_input(lctx.inp_s_copy); return lctx.inp_s_copy; } struct ggml_tensor * build_inp_s_mask() { lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv); cb(lctx.inp_s_mask, "inp_s_mask", -1); ggml_set_input(lctx.inp_s_mask); return lctx.inp_s_mask; } struct ggml_tensor * build_inp_s_seq() { lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens); cb(lctx.inp_s_seq, "inp_s_seq", -1); ggml_set_input(lctx.inp_s_seq); return lctx.inp_s_seq; } struct ggml_cgraph * build_llama() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); // mutable variable, needed during the last layer of the computation to skip unused tokens int32_t n_tokens = this->n_tokens; const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); struct ggml_tensor * cur; struct ggml_tensor * inpL; inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; // norm cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, cb, il); cb(cur, "attn_norm", il); // self-attention { // compute Q and K and RoPE them struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); cb(Qcur, "Qcur", il); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); } struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); cb(Kcur, "Kcur", il); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); } struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); cb(Vcur, "Vcur", il); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); } Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); n_tokens = n_outputs; cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network if (model.layers[il].ffn_gate_inp == nullptr) { cur = llm_build_norm(ctx0, ffn_inp, hparams, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, cb, il); cb(cur, "ffn_norm", il); cur = llm_build_ffn(ctx0, cur, model.layers[il].ffn_up, NULL, model.layers[il].ffn_gate, NULL, model.layers[il].ffn_down, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, cb, il); cb(cur, "ffn_out", il); } else { // MoE branch cur = llm_build_norm(ctx0, ffn_inp, hparams, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, cb, il); cb(cur, "ffn_norm", il); ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts] cb(logits, "ffn_moe_logits", il); ggml_tensor * probs = ggml_soft_max(ctx0, logits); // [n_tokens, num_experts] cb(probs, "ffn_moe_probs", il); // select experts ggml_tensor * selected_experts = ggml_top_k(ctx0, probs, n_expert_used); // [n_tokens, num_experts_per_tok] cb(selected_experts->src[0], "ffn_moe_argsort", il); ggml_tensor * weights = ggml_get_rows(ctx0, ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts); cb(weights, "ffn_moe_weights", il); weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok] ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); cb(weights_sum, "ffn_moe_weights_sum", il); weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok] cb(weights, "ffn_moe_weights_norm", il); // compute expert outputs ggml_tensor * moe_out = nullptr; for (int i = 0; i < n_expert_used; ++i) { ggml_tensor * cur_expert; ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exps, selected_experts, i, cur); cb(cur_up, "ffn_moe_up", il); ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exps, selected_experts, i, cur); cb(cur_gate, "ffn_moe_gate", il); cur_gate = ggml_silu(ctx0, cur_gate); cb(cur_gate, "ffn_moe_silu", il); cur_expert = ggml_mul(ctx0, cur_up, cur_gate); cb(cur_expert, "ffn_moe_gate_par", il); cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exps, selected_experts, i, cur_expert); // [n_tokens, n_embd] cb(cur_expert, "ffn_moe_down", il); cur_expert = ggml_mul(ctx0, cur_expert, ggml_view_2d(ctx0, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0])); cb(cur_expert, "ffn_moe_weighted", il); if (i == 0) { moe_out = cur_expert; } else { moe_out = ggml_add(ctx0, moe_out, cur_expert); cb(moe_out, "ffn_moe_out", il); } } cur = moe_out; } cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "ffn_out", il); ggml_tensor * layer_dir = lctx.cvec.tensor_for(il); if (layer_dir != nullptr) { cur = ggml_add(ctx0, cur, layer_dir); } cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1); cb(cur, "result_norm", -1); // lm_head cur = ggml_mul_mat(ctx0, model.output, cur); cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); return gf; } struct ggml_cgraph * build_baichuan() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); struct ggml_tensor * cur; struct ggml_tensor * inpL; inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr; // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); // positions of the tokens in the KV cache struct ggml_tensor * KQ_pos = build_inp_KQ_pos(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, cb, il); cb(cur, "attn_norm", il); // self-attention { struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); cb(Qcur, "Qcur", il); struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); cb(Kcur, "Kcur", il); struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); cb(Vcur, "Vcur", il); switch (model.type) { case MODEL_7B: Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); break; case MODEL_13B: Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens); break; default: GGML_ASSERT(false); } cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network { cur = llm_build_norm(ctx0, ffn_inp, hparams, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, cb, il); cb(cur, "ffn_norm", il); cur = llm_build_ffn(ctx0, cur, model.layers[il].ffn_up, NULL, model.layers[il].ffn_gate, NULL, model.layers[il].ffn_down, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, cb, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1); cb(cur, "result_norm", -1); // lm_head cur = ggml_mul_mat(ctx0, model.output, cur); cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); return gf; } struct ggml_cgraph * build_xverse() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); struct ggml_tensor * cur; struct ggml_tensor * inpL; inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); // positions of the tokens in the KV cache struct ggml_tensor * KQ_pos = build_inp_KQ_pos(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, cb, il); cb(cur, "attn_norm", il); // self-attention { struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); cb(Qcur, "Qcur", il); struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); cb(Kcur, "Kcur", il); struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); cb(Vcur, "Vcur", il); Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network { cur = llm_build_norm(ctx0, ffn_inp, hparams, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, cb, il); cb(cur, "ffn_norm", il); cur = llm_build_ffn(ctx0, cur, model.layers[il].ffn_up, NULL, model.layers[il].ffn_gate, NULL, model.layers[il].ffn_down, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, cb, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1); cb(cur, "result_norm", -1); // lm_head cur = ggml_mul_mat(ctx0, model.output, cur); cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); return gf; } struct ggml_cgraph * build_falcon() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); struct ggml_tensor * cur; struct ggml_tensor * inpL; inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * attn_norm; attn_norm = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, cb, il); cb(attn_norm, "attn_norm", il); // self-attention { if (model.layers[il].attn_norm_2) { // Falcon-40B cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, cb, il); cb(cur, "attn_norm_2", il); } else { cur = attn_norm; } cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); cb(cur, "wqkv", il); struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); // using mode = 2 for neox mode Qcur = ggml_rope_custom( ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids); } struct ggml_tensor * ffn_inp = cur; // feed forward { cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result model.layers[il].ffn_up, NULL, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "l_out", il); cur = ggml_add(ctx0, cur, inpL); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; // norm cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, model.output_norm_b, LLM_NORM, cb, -1); cb(cur, "result_norm", -1); cur = ggml_mul_mat(ctx0, model.output, cur); cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); return gf; } struct ggml_cgraph * build_grok() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); // mutable variable, needed during the last layer of the computation to skip unused tokens int32_t n_tokens = this->n_tokens; const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); struct ggml_tensor * cur; struct ggml_tensor * inpL; inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // multiply by embedding_multiplier_scale of 78.38367176906169 inpL = ggml_scale(ctx0, inpL, 78.38367176906169f); // inp_pos - contains the positions struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; // norm cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, cb, il); cb(cur, "attn_norm", il); // self-attention { // compute Q and K and RoPE them struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); cb(Qcur, "Qcur", il); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); } struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); cb(Kcur, "Kcur", il); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); } struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); cb(Vcur, "Vcur", il); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); } Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il); } if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); n_tokens = n_outputs; cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } // Grok // if attn_out_norm is present then apply it before adding the input if (model.layers[il].attn_out_norm) { cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, NULL, LLM_NORM_RMS, cb, il); cb(cur, "attn_out_norm", il); } struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network // MoE branch cur = llm_build_norm(ctx0, ffn_inp, hparams, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, cb, il); cb(cur, "ffn_norm", il); ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts] cb(logits, "ffn_moe_logits", il); ggml_tensor * probs = ggml_soft_max(ctx0, logits); // [n_tokens, num_experts] cb(probs, "ffn_moe_probs", il); // select experts ggml_tensor * selected_experts = ggml_top_k(ctx0, probs, n_expert_used); // [n_tokens, num_experts_per_tok] cb(selected_experts->src[0], "ffn_moe_argsort", il); ggml_tensor * weights = ggml_get_rows(ctx0, ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts); cb(weights, "ffn_moe_weights", il); weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok] ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); cb(weights_sum, "ffn_moe_weights_sum", il); weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok] cb(weights, "ffn_moe_weights_norm", il); // compute expert outputs ggml_tensor * moe_out = nullptr; for (int i = 0; i < n_expert_used; ++i) { ggml_tensor * cur_expert; ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exps, selected_experts, i, cur); cb(cur_up, "ffn_moe_up", il); ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exps, selected_experts, i, cur); cb(cur_gate, "ffn_moe_gate", il); //GeLU cur_gate = ggml_gelu(ctx0, cur_gate); cb(cur_gate, "ffn_moe_gelu", il); cur_expert = ggml_mul(ctx0, cur_up, cur_gate); cb(cur_expert, "ffn_moe_gate_par", il); cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exps, selected_experts, i, cur_expert); // [n_tokens, n_embd] cb(cur_expert, "ffn_moe_down", il); cur_expert = ggml_mul(ctx0, cur_expert, ggml_view_2d(ctx0, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0])); cb(cur_expert, "ffn_moe_weighted", il); if (i == 0) { moe_out = cur_expert; } else { moe_out = ggml_add(ctx0, moe_out, cur_expert); cb(moe_out, "ffn_moe_out", il); } } cur = moe_out; // Grok // if layer_out_norm is present then apply it before adding the input // Idea: maybe ffn_out_norm is a better name if (model.layers[il].layer_out_norm) { cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, NULL, LLM_NORM_RMS, cb, il); cb(cur, "layer_out_norm", il); } cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "ffn_out", il); ggml_tensor * layer_dir = lctx.cvec.tensor_for(il); if (layer_dir != nullptr) { cur = ggml_add(ctx0, cur, layer_dir); } cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1); cb(cur, "result_norm", -1); // lm_head cur = ggml_mul_mat(ctx0, model.output, cur); // Grok // multiply logits by output_multiplier_scale of 0.5773502691896257 cur = ggml_scale(ctx0, cur, 0.5773502691896257f); cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); return gf; } struct ggml_cgraph * build_starcoder() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); struct ggml_tensor * cur; struct ggml_tensor * inpL; inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos); cb(pos, "pos_embd", -1); inpL = ggml_add(ctx0, inpL, pos); cb(inpL, "inpL", -1); for (int il = 0; il < n_layer; ++il) { cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, cb, il); cb(cur, "attn_norm", il); // self-attention { cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); cb(cur, "wqkv", il); cur = ggml_add(ctx0, cur, model.layers[il].bqkv); cb(cur, "bqkv", il); struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } // add the input struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); // FF { cur = llm_build_norm(ctx0, ffn_inp, hparams, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM, cb, il); cb(cur, "ffn_norm", il); cur = llm_build_ffn(ctx0, cur, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); cb(cur, "ffn_out", il); } inpL = ggml_add(ctx0, cur, ffn_inp); cb(inpL, "l_out", il); } cur = llm_build_norm(ctx0, inpL, hparams, model.output_norm, model.output_norm_b, LLM_NORM, cb, -1); cb(cur, "result_norm", -1); cur = ggml_mul_mat(ctx0, model.output, cur); cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); return gf; } struct ggml_cgraph * build_persimmon() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head/2 == hparams.n_rot); struct ggml_tensor * cur; struct ggml_tensor * inpL; inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * residual = inpL; cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, cb, il); cb(cur, "attn_norm", il); // self attention { cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); cb(cur, "wqkv", il); cur = ggml_add(ctx0, cur, model.layers[il].bqkv); cb(cur, "bqkv", il); // split qkv GGML_ASSERT(n_head_kv == n_head); struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens); cb(tmpqkv, "tmpqkv", il); struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2)); cb(tmpqkv_perm, "tmpqkv", il); struct ggml_tensor * tmpq = ggml_view_3d( ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens, ggml_element_size(tmpqkv_perm) * n_embd_head, ggml_element_size(tmpqkv_perm) * n_embd_head * n_head, 0 ); cb(tmpq, "tmpq", il); struct ggml_tensor * tmpk = ggml_view_3d( ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens, ggml_element_size(tmpqkv_perm) * n_embd_head, ggml_element_size(tmpqkv_perm) * n_embd_head * n_head, ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens ); cb(tmpk, "tmpk", il); // Q/K Layernorm tmpq = llm_build_norm(ctx0, tmpq, hparams, model.layers[il].attn_q_norm, model.layers[il].attn_q_norm_b, LLM_NORM, cb, il); cb(tmpq, "tmpq", il); tmpk = llm_build_norm(ctx0, tmpk, hparams, model.layers[il].attn_k_norm, model.layers[il].attn_k_norm_b, LLM_NORM, cb, il); cb(tmpk, "tmpk", il); // RoPE the first n_rot of q/k, pass the other half, and concat. struct ggml_tensor * qrot = ggml_view_3d( ctx0, tmpq, n_rot, n_head, n_tokens, ggml_element_size(tmpq) * n_embd_head, ggml_element_size(tmpq) * n_embd_head * n_head, 0 ); cb(qrot, "qrot", il); struct ggml_tensor * krot = ggml_view_3d( ctx0, tmpk, n_rot, n_head, n_tokens, ggml_element_size(tmpk) * n_embd_head, ggml_element_size(tmpk) * n_embd_head * n_head, 0 ); cb(krot, "krot", il); // get the second half of tmpq, e.g tmpq[n_rot:, :, :] struct ggml_tensor * qpass = ggml_view_3d( ctx0, tmpq, n_rot, n_head, n_tokens, ggml_element_size(tmpq) * n_embd_head, ggml_element_size(tmpq) * n_embd_head * n_head, ggml_element_size(tmpq) * n_rot ); cb(qpass, "qpass", il); struct ggml_tensor * kpass = ggml_view_3d( ctx0, tmpk, n_rot, n_head, n_tokens, ggml_element_size(tmpk) * n_embd_head, ggml_element_size(tmpk) * n_embd_head * n_head, ggml_element_size(tmpk) * n_rot ); cb(kpass, "kpass", il); struct ggml_tensor * qrotated = ggml_rope_custom( ctx0, qrot, inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(qrotated, "qrotated", il); struct ggml_tensor * krotated = ggml_rope_custom( ctx0, krot, inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(krotated, "krotated", il); // ggml currently only supports concatenation on dim=2 // so we need to permute qrot, qpass, concat, then permute back. qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3)); cb(qrotated, "qrotated", il); krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3)); cb(krotated, "krotated", il); qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3)); cb(qpass, "qpass", il); kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3)); cb(kpass, "kpass", il); struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass); cb(Qcur, "Qcur", il); struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass); cb(Kcur, "Kcur", il); struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3)); cb(Q, "Q", il); Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3)); cb(Kcur, "Kcur", il); struct ggml_tensor * Vcur = ggml_view_3d( ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens, ggml_element_size(tmpqkv_perm) * n_embd_head, ggml_element_size(tmpqkv_perm) * n_embd_head * n_head, ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2 ); cb(Vcur, "Vcur", il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Q, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); residual = ggml_get_rows(ctx0, residual, inp_out_ids); } struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur); cb(ffn_inp, "ffn_inp", il); // feed-forward network { cur = llm_build_norm(ctx0, ffn_inp, hparams, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM, cb, il); cb(cur, "ffn_norm", il); cur = llm_build_ffn(ctx0, cur, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "l_out", il); inpL = cur; } cur = inpL; cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, model.output_norm_b, LLM_NORM, cb, -1); cb(cur, "result_norm", -1); cur = ggml_mul_mat(ctx0, model.output, cur); cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); return gf; } struct ggml_cgraph * build_refact() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); struct ggml_tensor * cur; struct ggml_tensor * inpL; inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); // positions of the tokens in the KV cache struct ggml_tensor * KQ_pos = build_inp_KQ_pos(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, cb, il); cb(cur, "attn_norm", il); // self-attention { struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); cb(Qcur, "Qcur", il); struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); cb(Kcur, "Kcur", il); struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); cb(Vcur, "Vcur", il); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); cb(Kcur, "Kcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); cb(Qcur, "Qcur", il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network { cur = llm_build_norm(ctx0, ffn_inp, hparams, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, cb, il); cb(cur, "ffn_norm", il); cur = llm_build_ffn(ctx0, cur, model.layers[il].ffn_up, NULL, model.layers[il].ffn_gate, NULL, model.layers[il].ffn_down, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, cb, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1); cb(cur, "result_norm", -1); // lm_head cur = ggml_mul_mat(ctx0, model.output, cur); cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); return gf; } struct ggml_cgraph * build_bert() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); struct ggml_tensor * cur; struct ggml_tensor * inpL; struct ggml_tensor * inp_pos = build_inp_pos(); struct ggml_tensor * inp_mean = build_inp_mean(); struct ggml_tensor * inp_cls = build_inp_cls(); // construct input embeddings (token, type, position) inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // token types are hardcoded to zero ("Sentence A") struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0); inpL = ggml_add(ctx0, inpL, type_row0); if (model.arch == LLM_ARCH_BERT) { inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL); } cb(inpL, "inp_embd", -1); // embed layer norm inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1); cb(inpL, "inp_norm", -1); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false); // iterate layers for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * cur = inpL; struct ggml_tensor * Qcur; struct ggml_tensor * Kcur; struct ggml_tensor * Vcur; // self-attention if (model.arch == LLM_ARCH_BERT) { Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq); cb(Qcur, "Qcur", il); Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk); cb(Kcur, "Kcur", il); Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); } else { // compute Q and K and RoPE them cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); cb(cur, "wqkv", il); Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); } struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3)); struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q); cb(kq, "kq", il); kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, nullptr, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias); cb(kq, "kq_soft_max_ext", il); struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens))); cb(v, "v", il); struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq); cb(kqv, "kqv", il); struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3); cb(kqv_merged, "kqv_merged", il); cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens); cb(cur, "kqv_merged_cont", il); ggml_build_forward_expand(gf, cur); cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur); if (model.layers[il].bo) { cb(cur, "kqv_wo", il); } if (model.layers[il].bo) { cur = ggml_add(ctx0, cur, model.layers[il].bo); } cb(cur, "kqv_out", il); if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } // re-add the layer input cur = ggml_add(ctx0, cur, inpL); // attention layer norm cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il); struct ggml_tensor * ffn_inp = cur; cb(ffn_inp, "ffn_inp", il); // feed-forward network if (model.arch == LLM_ARCH_BERT) { cur = llm_build_ffn(ctx0, cur, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); } else { cur = llm_build_ffn(ctx0, cur, model.layers[il].ffn_up, NULL, model.layers[il].ffn_gate, NULL, model.layers[il].ffn_down, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, cb, il); } cb(cur, "ffn_out", il); // attentions bypass the intermediate layer cur = ggml_add(ctx0, cur, ffn_inp); // output layer norm cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il); // input for next layer inpL = cur; } // final output cur = inpL; cb(cur, "result_embd", -1); // pooling layer switch (pooling_type) { case LLAMA_POOLING_TYPE_NONE: { // nop } break; case LLAMA_POOLING_TYPE_MEAN: { cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean); cb(cur, "result_embd_pooled", -1); } break; case LLAMA_POOLING_TYPE_CLS: { cur = ggml_get_rows(ctx0, cur, inp_cls); cb(cur, "result_embd_pooled", -1); } break; case LLAMA_POOLING_TYPE_UNSPECIFIED: { GGML_ASSERT(false && "Invalid pooling type"); } break; } ggml_build_forward_expand(gf, cur); return gf; } struct ggml_cgraph * build_bloom() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); struct ggml_tensor * cur; struct ggml_tensor * inpL; inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); // positions of the tokens in the KV cache struct ggml_tensor * KQ_pos = build_inp_KQ_pos(); inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1); cb(inpL, "inp_norm", -1); for (int il = 0; il < n_layer; ++il) { cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, cb, il); cb(cur, "attn_norm", il); // self-attention { cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); cb(cur, "wqkv", il); cur = ggml_add(ctx0, cur, model.layers[il].bqkv); cb(cur, "bqkv", il); struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } // Add the input struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); // FF { cur = llm_build_norm(ctx0, ffn_inp, hparams, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM, cb, il); cb(cur, "ffn_norm", il); cur = llm_build_ffn(ctx0, cur, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); cb(cur, "ffn_out", il); } inpL = ggml_add(ctx0, cur, ffn_inp); cb(inpL, "l_out", il); } cur = llm_build_norm(ctx0, inpL, hparams, model.output_norm, model.output_norm_b, LLM_NORM, cb, -1); cb(cur, "result_norm", -1); cur = ggml_mul_mat(ctx0, model.output, cur); cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); return gf; } struct ggml_cgraph * build_mpt() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); struct ggml_tensor * cur; struct ggml_tensor * pos; struct ggml_tensor * inpL; inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); // positions of the tokens in the KV cache struct ggml_tensor * KQ_pos = build_inp_KQ_pos(); if (model.pos_embd) { // inp_pos - contains the positions struct ggml_tensor * inp_pos = build_inp_pos(); pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos); cb(pos, "pos_embd", -1); inpL = ggml_add(ctx0, inpL, pos); cb(inpL, "inpL", -1); } for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * attn_norm; attn_norm = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, cb, il); cb(attn_norm, "attn_norm", il); // self-attention { cur = attn_norm; cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); cb(cur, "wqkv", il); if (model.layers[il].bqkv){ cur = ggml_add(ctx0, cur, model.layers[il].bqkv); cb(cur, "bqkv", il); } if (hparams.f_clamp_kqv > 0.0f) { cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv); cb(cur, "wqkv_clamped", il); } struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); // Q/K Layernorm if (model.layers[il].attn_q_norm) { Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].attn_q_norm, model.layers[il].attn_q_norm_b, LLM_NORM, cb, il); cb(Qcur, "Qcur", il); Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].attn_k_norm, model.layers[il].attn_k_norm_b, LLM_NORM, cb, il); cb(Kcur, "Kcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } else { Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } } if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } // Add the input struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); // feed forward { cur = llm_build_norm(ctx0, ffn_inp, hparams, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM, cb, il); cb(cur, "ffn_norm", il); cur = llm_build_ffn(ctx0, cur, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, model.layers[il].ffn_act, LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, model.output_norm_b, LLM_NORM, cb, -1); cb(cur, "result_norm", -1); cur = ggml_mul_mat(ctx0, model.output, cur); cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); return gf; } struct ggml_cgraph * build_stablelm() { struct ggml_cgraph * gf = ggml_new_graph(ctx0); const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); struct ggml_tensor * cur; struct ggml_tensor * inpL; inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; // norm cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, cb, il); cb(cur, "attn_norm", il); // self-attention { // compute Q and K and RoPE them struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); cb(Qcur, "Qcur", il); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); } struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); cb(Kcur, "Kcur", il); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); } struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); cb(Vcur, "Vcur", il); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); } Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network { cur = llm_build_norm(ctx0, ffn_inp, hparams, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM, cb, il); cb(cur, "ffn_norm", il); cur = llm_build_ffn(ctx0, cur, model.layers[il].ffn_up, NULL, model.layers[il].ffn_gate, NULL, model.layers[il].ffn_down, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, cb, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, model.output_norm_b, LLM_NORM, cb, -1); cb(cur, "result_norm", -1); // lm_head cur = ggml_mul_mat(ctx0, model.output, cur); cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); return gf; } struct ggml_cgraph * build_qwen() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); struct ggml_tensor * cur; struct ggml_tensor * inpL; inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, cb, il); cb(cur, "attn_norm", il); // self-attention { cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); cb(cur, "wqkv", il); cur = ggml_add(ctx0, cur, model.layers[il].bqkv); cb(cur, "bqkv", il); struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd))); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); // using mode = 2 for neox mode Qcur = ggml_rope_custom( ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward forward { cur = llm_build_norm(ctx0, ffn_inp, hparams, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, cb, il); cb(cur, "ffn_norm", il); cur = llm_build_ffn(ctx0, cur, model.layers[il].ffn_up, NULL, model.layers[il].ffn_gate, NULL, model.layers[il].ffn_down, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, cb, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1); cb(cur, "result_norm", -1); // lm_head cur = ggml_mul_mat(ctx0, model.output, cur); cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); return gf; } struct ggml_cgraph * build_qwen2() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); struct ggml_tensor * cur; struct ggml_tensor * inpL; inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; // norm cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, cb, il); cb(cur, "attn_norm", il); // self-attention { // compute Q and K and RoPE them struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); cb(Qcur, "Qcur", il); Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); cb(Kcur, "Kcur", il); Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); cb(Vcur, "Vcur", il); Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); // these nodes are added to the graph together so that they are not reordered // by doing so, the number of splits in the graph is reduced ggml_build_forward_expand(gf, Qcur); ggml_build_forward_expand(gf, Kcur); ggml_build_forward_expand(gf, Vcur); Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network cur = llm_build_norm(ctx0, ffn_inp, hparams, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, cb, il); cb(cur, "ffn_norm", il); cur = llm_build_ffn(ctx0, cur, model.layers[il].ffn_up, NULL, model.layers[il].ffn_gate, NULL, model.layers[il].ffn_down, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, cb, il); cb(cur, "ffn_out", il); cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1); cb(cur, "result_norm", -1); // lm_head cur = ggml_mul_mat(ctx0, model.output, cur); cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); return gf; } struct ggml_cgraph * build_phi2() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); struct ggml_tensor * cur; struct ggml_tensor * attn_norm_output; struct ggml_tensor * ffn_output; struct ggml_tensor * inpL; inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { attn_norm_output = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, cb, il); cb(attn_norm_output, "attn_norm", il); // self-attention { struct ggml_tensor * Qcur = nullptr; struct ggml_tensor * Kcur = nullptr; struct ggml_tensor * Vcur = nullptr; if (model.layers[il].wqkv) { cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output); cb(cur, "wqkv", il); cur = ggml_add(ctx0, cur, model.layers[il].bqkv); cb(cur, "bqkv", il); Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); } else { Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq); Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk); Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv); } cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_custom( ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); // with phi2, we scale the Q to avoid precision issues // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66 Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head))); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il); } if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids); } // FF { ffn_output = llm_build_ffn(ctx0, attn_norm_output, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); cb(ffn_output, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_output); cb(cur, "l_out", il); cur = ggml_add(ctx0, cur, inpL); cb(cur, "l_out", il); inpL = cur; } cur = llm_build_norm(ctx0, inpL, hparams, model.output_norm, model.output_norm_b, LLM_NORM, cb, -1); cb(cur, "result_norm", -1); cur = ggml_mul_mat(ctx0, model.output, cur); cb(cur, "result_output_no_bias", -1); cur = ggml_add(ctx0, cur, model.output_b); cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); return gf; } struct ggml_cgraph * build_plamo() { struct ggml_cgraph * gf = ggml_new_graph(ctx0); const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); struct ggml_tensor * cur; struct ggml_tensor * inpL; inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { // norm cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, cb, il); cb(cur, "attn_norm", il); struct ggml_tensor * attention_norm = cur; // self-attention { // compute Q and K and RoPE them struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); cb(Qcur, "Qcur", il); struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); cb(Kcur, "Kcur", il); struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); cb(Vcur, "Vcur", il); Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos, n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); cb(Kcur, "Kcur", il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } struct ggml_tensor * sa_out = cur; cur = attention_norm; if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } // feed-forward network { cur = llm_build_ffn(ctx0, cur, model.layers[il].ffn_up, NULL, model.layers[il].ffn_gate, NULL, model.layers[il].ffn_down, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, cb, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, sa_out); cb(cur, "l_out", il); cur = ggml_add(ctx0, cur, inpL); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1); cb(cur, "result_norm", -1); // lm_head cur = ggml_mul_mat(ctx0, model.output, cur); cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); return gf; } struct ggml_cgraph * build_gpt2() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); struct ggml_tensor * cur; struct ggml_tensor * pos; struct ggml_tensor * inpL; inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos); cb(pos, "pos_embd", -1); inpL = ggml_add(ctx0, inpL, pos); cb(inpL, "inpL", -1); for (int il = 0; il < n_layer; ++il) { cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, cb, il); cb(cur, "attn_norm", il); // self-attention { cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); cb(cur, "wqkv", il); cur = ggml_add(ctx0, cur, model.layers[il].bqkv); cb(cur, "bqkv", il); struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } // add the input struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); // FF { cur = llm_build_norm(ctx0, ffn_inp, hparams, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM, cb, il); cb(cur, "ffn_norm", il); cur = llm_build_ffn(ctx0, cur, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); cb(cur, "ffn_out", il); } inpL = ggml_add(ctx0, cur, ffn_inp); cb(inpL, "l_out", il); } cur = llm_build_norm(ctx0, inpL, hparams, model.output_norm, model.output_norm_b, LLM_NORM, cb, -1); cb(cur, "result_norm", -1); cur = ggml_mul_mat(ctx0, model.output, cur); cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); return gf; } struct ggml_cgraph * build_codeshell() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); struct ggml_tensor * cur; struct ggml_tensor * inpL; inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, cb, il); cb(cur, "attn_norm", il); // self-attention { cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); cb(cur, "wqkv", il); cur = ggml_add(ctx0, cur, model.layers[il].bqkv); cb(cur, "bqkv", il); struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); cb(tmpq, "tmpq", il); cb(tmpk, "tmpk", il); cb(Vcur, "Vcur", il); struct ggml_tensor * Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); struct ggml_tensor * Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } // add the input struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); // FF { cur = llm_build_norm(ctx0, ffn_inp, hparams, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM, cb, il); cb(cur, "ffn_norm", il); cur = llm_build_ffn(ctx0, cur, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); cb(cur, "ffn_out", il); } inpL = ggml_add(ctx0, cur, ffn_inp); cb(inpL, "l_out", il); } cur = llm_build_norm(ctx0, inpL, hparams, model.output_norm, model.output_norm_b, LLM_NORM, cb, -1); cb(cur, "result_norm", -1); cur = ggml_mul_mat(ctx0, model.output, cur); cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); return gf; } struct ggml_cgraph * build_orion() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); struct ggml_tensor * cur; struct ggml_tensor * inpL; inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; // norm cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, cb, il); cb(cur, "attn_norm", il); // self-attention { // compute Q and K and RoPE them struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); cb(Qcur, "Qcur", il); // if (model.layers[il].bq) { // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); // cb(Qcur, "Qcur", il); // } struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); cb(Kcur, "Kcur", il); // if (model.layers[il].bk) { // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); // cb(Kcur, "Kcur", il); // } struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); cb(Vcur, "Vcur", il); // if (model.layers[il].bv) { // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); // cb(Vcur, "Vcur", il); // } Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network cur = llm_build_norm(ctx0, ffn_inp, hparams, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM, cb, il); cb(cur, "ffn_norm", il); cur = llm_build_ffn(ctx0, cur, model.layers[il].ffn_up, NULL, model.layers[il].ffn_gate, NULL, model.layers[il].ffn_down, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, cb, il); cb(cur, "ffn_out", il); cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, model.output_norm_b, LLM_NORM, cb, -1); cb(cur, "result_norm", -1); // lm_head cur = ggml_mul_mat(ctx0, model.output, cur); cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); return gf; } struct ggml_cgraph * build_internlm2() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); struct ggml_tensor * cur; struct ggml_tensor * inpL; inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; // norm cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, cb, il); cb(cur, "attn_norm", il); // self-attention { // compute Q and K and RoPE them struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); cb(Qcur, "Qcur", il); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); } struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); cb(Kcur, "Kcur", il); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); } struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); cb(Vcur, "Vcur", il); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); } Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network cur = llm_build_norm(ctx0, ffn_inp, hparams, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, cb, il); cb(cur, "ffn_norm", il); cur = llm_build_ffn(ctx0, cur, model.layers[il].ffn_up, NULL, model.layers[il].ffn_gate, NULL, model.layers[il].ffn_down, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, cb, il); cb(cur, "ffn_out", il); cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1); cb(cur, "result_norm", -1); // lm_head cur = ggml_mul_mat(ctx0, model.output, cur); cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); return gf; } // ref: https://arxiv.org/abs/2203.03466 // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738 // based on the original build_llama() function struct ggml_cgraph * build_minicpm() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); const int64_t n_embd = hparams.n_embd; //TODO: if the model varies, these parameters need to be read from the model const int64_t n_embd_base = 256; const float scale_embd = 12.0f; const float scale_depth = 1.4f; struct ggml_tensor * cur; struct ggml_tensor * inpL; inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // scale the input embeddings inpL = ggml_scale(ctx0, inpL, scale_embd); cb(inpL, "inp_scaled", -1); // inp_pos - contains the positions struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; // norm cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, cb, il); cb(cur, "attn_norm", il); // self-attention { // compute Q and K and RoPE them struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); cb(Qcur, "Qcur", il); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); } struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); cb(Kcur, "Kcur", il); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); } struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); cb(Vcur, "Vcur", il); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); } Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } // scale_res - scale the hidden states for residual connection const float scale_res = scale_depth/sqrtf(float(n_layer)); cur = ggml_scale(ctx0, cur, scale_res); cb(cur, "hidden_scaled", -1); struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network { cur = llm_build_norm(ctx0, ffn_inp, hparams, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, cb, il); cb(cur, "ffn_norm", il); cur = llm_build_ffn(ctx0, cur, model.layers[il].ffn_up, NULL, model.layers[il].ffn_gate, NULL, model.layers[il].ffn_down, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, cb, il); cb(cur, "ffn_out", il); } // scale the hidden states for residual connection cur = ggml_scale(ctx0, cur, scale_res); cb(cur, "hidden_scaled_ffn", -1); cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1); cb(cur, "result_norm", -1); // lm_head scaling const float scale_lmhead = float(n_embd_base)/float(n_embd); cur = ggml_scale(ctx0, cur, scale_lmhead); cb(cur, "lmhead_scaling", -1); // lm_head cur = ggml_mul_mat(ctx0, model.tok_embd, cur); cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); return gf; } struct ggml_cgraph * build_gemma() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); const int64_t n_embd_head_k = hparams.n_embd_head_k; struct ggml_tensor * cur; struct ggml_tensor * inpL; inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd)); cb(inpL, "inp_scaled", -1); // inp_pos - contains the positions struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { // norm cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, cb, il); cb(cur, "attn_norm", il); // self-attention { // compute Q and K and RoPE them struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); cb(Qcur, "Qcur", il); struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); cb(Kcur, "Kcur", il); struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); cb(Vcur, "Vcur", il); Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); cb(Qcur, "Qcur", il); Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k))); cb(Qcur, "Qcur_scaled", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); cb(Kcur, "Kcur", il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il); } if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL); cb(sa_out, "sa_out", il); cur = llm_build_norm(ctx0, sa_out, hparams, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, cb, il); cb(cur, "ffn_norm", il); // feed-forward network { cur = llm_build_ffn(ctx0, cur, model.layers[il].ffn_up, NULL, model.layers[il].ffn_gate, NULL, model.layers[il].ffn_down, NULL, NULL, LLM_FFN_GELU, LLM_FFN_PAR, cb, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, sa_out); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1); cb(cur, "result_norm", -1); // lm_head cur = ggml_mul_mat(ctx0, model.output, cur); cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); return gf; } struct ggml_cgraph * build_starcoder2() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); struct ggml_tensor * cur; struct ggml_tensor * inpL; inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; // norm cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, cb, il); cb(cur, "attn_norm", il); // self-attention { // compute Q and K and RoPE them struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); cb(Qcur, "Qcur", il); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); } struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); cb(Kcur, "Kcur", il); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); } struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); cb(Vcur, "Vcur", il); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); } Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network cur = llm_build_norm(ctx0, ffn_inp, hparams, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM, cb, il); cb(cur, "ffn_norm", il); cur = llm_build_ffn(ctx0, cur, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); cb(cur, "ffn_out", il); cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, model.output_norm_b, LLM_NORM, cb, -1); cb(cur, "result_norm", -1); // lm_head cur = ggml_mul_mat(ctx0, model.output, cur); cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); return gf; } struct ggml_cgraph * build_mamba() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); const int64_t d_model = n_embd; const int64_t d_conv = hparams.ssm_d_conv; const int64_t d_inner = hparams.ssm_d_inner; GGML_ASSERT(2 * d_model == d_inner); const int64_t d_state = hparams.ssm_d_state; const int64_t dt_rank = hparams.ssm_dt_rank; struct ggml_tensor * cur; struct ggml_tensor * inpL; // {n_embd, n_tokens} inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); struct ggml_tensor * state_mask = build_inp_s_mask(); struct ggml_tensor * state_seq = build_inp_s_seq(); for (int il = 0; il < n_layer; ++il) { // (ab)using the KV cache to store the states struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size); struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size); // clear states of sequences which are starting at the beginning of this batch { conv_states = ggml_mul(ctx0, ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]), state_mask); ssm_states = ggml_mul(ctx0, ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]), state_mask); } conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv); ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv); // norm cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, cb, il); cb(cur, "attn_norm", il); // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens} struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur); // split the above in two // => {d_inner, n_tokens} struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0); struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner); // conv { // Custom operator which is needed only to ease simultaneous sequence processing. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x, // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension, // then element-wise multiply that with the conv1d weigth, // then sum the elements of each row, // (the last two steps are a dot product over rows (also doable with mul_mat)) // then permute away the ne[0] dimension, // and then you're left with the resulting x tensor. // The new conv_states is the last (d_conv - 1) columns // of the last 3rd dimensional "layer" of the self-overlapping view. // For simultaneous sequences, it's more complicated. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq); // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache ggml_build_forward_expand(gf, ggml_cpy(ctx0, ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)), ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv)))); // extract x from x_conv x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0); // bias x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b); x = ggml_silu(ctx0, x); } // ssm { // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens} struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x); // split struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0); struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank); struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state)); // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens} dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt); dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b); // Custom operator to optimize the parallel associative scan // as described in the Annex D of the Mamba paper. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined, // because only a single tensor can be returned. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq); // store last states (the second part of y_ssm_states) ggml_build_forward_expand(gf, ggml_cpy(ctx0, ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)), ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states)))); struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0); if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); x = ggml_get_rows(ctx0, x, inp_out_ids); y = ggml_get_rows(ctx0, y, inp_out_ids); z = ggml_get_rows(ctx0, z, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens} y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d)); y = ggml_mul(ctx0, y, ggml_silu(ctx0, z)); // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens} cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y); } // residual cur = ggml_add(ctx0, cur, inpL); cb(cur, "l_out", il); // input for next layer inpL = cur; } // final rmsnorm cur = llm_build_norm(ctx0, inpL, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1); cb(cur, "result_norm", -1); // lm_head cur = ggml_mul_mat(ctx0, model.output, cur); cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); return gf; } struct ggml_cgraph * build_command_r() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); const float f_logit_scale = hparams.f_logit_scale; struct ggml_tensor * cur; struct ggml_tensor * inpL; inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); // inp_pos - contains the positions struct ggml_tensor * inp_pos = build_inp_pos(); // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); for (int il = 0; il < n_layer; ++il) { // norm cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM, cb, il); cb(cur, "attn_norm", il); struct ggml_tensor * ffn_inp = cur; // self-attention { // compute Q and K and RoPE them struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); cb(Qcur, "Qcur", il); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); } struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); cb(Kcur, "Kcur", il); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); } struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); cb(Vcur, "Vcur", il); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); } Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); Kcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Kcur, "Kcur", il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); } if (il == n_layer - 1) { // skip computing output for unused tokens struct ggml_tensor * inp_out_ids = build_inp_out_ids(); cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids); } struct ggml_tensor * attn_out = cur; // feed-forward network { cur = llm_build_ffn(ctx0, ffn_inp, model.layers[il].ffn_up, NULL, model.layers[il].ffn_gate, NULL, model.layers[il].ffn_down, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, cb, il); cb(cur, "ffn_out", il); } // add together residual + FFN + self-attention cur = ggml_add(ctx0, cur, inpL); cur = ggml_add(ctx0, cur, attn_out); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM, cb, -1); cb(cur, "result_norm", -1); // lm_head cur = ggml_mul_mat(ctx0, model.output, cur); if (f_logit_scale) { cur = ggml_scale(ctx0, cur, f_logit_scale); } cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); return gf; } }; static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector & ids) { llama_batch dummy; dummy.n_tokens = 0; llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { }; struct llm_build_context llm(lctx, dummy, cb, false); llm.init(); struct ggml_cgraph * result = llm.build_defrag(ids); llm.free(); return result; } static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) { llama_batch dummy; dummy.n_tokens = 0; llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { }; struct llm_build_context llm(lctx, dummy, cb, false); llm.init(); struct ggml_cgraph * result = llm.build_k_shift(); llm.free(); return result; } static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) { llama_batch dummy; dummy.n_tokens = 0; llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { }; struct llm_build_context llm(lctx, dummy, cb, false); llm.init(); struct ggml_cgraph * result = llm.build_s_copy(); llm.free(); return result; } static struct ggml_cgraph * llama_build_graph( llama_context & lctx, const llama_batch & batch, bool worst_case) { const auto & model = lctx.model; // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.) llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) { if (il >= 0) { ggml_format_name(cur, "%s-%d", name, il); } else { ggml_set_name(cur, name); } if (!lctx.cparams.offload_kqv) { if (strcmp(name, "kqv_merged_cont") == 0) { // all nodes between the KV store and the attention output are run on the CPU ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu); } } // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends // FIXME: fix in ggml_backend_sched const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer; if (batch.n_tokens < 32 || full_offload) { if (il != -1 && strcmp(name, "norm") == 0) { for (auto * backend : lctx.backends) { if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) { ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend); break; } } } } }; struct ggml_cgraph * result = NULL; struct llm_build_context llm(lctx, batch, cb, worst_case); llm.init(); switch (model.arch) { case LLM_ARCH_LLAMA: { result = llm.build_llama(); } break; case LLM_ARCH_BAICHUAN: { result = llm.build_baichuan(); } break; case LLM_ARCH_FALCON: { result = llm.build_falcon(); } break; case LLM_ARCH_GROK: { result = llm.build_grok(); } break; case LLM_ARCH_STARCODER: { result = llm.build_starcoder(); } break; case LLM_ARCH_PERSIMMON: { result = llm.build_persimmon(); } break; case LLM_ARCH_REFACT: { result = llm.build_refact(); } break; case LLM_ARCH_BERT: case LLM_ARCH_NOMIC_BERT: { result = llm.build_bert(); } break; case LLM_ARCH_BLOOM: { result = llm.build_bloom(); } break; case LLM_ARCH_MPT: { result = llm.build_mpt(); } break; case LLM_ARCH_STABLELM: { result = llm.build_stablelm(); } break; case LLM_ARCH_QWEN: { result = llm.build_qwen(); } break; case LLM_ARCH_QWEN2: { result = llm.build_qwen2(); } break; case LLM_ARCH_PHI2: { result = llm.build_phi2(); } break; case LLM_ARCH_PLAMO: { result = llm.build_plamo(); } break; case LLM_ARCH_GPT2: { result = llm.build_gpt2(); } break; case LLM_ARCH_CODESHELL: { result = llm.build_codeshell(); } break; case LLM_ARCH_ORION: { result = llm.build_orion(); } break; case LLM_ARCH_INTERNLM2: { result = llm.build_internlm2(); } break; case LLM_ARCH_MINICPM: { result = llm.build_minicpm(); } break; case LLM_ARCH_GEMMA: { result = llm.build_gemma(); } break; case LLM_ARCH_STARCODER2: { result = llm.build_starcoder2(); } break; case LLM_ARCH_MAMBA: { result = llm.build_mamba(); } break; case LLM_ARCH_XVERSE: { result = llm.build_xverse(); } break; case LLM_ARCH_COMMAND_R: { result = llm.build_command_r(); } break; default: GGML_ASSERT(false); } llm.free(); return result; } static void llama_set_k_shift(llama_context & lctx) { const int64_t kv_size = lctx.kv_self.size; assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer)); int32_t * data = (int32_t *) lctx.inp_K_shift->data; for (int i = 0; i < kv_size; ++i) { data[i] = lctx.kv_self.cells[i].delta; } } static void llama_set_s_copy(llama_context & lctx) { const int64_t kv_size = lctx.kv_self.size; assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer)); int32_t * data = (int32_t *) lctx.inp_s_copy->data; for (int i = 0; i < kv_size; ++i) { data[i] = lctx.kv_self.cells[i].src; } } static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { // // set input data // const auto & hparams = lctx.model.hparams; const auto & cparams = lctx.cparams; const auto & kv_self = lctx.kv_self; if (batch.token) { const int64_t n_tokens = batch.n_tokens; ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens)); } if (batch.embd) { const int64_t n_embd = hparams.n_embd; const int64_t n_tokens = batch.n_tokens; ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd)); } if (batch.pos && lctx.inp_pos) { const int64_t n_tokens = batch.n_tokens; ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos)); } if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) { GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs"); const int64_t n_tokens = batch.n_tokens; GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer)); int32_t * data = (int32_t *) lctx.inp_out_ids->data; if (lctx.n_outputs == n_tokens) { for (int i = 0; i < n_tokens; ++i) { data[i] = i; } } else if (batch.logits) { int32_t n_outputs = 0; for (int i = 0; i < n_tokens; ++i) { if (batch.logits[i]) { data[n_outputs++] = i; } } // the graph needs to have been passed the correct number of outputs GGML_ASSERT(lctx.n_outputs == n_outputs); } else if (lctx.n_outputs == 1) { // only keep last output data[0] = n_tokens - 1; } else { GGML_ASSERT(lctx.n_outputs == 0); } } GGML_ASSERT( // (!a || b) is a logical implication (a -> b) // !hparams.causal_attn -> !cparams.causal_attn (hparams.causal_attn || !cparams.causal_attn) && "causal attention with embedding models is not supported" ); if (lctx.inp_KQ_mask) { // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache. if (cparams.causal_attn) { const int64_t n_kv = kv_self.n; const int64_t n_tokens = batch.n_tokens; GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer)); float * data = (float *) lctx.inp_KQ_mask->data; // For causal attention, use only the previous KV cells // of the correct sequence for each token of the batch. // It's assumed that if a token in the batch has multiple sequences, they are equivalent. for (int h = 0; h < 1; ++h) { for (int j = 0; j < n_tokens; ++j) { const llama_pos pos = batch.pos[j]; const llama_seq_id seq_id = batch.seq_id[j][0]; for (int i = 0; i < n_kv; ++i) { float f; if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) { f = -INFINITY; } else { f = 0.0f; } data[h*(n_kv*n_tokens) + j*n_kv + i] = f; } } } } else { // when using kv cache, the mask needs to match the kv cache size const int64_t n_tokens = batch.n_tokens; const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens; GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer)); float * data = (float *) lctx.inp_KQ_mask->data; for (int h = 0; h < 1; ++h) { for (int j = 0; j < n_tokens; ++j) { const llama_seq_id seq_id = batch.seq_id[j][0]; for (int i = 0; i < n_tokens; ++i) { float f = -INFINITY; for (int s = 0; s < batch.n_seq_id[i]; ++s) { if (batch.seq_id[i][s] == seq_id) { f = 0.0f; break; } } data[h*(n_tokens*n_tokens) + j*n_stride + i] = f; } for (int i = n_tokens; i < n_stride; ++i) { data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY; } } } } } if (hparams.need_kq_pos) { const int64_t n_kv = kv_self.n; GGML_ASSERT(lctx.inp_KQ_pos); GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_pos->buffer)); float * data = (float *) lctx.inp_KQ_pos->data; for (int i = 0; i < n_kv; ++i) { data[i] = float(lctx.kv_self.cells[i].pos); } } if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) { const int64_t n_tokens = batch.n_tokens; GGML_ASSERT(lctx.inp_mean); GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer)); float * data = (float *) lctx.inp_mean->data; memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean)); std::vector sum(n_tokens, 0); for (int i = 0; i < n_tokens; ++i) { const llama_seq_id seq_id = batch.seq_id[i][0]; GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN"); sum[seq_id] += 1; } std::vector div(n_tokens, 0.0f); for (int i = 0; i < n_tokens; ++i) { const uint64_t s = sum[i]; if (s > 0) { div[i] = 1.0f/float(s); } } for (int i = 0; i < n_tokens; ++i) { const llama_seq_id seq_id = batch.seq_id[i][0]; data[seq_id*n_tokens + i] = div[seq_id]; } } if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) { const int64_t n_tokens = batch.n_tokens; GGML_ASSERT(lctx.inp_cls); GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer)); uint32_t * data = (uint32_t *) lctx.inp_cls->data; memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls)); for (int i = 0; i < n_tokens; ++i) { const llama_seq_id seq_id = batch.seq_id[i][0]; const llama_pos pos = batch.pos[i]; GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS"); if (pos == 0) { data[seq_id] = i; } } } if (kv_self.recurrent) { const int64_t n_kv = kv_self.n; if (lctx.inp_s_mask) { GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer)); float * data = (float *) lctx.inp_s_mask->data; // states which are not affected by the current batch are left untouched for (int i = 0; i < n_kv; ++i) { llama_seq_id seq_id = i + lctx.kv_self.head; llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id]; bool has_self_seq = kv_cell.has_seq_id(seq_id); data[i] = (float) has_self_seq; // ensure current sequences will be kept if (!has_self_seq && kv_cell.pos >= 0) { kv_cell.seq_id.insert(seq_id); } } } // For Mamba (and other recurrent architectures), // update the correct state(s)/sequence(s) for each token of the batch. // Like with the KQ_mask, if a token in the batch has multiple sequences, // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv). if (lctx.inp_s_seq) { const int64_t n_tokens = batch.n_tokens; GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer)); int32_t * data = (int32_t *) lctx.inp_s_seq->data; for (int j = 0; j < n_tokens; ++j) { const int32_t n_seq = batch.n_seq_id[j]; GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence for (int i = 0; i < n_kv; ++i) { if (i < n_seq) { // for this type of model, the head is the minimum seq_id of the batch data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head; } else { data[j*n_kv + i] = -1; } } } } } } // Make sure enough space is available for outputs. // Returns max number of outputs for which space was reserved. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) { const auto & cparams = lctx.cparams; const auto & hparams = lctx.model.hparams; const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max); const auto n_batch = cparams.n_batch; const auto n_vocab = hparams.n_vocab; const auto n_embd = hparams.n_embd; // TODO: use a per-batch flag for logits presence instead const bool has_logits = cparams.causal_attn; const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE); const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0; const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0; if (lctx.output_ids.empty()) { // init, never resized afterwards lctx.output_ids.resize(n_batch); } const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0; const size_t new_size = (logits_size + embd_size) * sizeof(float); // alloc only when more than the current capacity is required // TODO: also consider shrinking the buffer if (!lctx.buf_output || prev_size < new_size) { if (lctx.buf_output) { #ifndef NDEBUG // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark) LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0); #endif ggml_backend_buffer_free(lctx.buf_output); lctx.buf_output = nullptr; lctx.logits = nullptr; lctx.embd = nullptr; } lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size); if (lctx.buf_output == nullptr) { LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0)); return 0; } } float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output); lctx.logits = has_logits ? output_base : nullptr; lctx.embd = has_embd ? output_base + logits_size : nullptr; lctx.output_size = n_outputs_max; lctx.logits_size = logits_size; lctx.embd_size = embd_size; // set all ids as invalid (negative) std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1); ggml_backend_buffer_clear(lctx.buf_output, 0); lctx.n_outputs = 0; return n_outputs_max; } static void llama_graph_compute( llama_context & lctx, ggml_cgraph * gf, int n_threads) { #ifdef GGML_USE_MPI const int64_t n_layer = lctx.model.hparams.n_layer; ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer); #endif #ifdef GGML_USE_METAL if (ggml_backend_is_metal(lctx.backend_metal)) { ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads); } #endif if (lctx.backend_cpu != nullptr) { ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads); ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data); } ggml_backend_sched_graph_compute_async(lctx.sched, gf); // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched)); #ifdef GGML_USE_MPI ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer); #endif } // decode a batch of tokens by evaluating the transformer // // - lctx: llama context // - batch: batch to evaluate // // return 0 on success // return positive int on warning // return negative int on error // static int llama_decode_internal( llama_context & lctx, llama_batch batch_all) { // TODO: rename back to batch const uint32_t n_tokens_all = batch_all.n_tokens; if (n_tokens_all == 0) { LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__); return -1; } const auto & model = lctx.model; const auto & hparams = model.hparams; const auto & cparams = lctx.cparams; GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT GGML_ASSERT(n_tokens_all <= cparams.n_batch); GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens"); if (lctx.t_compute_start_us == 0) { lctx.t_compute_start_us = ggml_time_us(); } lctx.n_queued_tokens += n_tokens_all; #ifdef GGML_USE_MPI // TODO: needs fix after #3228 GGML_ASSERT(false && "not implemented"); //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads); #endif auto & kv_self = lctx.kv_self; const int64_t n_embd = hparams.n_embd; const int64_t n_vocab = hparams.n_vocab; uint32_t n_outputs = 0; uint32_t n_outputs_prev = 0; const auto n_ubatch = cparams.n_ubatch; std::vector pos; std::vector n_seq_id; std::vector seq_id_arr; std::vector> seq_id; // count outputs if (batch_all.logits) { for (uint32_t i = 0; i < n_tokens_all; ++i) { n_outputs += batch_all.logits[i] != 0; } } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) { n_outputs = n_tokens_all; } else { // keep last output only n_outputs = 1; } // reserve output buffer if (llama_output_reserve(lctx, n_outputs) < n_outputs) { LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs); return -2; }; // set output mappings if (batch_all.logits) { int32_t i_logits = 0; for (uint32_t i = 0; i < n_tokens_all; ++i) { if (batch_all.logits[i]) { lctx.output_ids[i] = i_logits++; } } } else { for (uint32_t i = 0; i < n_outputs; ++i) { lctx.output_ids[i] = i; } } for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) { const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token); llama_batch u_batch = { /* .n_tokens = */ (int32_t) n_tokens, /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr, /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr, /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr, /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr, /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr, /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr, /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1, /* .all_pos_1 = */ batch_all.all_pos_1, /* .all_seq_id = */ batch_all.all_seq_id, }; // count the outputs in this u_batch { int32_t n_outputs_new = 0; if (u_batch.logits) { for (uint32_t i = 0; i < n_tokens; i++) { n_outputs_new += u_batch.logits[i] != 0; } } else if (n_outputs == n_tokens_all) { n_outputs_new = n_tokens; } else { // keep last output only if (cur_token + n_tokens >= n_tokens_all) { n_outputs_new = 1; } } // needs to happen before the graph is built lctx.n_outputs = n_outputs_new; } int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch; GGML_ASSERT(n_threads > 0); // helpers for smoother batch API transition // after deprecating the llama_eval calls, these will be removed if (u_batch.pos == nullptr) { pos.resize(n_tokens); for (uint32_t i = 0; i < n_tokens; i++) { pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1; } u_batch.pos = pos.data(); } if (u_batch.seq_id == nullptr) { n_seq_id.resize(n_tokens); seq_id.resize(n_tokens); seq_id_arr.resize(n_tokens); for (uint32_t i = 0; i < n_tokens; i++) { n_seq_id[i] = 1; seq_id[i].resize(1); seq_id[i][0] = u_batch.all_seq_id; seq_id_arr[i] = seq_id[i].data(); } u_batch.n_seq_id = n_seq_id.data(); u_batch.seq_id = seq_id_arr.data(); } // non-causal masks do not use the KV cache if (hparams.causal_attn) { llama_kv_cache_update(&lctx); // if we have enough unused cells before the current head -> // better to start searching from the beginning of the cache, hoping to fill it if (kv_self.head > kv_self.used + 2*n_tokens) { kv_self.head = 0; } if (!llama_kv_cache_find_slot(kv_self, u_batch)) { return 1; } if (!kv_self.recurrent) { // a heuristic, to avoid attending the full cache if it is not yet utilized // after enough generations, the benefit from this heuristic disappears // if we start defragmenting the cache, the benefit from this will be more important kv_self.n = std::min(kv_self.size, std::max(32u, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32))); //kv_self.n = llama_kv_cache_cell_max(kv_self); } } //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head); ggml_backend_sched_reset(lctx.sched); ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data); ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false); // the output is always the last tensor in the graph struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1]; struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2]; if (lctx.n_outputs == 0) { // no output res = nullptr; embd = nullptr; } else if (!hparams.causal_attn) { res = nullptr; // do not extract logits for embedding models such as BERT // token or sequence embeddings embd = gf->nodes[gf->n_nodes - 1]; GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0); } else if (cparams.embeddings) { // the embeddings could be in the second to last tensor, or any of the previous tensors int i_embd = gf->n_nodes - 2; for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) { i_embd = gf->n_nodes - i; if (i_embd < 0) { break; } embd = gf->nodes[i_embd]; } GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor"); // TODO: use a per-batch flag to know when to skip logits while keeping embeddings if (!cparams.causal_attn) { res = nullptr; // do not extract logits when not needed // skip computing logits // TODO: is this safe? gf->n_nodes = i_embd + 1; } } else { embd = nullptr; // do not extract embeddings when not needed GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor"); } // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs); // for big prompts, if BLAS is enabled, it is better to use only one thread // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering // with the BLAS calls. need a better solution // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is // being processed then Accelerate/BLAS will not be involved, so capping would limit performance. if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) { n_threads = std::min(4, n_threads); } ggml_backend_sched_alloc_graph(lctx.sched, gf); llama_set_inputs(lctx, u_batch); llama_graph_compute(lctx, gf, n_threads); // update the kv ring buffer { kv_self.head += n_tokens; // Ensure kv cache head points to a valid index. if (kv_self.head >= kv_self.size) { kv_self.head = 0; } } #ifdef GGML_PERF // print timing information per ggml operation (for debugging purposes) // requires GGML_PERF to be defined ggml_graph_print(gf); #endif // plot the computation graph in dot format (for debugging purposes) //if (n_past%100 == 0) { // ggml_graph_dump_dot(gf, NULL, "llama.dot"); //} // extract logits if (res) { ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res); GGML_ASSERT(backend_res != nullptr); GGML_ASSERT(lctx.logits != nullptr); float * logits_out = lctx.logits + n_outputs_prev*n_vocab; const int32_t n_outputs_new = lctx.n_outputs; if (n_outputs_new) { GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs); GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size); ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float)); } } // extract embeddings if (embd) { ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd); GGML_ASSERT(backend_embd != nullptr); switch (cparams.pooling_type) { case LLAMA_POOLING_TYPE_NONE: { // extract token embeddings GGML_ASSERT(lctx.embd != nullptr); float * embd_out = lctx.embd + n_outputs_prev*n_embd; const int32_t n_outputs_new = lctx.n_outputs; if (n_outputs_new) { GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs); GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size); ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float)); } } break; case LLAMA_POOLING_TYPE_CLS: case LLAMA_POOLING_TYPE_MEAN: { GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0); // extract sequence embeddings auto & embd_seq_out = lctx.embd_seq; embd_seq_out.clear(); for (uint32_t i = 0; i < n_tokens; i++) { const llama_seq_id seq_id = u_batch.seq_id[i][0]; if (embd_seq_out.find(seq_id) != embd_seq_out.end()) { continue; } embd_seq_out[seq_id].resize(n_embd); ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float)); } } break; case LLAMA_POOLING_TYPE_UNSPECIFIED: { GGML_ASSERT(false && "unknown pooling type"); } break; } } n_outputs_prev += lctx.n_outputs; } // wait for the computation to finish (automatically done when obtaining the model output) //llama_synchronize(&lctx); // decide if we need to defrag the kv cache if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) { const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f; // queue defragmentation for next llama_kv_cache_update if (fragmentation > cparams.defrag_thold) { //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation); llama_kv_cache_defrag(kv_self); } } return 0; } // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache static void llama_kv_cache_defrag_internal(struct llama_context & lctx) { auto & kv_self = lctx.kv_self; const auto & hparams = lctx.model.hparams; const uint32_t n_layer = hparams.n_layer; const uint32_t n_kv = llama_kv_cache_cell_max(kv_self); const uint32_t n_used = kv_self.used; assert(n_used <= n_kv); //const int64_t t_start = ggml_time_us(); // number of cells moved uint32_t n_moves = 0; // each move requires 6*n_layer tensors (see build_defrag) // - source view, destination view, copy operation // - x2 for keys and values const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer); // determine which KV cells to move where // // cell i moves to ids[i] // // if ids[i] == i || ids[i] == n_kv, then cell i is not moved // std::vector ids(n_kv, n_kv); for (uint32_t i0 = 0; i0 < n_used; ++i0) { const auto & cell0 = kv_self.cells[i0]; if (!cell0.is_empty()) { ids[i0] = i0; continue; } // found a hole - fill it with data from the end of the cache uint32_t nh = 1; // determine the size of the hole while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) { nh++; } uint32_t nf = 0; uint32_t is = n_kv - 1; // starting from the end, find nh non-empty cells for (; is > i0; --is) { const auto & cell1 = kv_self.cells[is]; if (cell1.is_empty() || ids[is] != n_kv) { continue; } // non-empty cell which is not yet moved nf++; if (nf == nh) { break; } } // this can only happen if `n_used` is not accurate, which would be a bug GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh"); nf = 0; uint32_t i1 = is; // are we moving a continuous block of memory? bool cont = false; // should we stop searching for the next move? bool stop = false; // go back and move the nf cells to the hole for (; i1 < n_kv; ++i1) { auto & cell1 = kv_self.cells[i1]; if (cell1.is_empty() || ids[i1] != n_kv) { if (n_moves == max_moves) { stop = true; break; } cont = false; continue; } // this cell goes to (i0 + nf) ids[i1] = i0 + nf; // move the cell meta data kv_self.cells[i0 + nf] = cell1; // clear the old cell and move the head there cell1 = llama_kv_cell(); kv_self.head = n_used; if (!cont) { n_moves++; cont = true; } nf++; if (nf == nh) { break; } } if (stop || n_moves == max_moves) { break; } //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh); i0 += nh - 1; } if (n_moves == 0) { return; } //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves); //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer); #if 0 // CPU defrag // // TODO: optimizations are possible: // - multiple threads // - avoid copying to the host memory when already there // // likely not worth the effort, as we have ggml_graph based defrag // const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(); const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(); const uint32_t kv_size = kv_self.size; std::vector buf_k; std::vector buf_v; for (uint32_t il = 0; il < n_layer; ++il) { const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa); const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size); const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type); const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size); buf_k.resize(k_size); buf_v.resize(v_size); ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size()); ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size()); // batch move [i, i+nm) to [id, id+nm) // note: cells can move only to a lower index for (uint32_t i = 0; i < n_kv; ++i) { const uint32_t id = ids[i]; if (i == id || id == n_kv) { continue; } uint32_t nm = 1; while (i + nm < n_kv && ids[i + nm] == id + nm) { nm++; } // move keys { const int64_t os = i*k_size_row; const int64_t od = id*k_size_row; memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row); } // move values (note: they are transposed) { const int64_t os = i; const int64_t od = id; for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el); } } i += nm - 1; } ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size()); ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size()); } #else // ggml_graph defrag ggml_backend_sched_reset(lctx.sched); ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids); llama_graph_compute(lctx, gf, lctx.cparams.n_threads); #endif //const int64_t t_end = ggml_time_us(); //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0); } static void llama_kv_cache_update_internal(struct llama_context & lctx) { bool need_reserve = false; // apply K-shift if needed if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) { { ggml_backend_sched_reset(lctx.sched); ggml_cgraph * gf = llama_build_graph_k_shift(lctx); ggml_backend_sched_alloc_graph(lctx.sched, gf); llama_set_k_shift(lctx); llama_graph_compute(lctx, gf, lctx.cparams.n_threads); need_reserve = true; } { auto & kv_self = lctx.kv_self; kv_self.has_shift = false; for (uint32_t i = 0; i < kv_self.size; ++i) { kv_self.cells[i].delta = 0; } } } if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) { { ggml_backend_sched_reset(lctx.sched); ggml_cgraph * gf = llama_build_graph_s_copy(lctx); ggml_backend_sched_alloc_graph(lctx.sched, gf); llama_set_s_copy(lctx); llama_graph_compute(lctx, gf, lctx.cparams.n_threads); need_reserve = true; } { auto & kv_self = lctx.kv_self; kv_self.do_copy = false; for (uint32_t i = 0; i < kv_self.size; ++i) { kv_self.cells[i].src = i; } } } // defragment the KV cache if needed if (lctx.kv_self.do_defrag) { llama_kv_cache_defrag_internal(lctx); need_reserve = true; lctx.kv_self.do_defrag = false; } // reserve a worst case graph again if (need_reserve) { // TODO: extract to a function // build worst-case graph int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch); int n_past = lctx.cparams.n_ctx - n_tokens; llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true); // initialize scheduler with the worst-case graph ggml_backend_sched_reset(lctx.sched); if (!ggml_backend_sched_reserve(lctx.sched, gf)) { LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__); } } } // // tokenizer // static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) { return vocab.type; } static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) { GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL; } static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) { GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN; } static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) { GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL; } static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) { GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE; } static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) { GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED; } static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) { GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE); GGML_ASSERT(llama_is_byte_token(vocab, id)); const auto& token_data = vocab.id_to_token.at(id); switch (llama_vocab_get_type(vocab)) { case LLAMA_VOCAB_TYPE_SPM: { auto buf = token_data.text.substr(3, 2); return strtol(buf.c_str(), NULL, 16); } case LLAMA_VOCAB_TYPE_BPE: { GGML_ASSERT(false); return unicode_utf8_to_byte(token_data.text); } case LLAMA_VOCAB_TYPE_WPM: { GGML_ASSERT(false); } default: GGML_ASSERT(false); } } static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) { GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE); static const char * hex = "0123456789ABCDEF"; switch (llama_vocab_get_type(vocab)) { case LLAMA_VOCAB_TYPE_SPM: { const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 }; auto token = vocab.token_to_id.find(buf); if (token != vocab.token_to_id.end()) { return (*token).second; } // Try to fall back to just the byte as a string const char buf2[2] = { (char)ch, 0 }; return vocab.token_to_id.at(buf2); } case LLAMA_VOCAB_TYPE_WPM: case LLAMA_VOCAB_TYPE_BPE: { return vocab.token_to_id.at(unicode_byte_to_utf8(ch)); } default: GGML_ASSERT(false); } } static void llama_escape_whitespace(std::string & text) { replace_all(text, " ", "\xe2\x96\x81"); } static void llama_unescape_whitespace(std::string & word) { replace_all(word, "\xe2\x96\x81", " "); } struct llm_symbol { using index = int; index prev; index next; const char * text; size_t n; }; static_assert(std::is_trivially_copyable::value, "llm_symbol is not trivially copyable"); // SPM tokenizer // original implementation: // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4 struct llm_bigram_spm { struct comparator { bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) { return (l.score < r.score) || (l.score == r.score && l.left > r.left); } }; using queue_storage = std::vector; using queue = std::priority_queue; llm_symbol::index left; llm_symbol::index right; float score; size_t size; }; struct llm_tokenizer_spm { llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {} void tokenize(const std::string & text, std::vector & output) { // split string into utf8 chars int index = 0; size_t offs = 0; while (offs < text.size()) { llm_symbol sym; size_t len = utf8_len(text[offs]); sym.text = text.c_str() + offs; sym.n = std::min(len, text.size() - offs); offs += sym.n; sym.prev = index - 1; sym.next = offs == text.size() ? -1 : index + 1; index++; symbols.emplace_back(sym); } // seed the work queue with all possible 2-character tokens. for (size_t i = 1; i < symbols.size(); ++i) { try_add_bigram(i - 1, i); } // keep substituting the highest frequency pairs for as long as we can. while (!work_queue.empty()) { auto bigram = work_queue.top(); work_queue.pop(); auto & left_sym = symbols[bigram.left]; auto & right_sym = symbols[bigram.right]; // if one of the symbols already got merged, skip it. if (left_sym.n == 0 || right_sym.n == 0 || left_sym.n + right_sym.n != bigram.size) { continue; } // merge the right sym into the left one left_sym.n += right_sym.n; right_sym.n = 0; //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size); // remove the right sym from the chain left_sym.next = right_sym.next; if (right_sym.next >= 0) { symbols[right_sym.next].prev = bigram.left; } // find more substitutions try_add_bigram(left_sym.prev, bigram.left); try_add_bigram(bigram.left, left_sym.next); } for (int i = 0; i != -1; i = symbols[i].next) { auto & symbol = symbols[i]; resegment(symbol, output); } } private: void resegment(llm_symbol & symbol, std::vector & output) { auto text = std::string(symbol.text, symbol.n); auto token = vocab.token_to_id.find(text); // Do we need to support is_unused? if (token != vocab.token_to_id.end()) { output.push_back((*token).second); return; } const auto p = rev_merge.find(text); if (p == rev_merge.end()) { // output any symbols that did not form tokens as bytes. output.reserve(output.size() + symbol.n); for (int j = 0; j < (int)symbol.n; ++j) { llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]); output.push_back(token_id); } return; } resegment(symbols[p->second.first], output); resegment(symbols[p->second.second], output); } void try_add_bigram(int left, int right) { if (left == -1 || right == -1) { return; } const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n); auto token = vocab.token_to_id.find(text); if (token == vocab.token_to_id.end()) { return; } if (static_cast((*token).second) >= vocab.id_to_token.size()) { return; } const auto & tok_data = vocab.id_to_token[(*token).second]; llm_bigram_spm bigram; bigram.left = left; bigram.right = right; bigram.score = tok_data.score; bigram.size = text.size(); work_queue.push(bigram); // Do we need to support is_unused? rev_merge[text] = std::make_pair(left, right); } const llama_vocab & vocab; std::vector symbols; llm_bigram_spm::queue work_queue; std::map> rev_merge; }; // BPE tokenizer // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License] // tried to simplify unicode stuff, so most likely does not work 100% correctly! // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused struct llm_bigram_bpe { struct comparator { bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const { return l.rank > r.rank || (l.rank == r.rank && l.left > r.left); } }; using queue_storage = std::vector; using queue = std::priority_queue; llm_symbol::index left; llm_symbol::index right; std::string text; int rank; size_t size; }; struct llm_tokenizer_bpe { llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {} void tokenize(const std::string & text, std::vector & output) { int final_prev_index = -1; auto word_collection = bpe_gpt2_preprocess(text); symbols_final.clear(); for (auto & word : word_collection) { work_queue = llm_bigram_bpe::queue(); symbols.clear(); int index = 0; size_t offset = 0; while (offset < word.size()) { llm_symbol sym; size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset])); sym.text = word.c_str() + offset; sym.n = char_len; offset += sym.n; sym.prev = index - 1; sym.next = offset == word.size() ? -1 : index + 1; index++; symbols.emplace_back(sym); } for (size_t i = 1; i < symbols.size(); ++i) { add_new_bigram(i - 1, i); } // build token(s) while (!work_queue.empty()) { auto bigram = work_queue.top(); work_queue.pop(); auto & left_symbol = symbols[bigram.left]; auto & right_symbol = symbols[bigram.right]; if (left_symbol.n == 0 || right_symbol.n == 0) { continue; } std::string left_token = std::string(left_symbol.text, left_symbol.n); std::string right_token = std::string(right_symbol.text, right_symbol.n); if (left_token + right_token != bigram.text) { continue; // Skip this bigram if it's outdated } // merge the right sym into the left one left_symbol.n += right_symbol.n; right_symbol.n = 0; // remove the right sym from the chain left_symbol.next = right_symbol.next; if (right_symbol.next >= 0) { symbols[right_symbol.next].prev = bigram.left; } add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol } // add the fnished tokens to the final list keeping correct order for next and prev for (auto & sym : symbols) { if (sym.n > 0) { sym.prev = final_prev_index; sym.next = -1; if (final_prev_index != -1) { symbols_final[final_prev_index].next = symbols_final.size(); } symbols_final.emplace_back(sym); final_prev_index = symbols_final.size() - 1; } } } symbols = symbols_final; if (!symbols.empty()) { for (int i = 0; i != -1; i = symbols[i].next) { auto & symbol = symbols[i]; if (symbol.n == 0) { continue; } const std::string str = std::string(symbol.text, symbol.n); const auto token = vocab.token_to_id.find(str); if (token == vocab.token_to_id.end()) { for (auto j = str.begin(); j != str.end(); ++j) { std::string byte_str(1, *j); auto token_multibyte = vocab.token_to_id.find(byte_str); if (token_multibyte == vocab.token_to_id.end()) { throw std::runtime_error("ERROR: byte not found in vocab"); } output.push_back((*token_multibyte).second); } } else { output.push_back((*token).second); } } } } private: void add_new_bigram(int left, int right) { if (left == -1 || right == -1) { return; } std::string left_token = std::string(symbols[left].text, symbols[left].n); std::string right_token = std::string(symbols[right].text, symbols[right].n); int rank_found = -1; rank_found = vocab.find_bpe_rank(left_token, right_token); if (rank_found < 0) { return; } llm_bigram_bpe bigram; bigram.left = left; bigram.right = right; bigram.text = left_token + right_token; bigram.size = left_token.size() + right_token.size(); bigram.rank = rank_found; work_queue.push(bigram); } std::vector bpe_gpt2_preprocess(const std::string & text) { std::vector bpe_words; std::vector bpe_encoded_words; std::string token = ""; // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+ bool collecting_numeric = false; bool collecting_letter = false; bool collecting_special = false; bool collecting_whitespace_lookahead = false; bool collecting = false; std::vector text_utf; text_utf.reserve(text.size()); bpe_words.reserve(text.size()); bpe_encoded_words.reserve(text.size()); const auto cpts = unicode_cpts_from_utf8(text); for (size_t i = 0; i < cpts.size(); ++i) text_utf.emplace_back(unicode_cpt_to_utf8(cpts[i])); for (int i = 0; i < (int)text_utf.size(); i++) { const std::string & utf_char = text_utf[i]; bool split_condition = false; int bytes_remain = text_utf.size() - i; // forward backward lookups const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : ""; const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : ""; // handling contractions if (!split_condition && bytes_remain >= 2) { // 's|'t|'m|'d if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) { split_condition = true; } if (split_condition) { if (token.size()) { bpe_words.emplace_back(token); // push previous content as token } token = utf_char + utf_char_next; bpe_words.emplace_back(token); token = ""; i++; continue; } } if (!split_condition && bytes_remain >= 3) { // 're|'ve|'ll if (utf_char == "\'" && ( (utf_char_next == "r" && utf_char_next_next == "e") || (utf_char_next == "v" && utf_char_next_next == "e") || (utf_char_next == "l" && utf_char_next_next == "l")) ) { split_condition = true; } if (split_condition) { // current token + next token can be defined if (token.size()) { bpe_words.emplace_back(token); // push previous content as token } token = utf_char + utf_char_next + utf_char_next_next; bpe_words.emplace_back(token); // the contraction token = ""; i += 2; continue; } } if (!split_condition && !collecting) { if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) { collecting_letter = true; collecting = true; } else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) { collecting_numeric = true; collecting = true; } else if ( ((unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) && (unicode_cpt_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_DIGIT && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE) ) { collecting_special = true; collecting = true; } else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) { collecting_whitespace_lookahead = true; collecting = true; } else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) { split_condition = true; } } else if (!split_condition && collecting) { if (collecting_letter && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER) { split_condition = true; } else if (collecting_numeric && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) { split_condition = true; } else if (collecting_special && (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) { split_condition = true; } else if (collecting_whitespace_lookahead && (unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) { split_condition = true; } } if (utf_char_next == "") { split_condition = true; // final token += utf_char; } if (split_condition) { if (token.size()) { bpe_words.emplace_back(token); } token = utf_char; collecting = false; collecting_letter = false; collecting_numeric = false; collecting_special = false; collecting_whitespace_lookahead = false; } else { token += utf_char; } } for (std::string & word : bpe_words) { std::string encoded_token = ""; for (char & c : word) { encoded_token += unicode_byte_to_utf8(c); } bpe_encoded_words.emplace_back(encoded_token); } return bpe_encoded_words; } const llama_vocab & vocab; std::vector symbols; std::vector symbols_final; llm_bigram_bpe::queue work_queue; }; struct llm_tokenizer_wpm { llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {} void tokenize(const std::string & text, std::vector & output) { auto * token_map = &vocab.token_to_id; // normalize and split by whitespace std::vector words = preprocess(text); // bos token prepended already // find the longest tokens that form the words for (const std::string &word : words) { // skip empty words if (word.size() == 0) { continue; } // prepend phantom space std::string word1 = "\xe2\x96\x81" + word; int n = word1.size(); // we're at the start of a new word int i = 0; bool match_any = false; // move through character position in word while (i < n) { // loop through possible match length bool match = false; for (int j = n; j > i; j--) { auto it = token_map->find(word1.substr(i, j - i)); if (it != token_map->end()) { output.push_back(it->second); match = true; match_any = true; i = j; break; } } // must be an unknown character if (!match) { i++; } } // we didn't find any matches for this word if (!match_any) { output.push_back(vocab.special_unk_id); } } // append eos token output.push_back(vocab.special_eos_id); } std::vector preprocess(const std::string & text) { std::vector cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text)); // strip accents, strip control, uniformize whitespace, // to lowercase, pad chinese characters, pad punctuation std::string new_str = ""; for (uint32_t code : cpts_nfd) { int type = unicode_cpt_type(code); if (type == CODEPOINT_TYPE_ACCENT_MARK || type == CODEPOINT_TYPE_CONTROL) { continue; } code = unicode_tolower(code); if (type == CODEPOINT_TYPE_WHITESPACE) { code = ' '; } std::string s = unicode_cpt_to_utf8(code); if (type == CODEPOINT_TYPE_PUNCTUATION || is_ascii_punct(code) || is_chinese_char(code)) { new_str += " "; new_str += s; new_str += " "; } else { new_str += s; } } // split by whitespace uint64_t l = 0; uint64_t r = 0; std::vector words; while (r < new_str.size()) { // if is whitespace if (isspace(new_str[r], std::locale::classic())) { if (r > l) words.push_back(new_str.substr(l, (r - l))); l = r + 1; r = l; } else { r += 1; } } if (r > l) { words.push_back(new_str.substr(l, (r - l))); } return words; } bool is_ascii_punct(uint32_t code) { if (code > 0xFF) { return false; } auto c = char(static_cast(code)); return ispunct(c, std::locale::classic()); } bool is_chinese_char(uint32_t cpt) { if ((cpt >= 0x4E00 && cpt <= 0x9FFF) || (cpt >= 0x3400 && cpt <= 0x4DBF) || (cpt >= 0x20000 && cpt <= 0x2A6DF) || (cpt >= 0x2A700 && cpt <= 0x2B73F) || (cpt >= 0x2B740 && cpt <= 0x2B81F) || (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920 (cpt >= 0xF900 && cpt <= 0xFAFF) || (cpt >= 0x2F800 && cpt <= 0x2FA1F) || (cpt >= 0x3000 && cpt <= 0x303F) || (cpt >= 0xFF00 && cpt <= 0xFFEF)) { return true; // NOLINT } return false; } const llama_vocab & vocab; }; typedef enum FRAGMENT_BUFFER_VARIANT_TYPE { FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN, FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT } FRAGMENT_BUFFER_VARIANT_TYPE; struct fragment_buffer_variant { fragment_buffer_variant(llama_vocab::id _token) : type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN), token(_token), raw_text(_dummy), offset(0), length(0) {} fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length) : type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT), token((llama_vocab::id) - 1), raw_text(_raw_text), offset(_offset), length(_length){ GGML_ASSERT(_offset >= 0); GGML_ASSERT(_length >= 1); GGML_ASSERT(offset + length <= raw_text.length()); } const FRAGMENT_BUFFER_VARIANT_TYPE type; const llama_vocab::id token; const std::string _dummy; const std::string & raw_text; const uint64_t offset; const uint64_t length; }; // #define PRETOKENIZERDEBUG static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list & buffer) { // for each special token for (const auto & st: vocab.special_tokens_cache) { const auto & special_token = st.first; const auto & special_id = st.second; // for each text fragment std::forward_list::iterator it = buffer.begin(); while (it != buffer.end()) { auto & fragment = (*it); // if a fragment is text ( not yet processed ) if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { auto * raw_text = &(fragment.raw_text); auto raw_text_base_offset = fragment.offset; auto raw_text_base_length = fragment.length; // loop over the text while (true) { // find the first occurrence of a given special token in this fragment // passing offset argument only limit the "search area" but match coordinates // are still relative to the source full raw_text auto match = raw_text->find(special_token, raw_text_base_offset); // no occurrences found, stop processing this fragment for a given special token if (match == std::string::npos) break; // check if match is within bounds of offset <-> length if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break; #ifdef PRETOKENIZERDEBUG LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); #endif auto source = std::distance(buffer.begin(), it); // if match is further than base offset // then we have some text to the left of it if (match > raw_text_base_offset) { // left const int64_t left_reminder_offset = raw_text_base_offset + 0; const int64_t left_reminder_length = match - raw_text_base_offset; buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length); #ifdef PRETOKENIZERDEBUG LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str()); #endif it++; } // special token buffer.emplace_after(it, special_id); it++; // right if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) { const int64_t right_reminder_offset = match + special_token.length(); const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length()); buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length); #ifdef PRETOKENIZERDEBUG LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str()); #endif it++; if (source == 0) { buffer.erase_after(buffer.before_begin()); } else { buffer.erase_after(std::next(buffer.begin(), (source-1))); } // repeat for the right side raw_text_base_offset = right_reminder_offset; raw_text_base_length = right_reminder_length; #ifdef PRETOKENIZERDEBUG LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); #endif } else { if (source == 0) { buffer.erase_after(buffer.before_begin()); } else { buffer.erase_after(std::next(buffer.begin(), (source-1))); } break; } } } it++; } } } static std::vector llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special) { std::vector output; // OG tokenizer behavior: // // tokenizer.encode('', add_bos=True) returns [1] // tokenizer.encode('', add_bos=False) returns [] if (bos && vocab.special_bos_id != -1) { output.push_back(vocab.special_bos_id); } if (raw_text.empty()) { return output; } std::forward_list fragment_buffer; fragment_buffer.emplace_front(raw_text, 0, raw_text.length()); if (special) tokenizer_st_partition(vocab, fragment_buffer); switch (vocab.type) { case LLAMA_VOCAB_TYPE_SPM: { for (const auto & fragment : fragment_buffer) { if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { // without adding this leading whitespace, we do not get the same results as the original tokenizer // TODO: It's likely possible to get rid of this string copy entirely // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer // and passing 'add space prefix' as bool argument // auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); if (&fragment == &fragment_buffer.front()) { if (vocab.add_space_prefix) { raw_text = " " + raw_text; // prefix with space if the first token is not special } } #ifdef PRETOKENIZERDEBUG LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); #endif llm_tokenizer_spm tokenizer(vocab); llama_escape_whitespace(raw_text); tokenizer.tokenize(raw_text, output); } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) output.push_back(fragment.token); } } } break; case LLAMA_VOCAB_TYPE_BPE: { for (const auto & fragment : fragment_buffer) { if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); #ifdef PRETOKENIZERDEBUG LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); #endif llm_tokenizer_bpe tokenizer(vocab); tokenizer.tokenize(raw_text, output); } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) output.push_back(fragment.token); } } } break; case LLAMA_VOCAB_TYPE_WPM: { for (const auto & fragment : fragment_buffer) { if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); #ifdef PRETOKENIZERDEBUG LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); #endif llm_tokenizer_wpm tokenizer(vocab); tokenizer.tokenize(raw_text, output); } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) output.push_back(fragment.token); } } } break; case LLAMA_VOCAB_TYPE_NONE: GGML_ASSERT(false); } return output; } // // grammar - internal // // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`. std::pair, llama_partial_utf8> decode_utf8( const std::string & src, llama_partial_utf8 partial_start) { static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 }; const char * pos = src.c_str(); std::vector code_points; // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0. code_points.reserve(src.size() + 1); uint32_t value = partial_start.value; int n_remain = partial_start.n_remain; // continue previous decode, if applicable while (*pos != 0 && n_remain > 0) { uint8_t next_byte = static_cast(*pos); if ((next_byte >> 6) != 2) { // invalid sequence, abort code_points.push_back(0); return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 }); } value = (value << 6) + (next_byte & 0x3F); ++pos; --n_remain; } if (partial_start.n_remain > 0 && n_remain == 0) { code_points.push_back(value); } // decode any subsequent utf-8 sequences, which may end in an incomplete one while (*pos != 0) { uint8_t first_byte = static_cast(*pos); uint8_t highbits = first_byte >> 4; n_remain = lookup[highbits] - 1; if (n_remain < 0) { // invalid sequence, abort code_points.clear(); code_points.push_back(0); return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain }); } uint8_t mask = (1 << (7 - n_remain)) - 1; value = first_byte & mask; ++pos; while (*pos != 0 && n_remain > 0) { value = (value << 6) + (static_cast(*pos) & 0x3F); ++pos; --n_remain; } if (n_remain == 0) { code_points.push_back(value); } } code_points.push_back(0); return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain }); } // returns true iff pos points to the end of one of the definitions of a rule static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) { switch (pos->type) { case LLAMA_GRETYPE_END: return true; // NOLINT case LLAMA_GRETYPE_ALT: return true; // NOLINT default: return false; } } // returns true iff chr satisfies the char range at pos (regular or inverse range) // asserts that pos is pointing to a char range element static std::pair llama_grammar_match_char( const llama_grammar_element * pos, const uint32_t chr) { bool found = false; bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR; GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT do { if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) { // inclusive range, e.g. [a-z] found = found || (pos->value <= chr && chr <= pos[1].value); pos += 2; } else { // exact char match, e.g. [a] or "a" found = found || pos->value == chr; pos += 1; } } while (pos->type == LLAMA_GRETYPE_CHAR_ALT); return std::make_pair(found == is_positive_char, pos); } // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char // range at pos (regular or inverse range) // asserts that pos is pointing to a char range element static bool llama_grammar_match_partial_char( const llama_grammar_element * pos, const llama_partial_utf8 partial_utf8) { bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR; GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); uint32_t partial_value = partial_utf8.value; int n_remain = partial_utf8.n_remain; // invalid sequence or 7-bit char split across 2 bytes (overlong) if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) { return false; } // range of possible code points this partial UTF-8 sequence could complete to uint32_t low = partial_value << (n_remain * 6); uint32_t high = low | ((1 << (n_remain * 6)) - 1); if (low == 0) { if (n_remain == 2) { low = 1 << 11; } else if (n_remain == 3) { low = 1 << 16; } } do { if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) { // inclusive range, e.g. [a-z] if (pos->value <= high && low <= pos[1].value) { return is_positive_char; } pos += 2; } else { // exact char match, e.g. [a] or "a" if (low <= pos->value && pos->value <= high) { return is_positive_char; } pos += 1; } } while (pos->type == LLAMA_GRETYPE_CHAR_ALT); return !is_positive_char; } // transforms a grammar pushdown stack into N possible stacks, all ending // at a character range (terminal element) static void llama_grammar_advance_stack( const std::vector> & rules, const std::vector & stack, std::vector> & new_stacks) { if (stack.empty()) { new_stacks.emplace_back(stack); return; } const llama_grammar_element * pos = stack.back(); switch (pos->type) { case LLAMA_GRETYPE_RULE_REF: { const size_t rule_id = static_cast(pos->value); const llama_grammar_element * subpos = rules[rule_id].data(); do { // init new stack without the top (pos) std::vector new_stack(stack.begin(), stack.end() - 1); if (!llama_grammar_is_end_of_sequence(pos + 1)) { // if this rule ref is followed by another element, add that to stack new_stack.push_back(pos + 1); } if (!llama_grammar_is_end_of_sequence(subpos)) { // if alternate is nonempty, add to stack new_stack.push_back(subpos); } llama_grammar_advance_stack(rules, new_stack, new_stacks); while (!llama_grammar_is_end_of_sequence(subpos)) { // scan to end of alternate def subpos++; } if (subpos->type == LLAMA_GRETYPE_ALT) { // there's another alternate def of this rule to process subpos++; } else { break; } } while (true); break; } case LLAMA_GRETYPE_CHAR: case LLAMA_GRETYPE_CHAR_NOT: new_stacks.emplace_back(stack); break; default: // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on // those GGML_ASSERT(false); } } // takes a set of possible pushdown stacks on a grammar, which are required to // be positioned at a character range (see `llama_grammar_advance_stack`), and // produces the N possible stacks if the given char is accepted at those // positions std::vector> llama_grammar_accept( const std::vector> & rules, const std::vector> & stacks, const uint32_t chr) { std::vector> new_stacks; for (const auto & stack : stacks) { if (stack.empty()) { continue; } auto match = llama_grammar_match_char(stack.back(), chr); if (match.first) { const llama_grammar_element * pos = match.second; // update top of stack to next element, if any std::vector new_stack(stack.begin(), stack.end() - 1); if (!llama_grammar_is_end_of_sequence(pos)) { new_stack.push_back(pos); } llama_grammar_advance_stack(rules, new_stack, new_stacks); } } return new_stacks; } static std::vector llama_grammar_reject_candidates( const std::vector> & rules, const std::vector> & stacks, const std::vector & candidates); static std::vector llama_grammar_reject_candidates_for_stack( const std::vector> & rules, const std::vector & stack, const std::vector & candidates) { std::vector rejects; if (stack.empty()) { for (const auto & tok : candidates) { if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) { rejects.push_back(tok); } } return rejects; } const llama_grammar_element * stack_pos = stack.back(); std::vector next_candidates; for (const auto & tok : candidates) { if (*tok.code_points == 0) { // reached end of full codepoints in token, reject iff it ended in a partial sequence // that cannot satisfy this position in grammar if (tok.partial_utf8.n_remain != 0 && !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) { rejects.push_back(tok); } } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) { next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 }); } else { rejects.push_back(tok); } } const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second; // update top of stack to next element, if any std::vector stack_after(stack.begin(), stack.end() - 1); if (!llama_grammar_is_end_of_sequence(stack_pos_after)) { stack_after.push_back(stack_pos_after); } std::vector> next_stacks; llama_grammar_advance_stack(rules, stack_after, next_stacks); auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates); for (const auto & tok : next_rejects) { rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 }); } return rejects; } static std::vector llama_grammar_reject_candidates( const std::vector> & rules, const std::vector> & stacks, const std::vector & candidates) { GGML_ASSERT(!stacks.empty()); // REVIEW if (candidates.empty()) { return std::vector(); } auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates); for (size_t i = 1, size = stacks.size(); i < size; ++i) { rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects); } return rejects; } // // grammar - external // struct llama_grammar * llama_grammar_init( const llama_grammar_element ** rules, size_t n_rules, size_t start_rule_index) { const llama_grammar_element * pos; // copy rule definitions into vectors std::vector> vec_rules(n_rules); for (size_t i = 0; i < n_rules; i++) { for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) { vec_rules[i].push_back(*pos); } vec_rules[i].push_back({LLAMA_GRETYPE_END, 0}); } // loop over alternates of start rule to build initial stacks std::vector> stacks; pos = vec_rules[start_rule_index].data(); do { std::vector stack; if (!llama_grammar_is_end_of_sequence(pos)) { // if alternate is nonempty, add to stack stack.push_back(pos); } llama_grammar_advance_stack(vec_rules, stack, stacks); while (!llama_grammar_is_end_of_sequence(pos)) { // scan to end of alternate def pos++; } if (pos->type == LLAMA_GRETYPE_ALT) { // there's another alternate def of this rule to process pos++; } else { break; } } while (true); return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} }; } void llama_grammar_free(struct llama_grammar * grammar) { delete grammar; } struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) { llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 }; // redirect elements in stacks to point to new rules for (size_t is = 0; is < result->stacks.size(); is++) { for (size_t ie = 0; ie < result->stacks[is].size(); ie++) { for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) { for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) { if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) { result->stacks[is][ie] = &result->rules[ir0][ir1]; } } } } } return result; } // // sampling // void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) { if (seed == LLAMA_DEFAULT_SEED) { seed = time(NULL); } ctx->rng.seed(seed); } void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) { GGML_ASSERT(candidates->size > 0); const int64_t t_start_sample_us = ggml_time_us(); // Sort the logits in descending order if (!candidates->sorted) { std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }); candidates->sorted = true; } float max_l = candidates->data[0].logit; float cum_sum = 0.0f; for (size_t i = 0; i < candidates->size; ++i) { float p = expf(candidates->data[i].logit - max_l); candidates->data[i].p = p; cum_sum += p; } for (size_t i = 0; i < candidates->size; ++i) { candidates->data[i].p /= cum_sum; } if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) { // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast // if (k >= (int32_t)candidates->size) { // return; // } const int64_t t_start_sample_us = ggml_time_us(); if (k <= 0) { k = candidates->size; } k = std::max(k, (int) min_keep); k = std::min(k, (int) candidates->size); // Sort scores in descending order if (!candidates->sorted) { auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }; if (k <= 128) { std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp); } else { constexpr int nbuckets = 128; constexpr float bucket_low = -10.0f; constexpr float bucket_high = 10.0f; constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low); constexpr float bucker_inter = -bucket_low * bucket_scale; std::vector bucket_idx(candidates->size); std::vector histo(nbuckets, 0); for (int i = 0; i < (int)candidates->size; ++i) { const float val = candidates->data[i].logit; int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low); ib = std::max(0, std::min(nbuckets-1, ib)); bucket_idx[i] = ib; ++histo[ib]; } int nhave = 0; int ib = nbuckets - 1; for ( ; ib >= 0; --ib) { nhave += histo[ib]; if (nhave >= k) break; } std::vector tmp_tokens(nhave); auto ptr = tmp_tokens.data(); std::vector bucket_ptrs; bucket_ptrs.reserve(nbuckets - ib); for (int j = nbuckets - 1; j >= ib; --j) { bucket_ptrs.push_back(ptr); ptr += histo[j]; } for (int i = 0; i < (int)candidates->size; ++i) { int j = bucket_idx[i]; if (j >= ib) { *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i]; } } ptr = tmp_tokens.data(); int ndone = 0; for (int j = nbuckets-1; j > ib; --j) { std::sort(ptr, ptr + histo[j], comp); ptr += histo[j]; ndone += histo[j]; } std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp); std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data)); } candidates->sorted = true; } candidates->size = k; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) { if (p >= 1.0f) { return; } llama_sample_softmax(ctx, candidates); const int64_t t_start_sample_us = ggml_time_us(); // Compute the cumulative probabilities float cum_sum = 0.0f; size_t last_idx = candidates->size; for (size_t i = 0; i < candidates->size; ++i) { cum_sum += candidates->data[i].p; // Check if the running sum is at least p or if we have kept at least min_keep tokens // we set the last index to i+1 to indicate that the current iterate should be included in the set if (cum_sum >= p && i + 1 >= min_keep) { last_idx = i + 1; break; } } // Resize the output vector to keep only the top-p tokens candidates->size = last_idx; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) { if (p <= 0.0f || !candidates->size) { return; } const int64_t t_start_sample_us = ggml_time_us(); bool min_p_applied = false; // if the candidates aren't sorted, try the unsorted implementation first if (!candidates->sorted) { std::vector filtered_tokens; float max_logit = -FLT_MAX; for (size_t i = 0; i < candidates->size; ++i) { max_logit = std::max(max_logit, candidates->data[i].logit); } const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max for (size_t i = 0; i < candidates->size; ++i) { if (candidates->data[i].logit >= min_logit) { filtered_tokens.push_back(candidates->data[i]); } } // if we have enough values the operation was a success if (filtered_tokens.size() >= min_keep) { memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data)); candidates->size = filtered_tokens.size(); min_p_applied = true; } } // if the candidates are sorted or the unsorted implementation failed, use this implementation if (!min_p_applied) { // Sort the logits in descending order if (!candidates->sorted) { std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }); candidates->sorted = true; } const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max size_t i = 1; // first token always matches for (; i < candidates->size; ++i) { if (candidates->data[i].logit < min_logit && i >= min_keep) { break; // prob too small } } // Resize the output vector to keep only the matching tokens candidates->size = i; } if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) { if (z >= 1.0f || candidates->size <= 2) { return; } llama_sample_softmax(nullptr, candidates); const int64_t t_start_sample_us = ggml_time_us(); // Compute the first and second derivatives std::vector first_derivatives(candidates->size - 1); std::vector second_derivatives(candidates->size - 2); for (size_t i = 0; i < first_derivatives.size(); ++i) { first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p; } for (size_t i = 0; i < second_derivatives.size(); ++i) { second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1]; } // Calculate absolute value of second derivatives for (size_t i = 0; i < second_derivatives.size(); ++i) { second_derivatives[i] = std::abs(second_derivatives[i]); } // Normalize the second derivatives { const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f); if (second_derivatives_sum > 1e-6f) { for (float & value : second_derivatives) { value /= second_derivatives_sum; } } else { for (float & value : second_derivatives) { value = 1.0f / second_derivatives.size(); } } } float cum_sum = 0.0f; size_t last_idx = candidates->size; for (size_t i = 0; i < second_derivatives.size(); ++i) { cum_sum += second_derivatives[i]; // Check if the running sum is greater than z or if we have kept at least min_keep tokens if (cum_sum > z && i >= min_keep) { last_idx = i; break; } } // Resize the output vector to keep only the tokens above the tail location candidates->size = last_idx; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) { // Reference implementation: // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr if (p >= 1.0f) { return; } // Compute the softmax of logits and calculate entropy llama_sample_softmax(nullptr, candidates); const int64_t t_start_sample_us = ggml_time_us(); float entropy = 0.0f; for (size_t i = 0; i < candidates->size; ++i) { entropy += -candidates->data[i].p * logf(candidates->data[i].p); } // Compute the absolute difference between negative log probability and entropy for each candidate std::vector shifted_scores; for (size_t i = 0; i < candidates->size; ++i) { float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy); shifted_scores.push_back(shifted_score); } // Sort tokens based on the shifted_scores and their corresponding indices std::vector indices(candidates->size); std::iota(indices.begin(), indices.end(), 0); std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) { return shifted_scores[a] < shifted_scores[b]; }); // Compute the cumulative probabilities float cum_sum = 0.0f; size_t last_idx = indices.size(); for (size_t i = 0; i < indices.size(); ++i) { size_t idx = indices[i]; cum_sum += candidates->data[idx].p; // Check if the running sum is greater than typical or if we have kept at least min_keep tokens if (cum_sum > p && i >= min_keep - 1) { last_idx = i + 1; break; } } // Resize the output vector to keep only the locally typical tokens std::vector new_candidates; for (size_t i = 0; i < last_idx; ++i) { size_t idx = indices[i]; new_candidates.push_back(candidates->data[idx]); } // Replace the data in candidates with the new_candidates data std::copy(new_candidates.begin(), new_candidates.end(), candidates->data); candidates->size = new_candidates.size(); candidates->sorted = false; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) { const int64_t t_start_sample_us = ggml_time_us(); // no need to do anything if there is only one (or zero) candidates if(candidates_p->size <= 1) { return; } // Calculate maximum possible entropy float max_entropy = -logf(1.0f / candidates_p->size); llama_sample_softmax(nullptr, candidates_p); // Calculate entropy of the softmax probabilities float entropy = 0.0f; for (size_t i = 0; i < candidates_p->size; ++i) { float prob = candidates_p->data[i].p; if (prob > 0.0f) { // Ensure no log(0) entropy -= prob * logf(prob); } } // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above) float normalized_entropy = entropy / max_entropy; // Map the normalized entropy to the desired temperature range using the power function float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val); #ifdef DEBUG LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp); LLAMA_LOG_INFO("Entropy: %f\n", entropy); LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy); LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy); LLAMA_LOG_INFO("Exponent: %f\n", exponent_val); LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp); #endif // Apply the dynamically calculated temperature scaling for (size_t i = 0; i < candidates_p->size; ++i) { candidates_p->data[i].logit /= dyn_temp; } // Re-compute softmax probabilities after scaling logits with dynamic temperature double max_l_double = candidates_p->data[0].logit; double cum_sum_double = 0.0; for (size_t i = 0; i < candidates_p->size; ++i) { double p = exp(candidates_p->data[i].logit - max_l_double); candidates_p->data[i].p = p; // Store the scaled probability cum_sum_double += p; } for (size_t i = 0; i < candidates_p->size; ++i) { candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities } #ifdef DEBUG // Print the updated top 25 probabilities after temperature scaling LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n"); for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) { LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f); } #endif if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) { const int64_t t_start_sample_us = ggml_time_us(); for (size_t i = 0; i < candidates_p->size; ++i) { candidates_p->data[i].logit /= temp; } if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_repetition_penalties( struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t penalty_last_n, float penalty_repeat, float penalty_freq, float penalty_present) { if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) { return; } const int64_t t_start_sample_us = ggml_time_us(); // Create a frequency map to count occurrences of each token in last_tokens std::unordered_map token_count; for (size_t i = 0; i < penalty_last_n; ++i) { token_count[last_tokens[i]]++; } // Apply frequency and presence penalties to the candidates for (size_t i = 0; i < candidates->size; ++i) { const auto token_iter = token_count.find(candidates->data[i].id); if (token_iter == token_count.end()) { continue; } const int count = token_iter->second; // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong. // This is common fix for this problem, which is to multiply by the penalty instead of dividing. if (candidates->data[i].logit <= 0) { candidates->data[i].logit *= penalty_repeat; } else { candidates->data[i].logit /= penalty_repeat; } candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present; } candidates->sorted = false; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) { GGML_ASSERT(ctx); const int64_t t_start_sample_us = ggml_time_us(); bool allow_eos = false; for (const auto & stack : grammar->stacks) { if (stack.empty()) { allow_eos = true; break; } } const llama_token eos = llama_token_eos(&ctx->model); std::vector, llama_partial_utf8>> candidates_decoded; candidates_decoded.reserve(candidates->size); std::vector candidates_grammar; candidates_grammar.reserve(candidates->size); for (size_t i = 0; i < candidates->size; ++i) { const llama_token id = candidates->data[i].id; const std::string piece = llama_token_to_piece(ctx, id); if (id == eos) { if (!allow_eos) { candidates->data[i].logit = -INFINITY; } } else if (piece.empty() || piece[0] == 0) { candidates->data[i].logit = -INFINITY; } else { candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8)); candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second }); } } const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar); for (const auto & reject : rejects) { candidates->data[reject.index].logit = -INFINITY; } ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } static void llama_log_softmax(float * array, size_t size) { float max_l = *std::max_element(array, array + size); float sum = 0.f; for (size_t i = 0; i < size; ++i) { float p = expf(array[i] - max_l); sum += p; array[i] = p; } for (size_t i = 0; i < size; ++i) { array[i] = logf(array[i] / sum); } } void llama_sample_apply_guidance( struct llama_context * ctx, float * logits, float * logits_guidance, float scale) { GGML_ASSERT(ctx); const auto t_start_sample_us = ggml_time_us(); const auto n_vocab = llama_n_vocab(llama_get_model(ctx)); llama_log_softmax(logits, n_vocab); llama_log_softmax(logits_guidance, n_vocab); for (int i = 0; i < n_vocab; ++i) { auto & l = logits[i]; const auto & g = logits_guidance[i]; l = scale * (l - g) + g; } ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) { GGML_ASSERT(ctx); auto N = float(llama_n_vocab(llama_get_model(ctx))); int64_t t_start_sample_us; t_start_sample_us = ggml_time_us(); llama_sample_softmax(nullptr, candidates); // Estimate s_hat using the most probable m tokens float s_hat = 0.0; float sum_ti_bi = 0.0; float sum_ti_sq = 0.0; for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) { float t_i = logf(float(i + 2) / float(i + 1)); float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p); sum_ti_bi += t_i * b_i; sum_ti_sq += t_i * t_i; } s_hat = sum_ti_bi / sum_ti_sq; // Compute k from the estimated s_hat and target surprise value float epsilon_hat = s_hat - 1; float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat); // Sample the next word X using top-k sampling llama_sample_top_k(nullptr, candidates, int(k), 1); if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } llama_token X = llama_sample_token(ctx, candidates); t_start_sample_us = ggml_time_us(); // Compute error as the difference between observed surprise and target surprise value size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { return candidate.id == X; })); float observed_surprise = -log2f(candidates->data[X_idx].p); float e = observed_surprise - tau; // Update mu using the learning rate and error *mu = *mu - eta * e; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } return X; } llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) { int64_t t_start_sample_us; t_start_sample_us = ggml_time_us(); llama_sample_softmax(ctx, candidates); // Truncate the words with surprise values greater than mu candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { return -log2f(candidate.p) > *mu; })); if (candidates->size == 0) { candidates->size = 1; } if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } // Normalize the probabilities of the remaining words llama_sample_softmax(ctx, candidates); // Sample the next word X from the remaining words llama_token X = llama_sample_token(ctx, candidates); t_start_sample_us = ggml_time_us(); // Compute error as the difference between observed surprise and target surprise value size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { return candidate.id == X; })); float observed_surprise = -log2f(candidates->data[X_idx].p); float e = observed_surprise - tau; // Update mu using the learning rate and error *mu = *mu - eta * e; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } return X; } llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) { const int64_t t_start_sample_us = ggml_time_us(); // Find max element auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { return a.logit < b.logit; }); llama_token result = max_iter->id; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; ctx->n_sample++; } return result; } llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) { GGML_ASSERT(ctx); const int64_t t_start_sample_us = ggml_time_us(); llama_sample_softmax(nullptr, candidates); std::vector probs; probs.reserve(candidates->size); for (size_t i = 0; i < candidates->size; ++i) { probs.push_back(candidates->data[i].p); } std::discrete_distribution<> dist(probs.begin(), probs.end()); auto & rng = ctx->rng; int idx = dist(rng); llama_token result = candidates->data[idx].id; ctx->t_sample_us += ggml_time_us() - t_start_sample_us; ctx->n_sample++; return result; } void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) { const int64_t t_start_sample_us = ggml_time_us(); if (token == llama_token_eos(&ctx->model)) { for (const auto & stack : grammar->stacks) { if (stack.empty()) { return; } } GGML_ASSERT(false); } const std::string piece = llama_token_to_piece(ctx, token); // Note terminating 0 in decoded string const auto decoded = decode_utf8(piece, grammar->partial_utf8); const auto & code_points = decoded.first; for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) { grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it); } grammar->partial_utf8 = decoded.second; GGML_ASSERT(!grammar->stacks.empty()); ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } // // Beam search // struct llama_beam { std::vector tokens; float p; // Cumulative beam probability (renormalized relative to all beams) bool eob; // Initialize end-of-beam to false. Callback sets this to true. // Sort beams by probability. In case of ties, prefer beams at eob. bool operator<(const llama_beam & rhs) const { return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob); } // Shift off first n tokens and discard them. void shift_tokens(const size_t n) { if (n) { std::copy(tokens.begin() + n, tokens.end(), tokens.begin()); tokens.resize(tokens.size() - n); } } llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; } }; // A struct for calculating logit-related info. struct llama_logit_info { const float * const logits; const int n_vocab; const float max_l; const float normalizer; struct sum_exp { float max_l; float operator()(float sum, float l) const { return sum + std::exp(l - max_l); } }; llama_logit_info(llama_context * ctx) : logits(llama_get_logits(ctx)) , n_vocab(llama_n_vocab(llama_get_model(ctx))) , max_l(*std::max_element(logits, logits + n_vocab)) , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l})) { } llama_token_data get_token_data(const llama_token token_id) const { constexpr auto p = std::numeric_limits::quiet_NaN(); // never used return {token_id, logits[token_id], p}; } // Return top k token_data by logit. std::vector top_k(size_t k) { std::vector min_heap; // min-heap by logit const llama_token k_min = std::min(static_cast(k), n_vocab); min_heap.reserve(k_min); for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) { min_heap.push_back(get_token_data(token_id)); } auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }; std::make_heap(min_heap.begin(), min_heap.end(), comp); for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) { if (min_heap.front().logit < logits[token_id]) { std::pop_heap(min_heap.begin(), min_heap.end(), comp); min_heap.back().id = token_id; min_heap.back().logit = logits[token_id]; std::push_heap(min_heap.begin(), min_heap.end(), comp); } } return min_heap; } float probability_from_logit(float logit) const { return normalizer * std::exp(logit - max_l); } }; struct llama_beam_search_data { llama_context * ctx; size_t n_beams; int n_past; int n_predict; std::vector beams; std::vector next_beams; // Re-calculated on each loop iteration size_t common_prefix_length; // Used to communicate to/from callback on beams state. std::vector beam_views; llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict) : ctx(ctx) , n_beams(n_beams) , n_past(n_past) , n_predict(n_predict) , beam_views(n_beams) { beams.reserve(n_beams); next_beams.reserve(n_beams); } // Collapse beams to a single beam given by index. void collapse_beams(const size_t beam_idx) { if (0u < beam_idx) { std::swap(beams[0], beams[beam_idx]); } beams.resize(1); } // Min-heaps are used to efficiently collect the top-k elements (k=n_beams). // The repetitive patterns below reflect the 2 stages of heaps: // * Gather elements until the vector is full, then call std::make_heap() on it. // * If the heap is full and a new element is found that should be included, pop the // least element to the back(), replace it with the new, then push it into the heap. void fill_next_beams_by_top_probabilities(llama_beam & beam) { // Min-heaps use a greater-than comparator. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; }; if (beam.eob) { // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough. if (next_beams.size() < n_beams) { next_beams.push_back(std::move(beam)); if (next_beams.size() == n_beams) { std::make_heap(next_beams.begin(), next_beams.end(), comp); } } else if (next_beams.front().p < beam.p) { std::pop_heap(next_beams.begin(), next_beams.end(), comp); next_beams.back() = std::move(beam); std::push_heap(next_beams.begin(), next_beams.end(), comp); } } else { // beam is not at end-of-sentence, so branch with next top_k tokens. if (!beam.tokens.empty()) { llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0)); } llama_logit_info logit_info(ctx); std::vector next_tokens = logit_info.top_k(n_beams); size_t i=0; if (next_beams.size() < n_beams) { for (; next_beams.size() < n_beams ; ++i) { llama_beam next_beam = beam; next_beam.tokens.push_back(next_tokens[i].id); next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit); next_beams.push_back(std::move(next_beam)); } std::make_heap(next_beams.begin(), next_beams.end(), comp); } else { for (; next_beams.front().p == 0.0f ; ++i) { std::pop_heap(next_beams.begin(), next_beams.end(), comp); next_beams.back() = beam; next_beams.back().tokens.push_back(next_tokens[i].id); next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit); std::push_heap(next_beams.begin(), next_beams.end(), comp); } } for (; i < n_beams ; ++i) { const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit); if (next_beams.front().p < next_p) { std::pop_heap(next_beams.begin(), next_beams.end(), comp); next_beams.back() = beam; next_beams.back().tokens.push_back(next_tokens[i].id); next_beams.back().p = next_p; std::push_heap(next_beams.begin(), next_beams.end(), comp); } } } } // Find common_prefix_length based on beams. // Requires beams is not empty. size_t find_common_prefix_length() { size_t common_prefix_length = beams[0].tokens.size(); for (size_t i = 1 ; i < beams.size() ; ++i) { common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size()); for (size_t j = 0 ; j < common_prefix_length ; ++j) { if (beams[0].tokens[j] != beams[i].tokens[j]) { common_prefix_length = j; break; } } } return common_prefix_length; } // Construct beams_state to send back to caller via the callback function. // Side effect: set common_prefix_length = find_common_prefix_length(); llama_beams_state get_beams_state(const bool last_call) { for (size_t i = 0 ; i < beams.size() ; ++i) { beam_views[i] = beams[i].view(); } common_prefix_length = find_common_prefix_length(); return {beam_views.data(), beams.size(), common_prefix_length, last_call}; } // Loop: // * while i < n_predict, AND // * any of the beams have not yet reached end-of-beam (eob), AND // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence // (since all other beam probabilities can only decrease) void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) { beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; }; for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) && !beams[top_beam_index()].eob ; ++i) { callback(callback_data, get_beams_state(false)); // Sets common_prefix_length update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed. if (common_prefix_length) { llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0)); n_past += common_prefix_length; } // Zero-out next_beam probabilities to place them last in following min-heap. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; }); for (llama_beam & beam : beams) { beam.shift_tokens(common_prefix_length); fill_next_beams_by_top_probabilities(beam); } // next_beams become the beams of next/final iteration. Swap them to re-use memory. beams.swap(next_beams); renormalize_beam_probabilities(beams); } collapse_beams(top_beam_index()); callback(callback_data, get_beams_state(true)); } // As beams grow, the cumulative probabilities decrease. // Renormalize them to avoid floating point underflow. static void renormalize_beam_probabilities(std::vector & beams) { const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; }; const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p); std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; }); } // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering. size_t top_beam_index() { return std::max_element(beams.begin(), beams.end()) - beams.begin(); } // Copy (p,eob) for each beam which may have been changed by the callback. void update_beams_from_beam_views() { for (size_t i = 0 ; i < beams.size() ; ++i) { beams[i].p = beam_views[i].p; beams[i].eob = beam_views[i].eob; } } }; void llama_beam_search(llama_context * ctx, llama_beam_search_callback_fn_t callback, void * callback_data, size_t n_beams, int n_past, int n_predict) { assert(ctx); const int64_t t_start_sample_us = ggml_time_us(); llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict); beam_search_data.loop(callback, callback_data); ctx->t_sample_us += ggml_time_us() - t_start_sample_us; ctx->n_sample++; } // // quantization // struct quantize_state_internal { const llama_model & model; const llama_model_quantize_params * params; int n_attention_wv = 0; int n_ffn_down = 0; int n_ffn_gate = 0; int n_ffn_up = 0; int i_attention_wv = 0; int i_ffn_down = 0; int i_ffn_gate = 0; int i_ffn_up = 0; int n_k_quantized = 0; int n_fallback = 0; bool has_imatrix = false; // used to figure out if a model shares tok_embd with the output weight bool has_output = false; quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params) : model(model) , params(params) {} }; static void llama_tensor_dequantize_internal( struct ggml_tensor * tensor, std::vector> & output, std::vector & workers, const size_t nelements, const int nthread ) { if (output.size() < nelements) { output.resize(nelements); } float * f32_output = (float *) output.data(); ggml_type_traits_t qtype; if (ggml_is_quantized(tensor->type)) { qtype = ggml_internal_get_type_traits(tensor->type); if (qtype.to_float == NULL) { throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type))); } } else if (tensor->type != GGML_TYPE_F16) { throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type))); } if (nthread < 2) { if (tensor->type == GGML_TYPE_F16) { ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements); } else if (ggml_is_quantized(tensor->type)) { qtype.to_float(tensor->data, f32_output, nelements); } else { GGML_ASSERT(false); // unreachable } return; } size_t block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type); size_t block_size_bytes = ggml_type_size(tensor->type); GGML_ASSERT(nelements % block_size == 0); size_t nblocks = nelements / block_size; size_t blocks_per_thread = nblocks / nthread; size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count size_t in_buff_offs = 0; size_t out_buff_offs = 0; for (int tnum = 0; tnum < nthread; tnum++) { size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread size_t thr_elems = thr_blocks * block_size; // number of elements for this thread size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) { if (typ == GGML_TYPE_F16) { ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels); } else { qtype.to_float(inbuf, outbuf, nels); } }; workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems); in_buff_offs += thr_block_bytes; out_buff_offs += thr_elems; } for (auto & w : workers) { w.join(); } workers.clear(); } static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) { const std::string name = ggml_get_name(tensor); // TODO: avoid hardcoded tensor names - use the TN_* constants const llm_arch arch = qs.model.arch; const auto tn = LLM_TN(arch); auto use_more_bits = [](int i_layer, int num_layers) -> bool { return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2; }; const int n_expert = std::max(1, (int)qs.model.hparams.n_expert); auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) { if (n_expert > 1) { // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work // for getting the current layer as I initially thought, and we need to resort to parsing the // tensor name. if (sscanf(name, "blk.%d.", &i_layer) != 1) { throw std::runtime_error(format("Failed to determine layer for tensor %s", name)); } if (i_layer < 0 || i_layer >= n_layer) { throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer)); } } return std::make_pair(i_layer, n_layer); }; // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings // with the quantization of the output tensor if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) { if (qs.params->output_tensor_type < GGML_TYPE_COUNT) { new_type = qs.params->output_tensor_type; } else { int nx = tensor->ne[0]; if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) { new_type = GGML_TYPE_Q8_0; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { new_type = GGML_TYPE_Q5_K; } else if (new_type != GGML_TYPE_Q8_0) { new_type = GGML_TYPE_Q6_K; } } } else if (name == "token_embd.weight") { if (qs.params->token_embedding_type < GGML_TYPE_COUNT) { new_type = qs.params->token_embedding_type; } else { if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { new_type = GGML_TYPE_Q2_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) { new_type = GGML_TYPE_IQ3_S; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { new_type = GGML_TYPE_IQ3_S; } } } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { if (name.find("attn_v.weight") != std::string::npos) { if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K; else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; ++qs.i_attention_wv; } else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) { new_type = GGML_TYPE_Q4_K; } else if (name.find("ffn_down") != std::string::npos) { if (qs.i_ffn_down < qs.n_ffn_down/8) { new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; } ++qs.i_ffn_down; } else if (name.find("attn_output.weight") != std::string::npos) { if (qs.model.hparams.n_expert == 8) { new_type = GGML_TYPE_Q5_K; } else { if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS; else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S; } } } else if (name.find("attn_v.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) { new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) { new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS; } else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) { new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) { new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) { new_type = GGML_TYPE_Q5_K; } else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K; else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) && (qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K; if (qs.model.type == MODEL_70B) { // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with // nearly negligible increase in model size by quantizing this tensor with more bits: if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K; } if (qs.model.hparams.n_expert == 8) { // for the 8-expert model, bumping this to Q8_0 trades just ~128MB // TODO: explore better strategies new_type = GGML_TYPE_Q8_0; } ++qs.i_attention_wv; } else if (name.find("attn_k.weight") != std::string::npos) { if (qs.model.hparams.n_expert == 8) { // for the 8-expert model, bumping this to Q8_0 trades just ~128MB // TODO: explore better strategies new_type = GGML_TYPE_Q8_0; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) { new_type = GGML_TYPE_IQ3_XXS; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { new_type = GGML_TYPE_IQ2_S; } } else if (name.find("attn_q.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) { new_type = GGML_TYPE_IQ3_XXS; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { new_type = GGML_TYPE_IQ2_S; } } else if (name.find("ffn_down") != std::string::npos) { auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str()); int i_layer = info.first, n_layer = info.second; if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) { if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) { new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 || (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) { new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) { new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) { if (arch == LLM_ARCH_FALCON) { new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K : use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; } else { if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K; } } else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) { new_type = GGML_TYPE_Q5_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) { new_type = GGML_TYPE_Q5_K; } else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0) && qs.has_imatrix && i_layer < n_layer/8) { // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1; } ++qs.i_ffn_down; } else if (name.find("attn_output.weight") != std::string::npos) { if (arch != LLM_ARCH_FALCON) { if (qs.model.hparams.n_expert == 8) { if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) { new_type = GGML_TYPE_Q5_K; } } else { if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K; else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K; else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K; } } else { if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K; } } else if (name.find("attn_qkv.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) { new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K; } else if (name.find("ffn_gate") != std::string::npos) { auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str()); int i_layer = info.first, n_layer = info.second; if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) { new_type = GGML_TYPE_IQ3_XXS; } ++qs.i_ffn_gate; } else if (name.find("ffn_up") != std::string::npos) { auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str()); int i_layer = info.first, n_layer = info.second; if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) { new_type = GGML_TYPE_IQ3_XXS; } ++qs.i_ffn_up; } // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; //} // IK: let's remove this, else Q2_K is almost the same as Q3_K_S //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) { // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; //} // This can be used to reduce the size of the Q5_K_S model. // The associated PPL increase is fully in line with the size reduction //else { // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K; //} bool convert_incompatible_tensor = false; if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K || new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS || new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S || new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S || new_type == GGML_TYPE_IQ1_M) { int nx = tensor->ne[0]; int ny = tensor->ne[1]; if (nx % QK_K != 0) { LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type)); convert_incompatible_tensor = true; } else { ++qs.n_k_quantized; } } if (convert_incompatible_tensor) { switch (new_type) { case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ2_S: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ3_S: case GGML_TYPE_IQ1_S: case GGML_TYPE_IQ1_M: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break; case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break; case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break; case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break; default: throw std::runtime_error("\nUnsupported tensor size encountered\n"); } LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type)); ++qs.n_fallback; } return new_type; } static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int chunk_size, int nrows, int n_per_row, const float * imatrix, std::vector & workers, const int nthread) { std::mutex mutex; int counter = 0; size_t new_size = 0; if (nthread < 2) { // single-thread return ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix); } auto compute = [&mutex, &counter, &new_size, new_type, f32_data, new_data, chunk_size, nrows, n_per_row, imatrix]() { const int nrows_per_chunk = chunk_size / n_per_row; size_t local_size = 0; while (true) { std::unique_lock lock(mutex); int first_row = counter; counter += nrows_per_chunk; if (first_row >= nrows) { if (local_size > 0) { new_size += local_size; } break; } lock.unlock(); const int this_nrow = std::min(nrows - first_row, nrows_per_chunk); local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix); } }; for (int it = 0; it < nthread - 1; ++it) { workers.emplace_back(compute); } compute(); for (auto & w : workers) { w.join(); } workers.clear(); return new_size; } static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) { ggml_type default_type; llama_ftype ftype = params->ftype; switch (params->ftype) { case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break; case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break; case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break; case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break; case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break; case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break; case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break; // K-quants case LLAMA_FTYPE_MOSTLY_Q2_K_S: case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break; case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break; case LLAMA_FTYPE_MOSTLY_Q3_K_S: case LLAMA_FTYPE_MOSTLY_Q3_K_M: case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break; case LLAMA_FTYPE_MOSTLY_Q4_K_S: case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break; case LLAMA_FTYPE_MOSTLY_Q5_K_S: case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break; case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break; case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break; case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break; case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break; case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break; case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break; case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break; case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break; case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break; case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break; case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break; case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break; default: throw std::runtime_error(format("invalid output file type %d\n", ftype)); } int nthread = params->nthread; if (nthread <= 0) { nthread = std::thread::hardware_concurrency(); } // mmap consistently increases speed Linux, and also increases speed on Windows with // hot cache. It may cause a slowdown on macOS, possibly related to free memory. #if defined(__linux__) || defined(_WIN32) constexpr bool use_mmap = true; #else constexpr bool use_mmap = false; #endif llama_model_kv_override * kv_overrides = nullptr; if (params->kv_overrides) { auto v = (std::vector*)params->kv_overrides; kv_overrides = v->data(); } llama_model_loader ml(fname_inp, use_mmap, kv_overrides); ml.init_mappings(false); // no prefetching llama_model model; llm_load_arch(ml, model); llm_load_hparams(ml, model); struct quantize_state_internal qs(model, params); if (params->only_copy) { ftype = model.ftype; } const std::unordered_map> * imatrix_data = nullptr; if (params->imatrix) { imatrix_data = static_cast>*>(params->imatrix); if (imatrix_data) { LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size())); qs.has_imatrix = true; } } const size_t align = GGUF_DEFAULT_ALIGNMENT; struct gguf_context * ctx_out = gguf_init_empty(); // copy the KV pairs from the input file gguf_set_kv (ctx_out, ml.meta); gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION); gguf_set_val_u32(ctx_out, "general.file_type", ftype); if (params->kv_overrides) { const std::vector & overrides = *(const std::vector *)params->kv_overrides; for (auto & o : overrides) { if (o.key[0] == 0) break; if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) { gguf_set_val_f32(ctx_out, o.key, o.float_value); } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) { gguf_set_val_i32(ctx_out, o.key, o.int_value); } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) { gguf_set_val_bool(ctx_out, o.key, o.bool_value); } else { LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key); } } } for (int i = 0; i < ml.n_tensors; ++i) { const struct ggml_tensor * meta = ml.get_tensor_meta(i); const std::string name = ggml_get_name(meta); // TODO: avoid hardcoded tensor names - use the TN_* constants if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos) { ++qs.n_attention_wv; } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) { qs.has_output = true; } } qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer; // sanity checks GGML_ASSERT(qs.n_attention_wv == (int)model.hparams.n_layer && "n_attention_wv != n_layer is unexpected"); size_t total_size_org = 0; size_t total_size_new = 0; std::vector workers; workers.reserve(nthread); int idx = 0; std::vector> read_data; std::vector> work; std::vector> f32_conv_buf; // populate the original tensors so we get an initial meta data for (int i = 0; i < ml.n_tensors; ++i) { const struct ggml_tensor * meta = ml.get_tensor_meta(i); gguf_add_tensor(ctx_out, meta); } std::ofstream fout(fname_out, std::ios::binary); fout.exceptions(std::ofstream::failbit); // fail fast on write errors const size_t meta_size = gguf_get_meta_size(ctx_out); LLAMA_LOG_INFO("%s: meta size = %zu bytes\n", __func__, meta_size); // placeholder for the meta data ::zeros(fout, meta_size); const auto tn = LLM_TN(model.arch); for (int i = 0; i < ml.n_tensors; ++i) { struct ggml_tensor * tensor = ml.get_tensor_meta(i); const std::string name = ggml_get_name(tensor); if (!ml.use_mmap) { if (read_data.size() < ggml_nbytes(tensor)) { read_data.resize(ggml_nbytes(tensor)); } tensor->data = read_data.data(); } ml.load_data_for(tensor); LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ", ++idx, ml.n_tensors, ggml_get_name(tensor), llama_format_tensor_shape(tensor).c_str(), ggml_type_name(tensor->type)); // This used to be a regex, but has an extreme cost to compile times. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'? // quantize only 2D and 3D tensors (experts) quantize &= (ggml_n_dims(tensor) >= 2); quantize &= params->quantize_output_tensor || name != "output.weight"; quantize &= !params->only_copy; // do not quantize expert gating tensors // NOTE: can't use LLM_TN here because the layer number is not known quantize &= name.find("ffn_gate_inp.weight") == std::string::npos; // do not quantize positional embeddings and token types (BERT) quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight"); quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight"); // do not quantize Mamba's small yet 2D weights // NOTE: can't use LLM_TN here because the layer number is not known quantize &= name.find("ssm_conv1d.weight") == std::string::npos; quantize &= name.find("ssm_x.weight") == std::string::npos; quantize &= name.find("ssm_dt.weight") == std::string::npos; enum ggml_type new_type; void * new_data; size_t new_size; if (quantize) { new_type = default_type; // get more optimal quantization type based on the tensor shape, layer, etc. if (!params->pure && ggml_is_quantized(default_type)) { new_type = llama_tensor_get_type(qs, new_type, tensor, ftype); } else if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) { new_type = params->token_embedding_type; } else if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) { new_type = params->output_tensor_type; } // If we've decided to quantize to the same type the tensor is already // in then there's nothing to do. quantize = tensor->type != new_type; } if (!quantize) { new_type = tensor->type; new_data = tensor->data; new_size = ggml_nbytes(tensor); LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0); } else { const size_t nelements = ggml_nelements(tensor); const float * imatrix = nullptr; if (imatrix_data) { auto it = imatrix_data->find(tensor->name); if (it == imatrix_data->end()) { LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name); } else { if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) { imatrix = it->second.data(); } else { LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__, int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name); // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix // this is a significant error and it may be good idea to abort the process if this happens, // since many people will miss the error and not realize that most of the model is being quantized without an imatrix // tok_embd should be ignored in this case, since it always causes this warning if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) { throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s", int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name)); } } } } if ((new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_S || new_type == GGML_TYPE_IQ1_S || (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) || (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) { LLAMA_LOG_ERROR("\n\n============================================================\n"); LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name); LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n"); LLAMA_LOG_ERROR("============================================================\n\n"); throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name)); } float * f32_data; if (tensor->type == GGML_TYPE_F32) { f32_data = (float *) tensor->data; } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) { throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type))); } else { llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread); f32_data = (float *) f32_conv_buf.data(); } LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type)); fflush(stdout); if (work.size() < nelements * 4) { work.resize(nelements * 4); // upper bound on size } new_data = work.data(); const int n_per_row = tensor->ne[0]; const int nrows = tensor->ne[1]; static const int min_chunk_size = 32 * 512; const int chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row); const int nelements_matrix = tensor->ne[0] * tensor->ne[1]; const int nchunk = (nelements_matrix + chunk_size - 1)/chunk_size; const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1; // quantize each expert separately since they have different importance matrices new_size = 0; for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) { const float * f32_data_03 = f32_data + i03 * nelements_matrix; void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows; const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr; new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use); } LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0); } total_size_org += ggml_nbytes(tensor); total_size_new += new_size; // update the gguf meta data as we go gguf_set_tensor_type(ctx_out, name.c_str(), new_type); gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size); // write tensor data + padding fout.write((const char *) new_data, new_size); zeros(fout, GGML_PAD(new_size, align) - new_size); } // go back to beginning of file and write the updated meta data { fout.seekp(0); std::vector data(gguf_get_meta_size(ctx_out)); gguf_get_meta_data(ctx_out, data.data()); fout.write((const char *) data.data(), data.size()); } fout.close(); gguf_free(ctx_out); LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0); LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0); if (qs.n_fallback > 0) { LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n", __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback); } } static int llama_apply_lora_from_file_internal( const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads ) { LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora); const int64_t t_start_lora_us = ggml_time_us(); llama_file fin(path_lora, "rb"); // verify magic and version { uint32_t magic = fin.read_u32(); if (magic != LLAMA_FILE_MAGIC_GGLA) { LLAMA_LOG_ERROR("%s: bad file magic\n", __func__); return 1; } uint32_t format_version = fin.read_u32(); if (format_version != 1) { LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ ); return 1; } } int32_t lora_r = fin.read_u32(); int32_t lora_alpha = fin.read_u32(); float scaling = scale * (float)lora_alpha / (float)lora_r; LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling); // load base model std::unique_ptr ml; if (path_base_model) { LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model); ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*kv_overrides*/ nullptr)); ml->init_mappings(/*prefetch*/ false); // no prefetching } struct tensor_meta { std::string name; ggml_type type; int32_t ne[2]; size_t offset; }; std::map tensor_meta_map; // load all tensor meta while (true) { if (fin.tell() == fin.size) { // eof break; } int32_t n_dims; int32_t name_len; int32_t ftype; fin.read_raw(&n_dims, sizeof(n_dims)); fin.read_raw(&name_len, sizeof(name_len)); fin.read_raw(&ftype, sizeof(ftype)); if (n_dims != 1 && n_dims != 2) { LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims); return 1; } int32_t ne[2] = { 1, 1 }; for (int i = 0; i < n_dims; ++i) { fin.read_raw(&ne[i], sizeof(ne[i])); } std::string name; { GGML_ASSERT(name_len < GGML_MAX_NAME); char buf[GGML_MAX_NAME]; fin.read_raw(buf, name_len); name = std::string(buf, name_len); } // check for lora suffix std::string lora_suffix; if (name.length() > 6) { lora_suffix = name.substr(name.length() - 6); } if (lora_suffix != ".loraA" && lora_suffix != ".loraB") { LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str()); return 1; } // tensor type ggml_type wtype; switch (ftype) { case 0: wtype = GGML_TYPE_F32; break; case 1: wtype = GGML_TYPE_F16; break; default: { LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n", __func__, ftype); return 1; } } // data offset size_t offset = fin.tell(); offset = (offset + 31) & -32; // skip tensor data fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET); tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset }); } bool warned = false; int n_tensors = 0; // apply ggml_backend_t backend_cpu = ggml_backend_cpu_init(); if (backend_cpu == nullptr) { LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__); return 1; } ggml_backend_cpu_set_n_threads(backend_cpu, n_threads); std::vector> read_buf; for (const auto & it : model.tensors_by_name) { const std::string & base_name = it.first; ggml_tensor * model_t = it.second; if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() || tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) { continue; } tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA"); tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB"); ggml_init_params lora_init_params = { /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(), /* .mem_buffer */ nullptr, /* .no_alloc */ true, }; ggml_context * lora_ctx = ggml_init(lora_init_params); if (lora_ctx == nullptr) { LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__); ggml_backend_free(backend_cpu); return 1; } // create tensors ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]); ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]); ggml_set_name(loraA, metaA.name.c_str()); ggml_set_name(loraB, metaB.name.c_str()); ggml_tensor * base_t; if (ml) { if (!ml->get_tensor_meta(base_name.c_str())) { LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str()); return 1; } base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str())); } else { base_t = ggml_dup_tensor(lora_ctx, model_t); } ggml_set_name(base_t, base_name.c_str()); // allocate in backend buffer ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type()); if (lora_buf == nullptr) { LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__); return 1; } // load tensor data auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) { read_buf.resize(ggml_nbytes(tensor)); fin.seek(tensor_meta.offset, SEEK_SET); fin.read_raw(read_buf.data(), ggml_nbytes(tensor)); ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size()); }; load_tensor(metaA, loraA); load_tensor(metaB, loraB); // load base model tensor data if (ml) { ml->load_data_for(base_t); } else { ggml_backend_tensor_copy(model_t, base_t); } if (ggml_is_quantized(base_t->type) && !warned) { LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, " "use a f16 or f32 base model with --lora-base\n", __func__); warned = true; } if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) { LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");" " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]); ggml_free(lora_ctx); ggml_backend_buffer_free(lora_buf); ggml_backend_free(backend_cpu); return 1; } auto build_lora_graph = [&]() { // w = w + BA*s ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB); ggml_set_name(BA, "BA"); if (scaling != 1.0f) { BA = ggml_scale(lora_ctx, BA, scaling); ggml_set_name(BA, "BA_scaled"); } ggml_tensor * r; r = ggml_add_inplace(lora_ctx, base_t, BA); ggml_set_name(r, "r_add"); if (base_t->type != model_t->type) { // convert the result to the model type r = ggml_cast(lora_ctx, r, model_t->type); ggml_set_name(r, "r_cast"); } return r; }; ggml_cgraph * gf = ggml_new_graph(lora_ctx); ggml_tensor * r = build_lora_graph(); ggml_build_forward_expand(gf, r); ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type()); if (graph_buf == nullptr) { LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__); ggml_free(lora_ctx); ggml_backend_buffer_free(lora_buf); ggml_backend_free(backend_cpu); return 1; } ggml_backend_graph_compute(backend_cpu, gf); ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r)); #if 0 // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE); // sched compute ggml_build_forward_expand(gf, build_graph()); ggml_backend_sched_init_measure(sched, gf); // create the graph again, since the previous one was destroyed by the measure ggml_graph_clear(gf); ggml_build_forward_expand(gf, build_graph()); ggml_backend_sched_graph_compute(sched, gf); ggml_backend_sched_free(sched); #endif ggml_backend_buffer_free(lora_buf); ggml_backend_buffer_free(graph_buf); ggml_free(lora_ctx); n_tensors++; if (n_tensors % 4 == 0) { LLAMA_LOG_INFO("."); } } ggml_backend_free(backend_cpu); const int64_t t_lora_us = ggml_time_us() - t_start_lora_us; LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0); return 0; } // // interface implementation // struct llama_model_params llama_model_default_params() { struct llama_model_params result = { /*.n_gpu_layers =*/ 0, /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER, /*.main_gpu =*/ 0, /*.tensor_split =*/ nullptr, /*.progress_callback =*/ nullptr, /*.progress_callback_user_data =*/ nullptr, /*.kv_overrides =*/ nullptr, /*.vocab_only =*/ false, /*.use_mmap =*/ true, /*.use_mlock =*/ false, }; #ifdef GGML_USE_METAL // note: we usually have plenty of VRAM, so by default offload all layers to the GPU result.n_gpu_layers = 999; #endif return result; } struct llama_context_params llama_context_default_params() { struct llama_context_params result = { /*.seed =*/ LLAMA_DEFAULT_SEED, /*.n_ctx =*/ 512, /*.n_batch =*/ 2048, /*.n_ubatch =*/ 512, /*.n_seq_max =*/ 1, /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS, /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED, /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED, /*.rope_freq_base =*/ 0.0f, /*.rope_freq_scale =*/ 0.0f, /*.yarn_ext_factor =*/ -1.0f, /*.yarn_attn_factor =*/ 1.0f, /*.yarn_beta_fast =*/ 32.0f, /*.yarn_beta_slow =*/ 1.0f, /*.yarn_orig_ctx =*/ 0, /*.defrag_thold =*/ -1.0f, /*.cb_eval =*/ nullptr, /*.cb_eval_user_data =*/ nullptr, /*.type_k =*/ GGML_TYPE_F16, /*.type_v =*/ GGML_TYPE_F16, /*.logits_all =*/ false, /*.embeddings =*/ false, /*.offload_kqv =*/ true, /*.abort_callback =*/ nullptr, /*.abort_callback_data =*/ nullptr, }; return result; } struct llama_model_quantize_params llama_model_quantize_default_params() { struct llama_model_quantize_params result = { /*.nthread =*/ 0, /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1, /*.output_tensor_type =*/ GGML_TYPE_COUNT, /*.token_embedding_type =*/ GGML_TYPE_COUNT, /*.allow_requantize =*/ false, /*.quantize_output_tensor =*/ true, /*.only_copy =*/ false, /*.pure =*/ false, /*.imatrix =*/ nullptr, /*.kv_overrides =*/ nullptr, }; return result; } size_t llama_max_devices(void) { #if defined(GGML_USE_METAL) return 1; #elif defined(GGML_USE_CUDA) return GGML_CUDA_MAX_DEVICES; #elif defined(GGML_USE_SYCL) return GGML_SYCL_MAX_DEVICES; #elif defined(GGML_USE_VULKAN) return GGML_VK_MAX_DEVICES; #else return 1; #endif } bool llama_supports_mmap(void) { return llama_mmap::SUPPORTED; } bool llama_supports_mlock(void) { return llama_mlock::SUPPORTED; } bool llama_supports_gpu_offload(void) { #if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \ defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) // Defined when llama.cpp is compiled with support for offloading model layers to GPU. return true; #else return false; #endif } void llama_backend_init(void) { ggml_time_init(); // needed to initialize f16 tables { struct ggml_init_params params = { 0, NULL, false }; struct ggml_context * ctx = ggml_init(params); ggml_free(ctx); } #ifdef GGML_USE_MPI ggml_mpi_backend_init(); #endif } void llama_numa_init(enum ggml_numa_strategy numa) { if (numa != GGML_NUMA_STRATEGY_DISABLED) { ggml_numa_init(numa); } } void llama_backend_free(void) { #ifdef GGML_USE_MPI ggml_mpi_backend_free(); #endif ggml_quantize_free(); } int64_t llama_time_us(void) { return ggml_time_us(); } struct llama_model * llama_load_model_from_file( const char * path_model, struct llama_model_params params) { ggml_time_init(); llama_model * model = new llama_model; unsigned cur_percentage = 0; if (params.progress_callback == NULL) { params.progress_callback_user_data = &cur_percentage; params.progress_callback = [](float progress, void * ctx) { unsigned * cur_percentage_p = (unsigned *) ctx; unsigned percentage = (unsigned) (100 * progress); while (percentage > *cur_percentage_p) { *cur_percentage_p = percentage; LLAMA_LOG_INFO("."); if (percentage >= 100) { LLAMA_LOG_INFO("\n"); } } return true; }; } int status = llama_model_load(path_model, *model, params); GGML_ASSERT(status <= 0); if (status < 0) { if (status == -1) { LLAMA_LOG_ERROR("%s: failed to load model\n", __func__); } else if (status == -2) { LLAMA_LOG_INFO("%s: cancelled model load\n", __func__); } delete model; return nullptr; } return model; } void llama_free_model(struct llama_model * model) { delete model; } struct llama_context * llama_new_context_with_model( struct llama_model * model, struct llama_context_params params) { if (!model) { LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__); return nullptr; } if (params.n_batch == 0 && params.n_ubatch == 0) { LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__); return nullptr; } if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) { LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__); return nullptr; } llama_context * ctx = new llama_context(*model); const auto & hparams = model->hparams; auto & cparams = ctx->cparams; cparams.n_seq_max = std::max(1u, params.n_seq_max); cparams.n_threads = params.n_threads; cparams.n_threads_batch = params.n_threads_batch; cparams.yarn_ext_factor = params.yarn_ext_factor; cparams.yarn_attn_factor = params.yarn_attn_factor; cparams.yarn_beta_fast = params.yarn_beta_fast; cparams.yarn_beta_slow = params.yarn_beta_slow; cparams.defrag_thold = params.defrag_thold; cparams.embeddings = params.embeddings; cparams.offload_kqv = params.offload_kqv; cparams.pooling_type = params.pooling_type; cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx; cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base; cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale; // this is necessary due to kv_self.n being padded later during inference cparams.n_ctx = GGML_PAD(cparams.n_ctx, 32); // with causal attention, the batch size is limited by the context size cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch; cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch); cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx : hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx : hparams.n_ctx_train; cparams.cb_eval = params.cb_eval; cparams.cb_eval_user_data = params.cb_eval_user_data; auto rope_scaling_type = params.rope_scaling_type; if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) { rope_scaling_type = hparams.rope_scaling_type_train; } if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) { cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none } if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set' cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f; } cparams.causal_attn = hparams.causal_attn; if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) { if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) { cparams.pooling_type = LLAMA_POOLING_TYPE_NONE; } else { cparams.pooling_type = hparams.pooling_type; } } if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); } LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx); LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch); LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch); LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base); LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale); ctx->abort_callback = params.abort_callback; ctx->abort_callback_data = params.abort_callback_data; ctx->rng = std::mt19937(params.seed); ctx->logits_all = params.logits_all; uint32_t kv_size = cparams.n_ctx; ggml_type type_k = params.type_k; ggml_type type_v = params.type_v; // Mamba only needs a constant number of KV cache cells per sequence if (model->arch == LLM_ARCH_MAMBA) { // Mamba needs at least as many KV cells as there are sequences kept at any time kv_size = std::max((uint32_t) 1, params.n_seq_max); // it's probably best to keep as much precision as possible for the states type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states } GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0); GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0); if (!hparams.vocab_only) { // initialize backends #ifdef GGML_USE_METAL if (model->n_gpu_layers > 0) { ctx->backend_metal = ggml_backend_metal_init(); if (ctx->backend_metal == nullptr) { LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__); llama_free(ctx); return nullptr; } ctx->backends.push_back(ctx->backend_metal); } #elif defined(GGML_USE_CUDA) if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) { // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu); if (backend == nullptr) { LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu); llama_free(ctx); return nullptr; } ctx->backends.push_back(backend); } else { // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) { ggml_backend_t backend = ggml_backend_cuda_init(device); if (backend == nullptr) { LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device); llama_free(ctx); return nullptr; } ctx->backends.push_back(backend); } } #elif defined(GGML_USE_VULKAN) if (model->split_mode == LLAMA_SPLIT_MODE_ROW) { LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__); llama_free(ctx); return nullptr; } if (model->split_mode == LLAMA_SPLIT_MODE_NONE) { ggml_backend_t backend = ggml_backend_vk_init(0); if (backend == nullptr) { LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__); llama_free(ctx); return nullptr; } ctx->backends.push_back(backend); } else { for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) { ggml_backend_t backend = ggml_backend_vk_init(device); if (backend == nullptr) { LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device); llama_free(ctx); return nullptr; } ctx->backends.push_back(backend); } } #elif defined(GGML_USE_SYCL) // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) { ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu); if (backend == nullptr) { int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu); LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu); llama_free(ctx); return nullptr; } ctx->backends.push_back(backend); } else { // LLAMA_SPLIT_LAYER requires a backend for each GPU for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) { ggml_backend_t backend = ggml_backend_sycl_init(i); if (backend == nullptr) { int id_list[GGML_SYCL_MAX_DEVICES]; ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES); LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i); llama_free(ctx); return nullptr; } ctx->backends.push_back(backend); } } #elif defined(GGML_USE_KOMPUTE) if (model->n_gpu_layers > 0) { auto * backend = ggml_backend_kompute_init(model->main_gpu); if (backend == nullptr) { LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__); llama_free(ctx); return nullptr; } ctx->backends.push_back(backend); } #endif ctx->backend_cpu = ggml_backend_cpu_init(); if (ctx->backend_cpu == nullptr) { LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__); llama_free(ctx); return nullptr; } ctx->backends.push_back(ctx->backend_cpu); if (!llama_kv_cache_init(ctx->kv_self, ctx->model, type_k, type_v, kv_size, cparams.offload_kqv)) { LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__); llama_free(ctx); return nullptr; } { size_t memory_size_k = 0; size_t memory_size_v = 0; for (auto & k : ctx->kv_self.k_l) { memory_size_k += ggml_nbytes(k); } for (auto & v : ctx->kv_self.v_l) { memory_size_v += ggml_nbytes(v); } LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__, (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f), ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f)); } // graph outputs buffer { // resized during inference when a batch uses more outputs if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) { LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__); llama_free(ctx); return nullptr; } LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(ctx->buf_output), ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0); } // scheduler and compute buffers { // buffer types used for the compute buffer of each backend std::vector backend_buft; for (auto * backend : ctx->backends) { if (ggml_backend_is_cpu(backend)) { // use host buffers for the CPU backend compute buffer backend_buft.push_back(llama_default_buffer_type_cpu(true)); } else { backend_buft.push_back(ggml_backend_get_default_buffer_type(backend)); } } // buffer used to store the computation graph and the tensor meta data ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false)); // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary bool pipeline_parallel = llama_get_device_count() > 1 && model->n_gpu_layers > (int)model->hparams.n_layer && model->split_mode == LLAMA_SPLIT_MODE_LAYER; #ifndef GGML_USE_CUDA // pipeline parallelism requires support for async compute and events // currently this is only implemented in the CUDA backend pipeline_parallel = false; #endif ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel); if (pipeline_parallel) { LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched)); } // build worst-case graph int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch); int n_past = cparams.n_ctx - n_tokens; llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true); // initialize scheduler with the worst-case graph if (!ggml_backend_sched_reserve(ctx->sched, gf)) { LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__); llama_free(ctx); return nullptr; } for (size_t i = 0; i < ctx->backends.size(); i++) { ggml_backend_t backend = ctx->backends[i]; ggml_backend_buffer_type_t buft = backend_buft[i]; size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend); if (size > 1) { LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__, ggml_backend_buft_name(buft), size / 1024.0 / 1024.0); } } // note: the number of splits during measure is higher than during inference due to the kv shift int n_splits = ggml_backend_sched_get_n_splits(ctx->sched); LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes); LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits); } } #ifdef GGML_USE_MPI ctx->ctx_mpi = ggml_mpi_init(); if (ggml_mpi_rank(ctx->ctx_mpi) > 0) { // Enter a blocking eval loop with dummy input, letting rank=0 drive the process // TODO: needs fix after #3228 GGML_ASSERT(false && "not implemented"); //const std::vector tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx)); //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {}; llama_backend_free(); exit(1); } #endif return ctx; } void llama_free(struct llama_context * ctx) { delete ctx; } const llama_model * llama_get_model(const struct llama_context * ctx) { return &ctx->model; } uint32_t llama_n_ctx(const struct llama_context * ctx) { return ctx->cparams.n_ctx; } uint32_t llama_n_batch(const struct llama_context * ctx) { return ctx->cparams.n_batch; } uint32_t llama_n_ubatch(const struct llama_context * ctx) { return ctx->cparams.n_ubatch; } uint32_t llama_n_seq_max(const struct llama_context * ctx) { return ctx->kv_self.size; } enum llama_vocab_type llama_vocab_type(const struct llama_model * model) { return model->vocab.type; } enum llama_rope_type llama_rope_type(const struct llama_model * model) { switch (model->arch) { // these models do not use RoPE case LLM_ARCH_GPT2: case LLM_ARCH_GPTJ: case LLM_ARCH_GPTNEOX: case LLM_ARCH_MPT: case LLM_ARCH_REFACT: case LLM_ARCH_BLOOM: case LLM_ARCH_MAMBA: return LLAMA_ROPE_TYPE_NONE; // use what we call a normal RoPE, operating on pairs of consecutive head values case LLM_ARCH_LLAMA: case LLM_ARCH_BAICHUAN: case LLM_ARCH_STARCODER: case LLM_ARCH_PLAMO: case LLM_ARCH_CODESHELL: case LLM_ARCH_ORION: case LLM_ARCH_INTERNLM2: case LLM_ARCH_MINICPM: case LLM_ARCH_XVERSE: case LLM_ARCH_COMMAND_R: return LLAMA_ROPE_TYPE_NORM; // the pairs of head values are offset by n_rot/2 case LLM_ARCH_FALCON: case LLM_ARCH_GROK: case LLM_ARCH_PERSIMMON: case LLM_ARCH_BERT: case LLM_ARCH_NOMIC_BERT: case LLM_ARCH_STABLELM: case LLM_ARCH_QWEN: case LLM_ARCH_QWEN2: case LLM_ARCH_PHI2: case LLM_ARCH_GEMMA: case LLM_ARCH_STARCODER2: return LLAMA_ROPE_TYPE_NEOX; // all model arches should be listed explicitly here case LLM_ARCH_UNKNOWN: GGML_ASSERT(false && "unknown architecture"); break; } return LLAMA_ROPE_TYPE_NONE; } int32_t llama_n_vocab(const struct llama_model * model) { return model->hparams.n_vocab; } int32_t llama_n_ctx_train(const struct llama_model * model) { return model->hparams.n_ctx_train; } int32_t llama_n_embd(const struct llama_model * model) { return model->hparams.n_embd; } int32_t llama_n_layer(const struct llama_model * model) { return model->hparams.n_layer; } float llama_rope_freq_scale_train(const struct llama_model * model) { return model->hparams.rope_freq_scale_train; } int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) { const auto & it = model->gguf_kv.find(key); if (it == model->gguf_kv.end()) { if (buf_size > 0) { buf[0] = '\0'; } return -1; } return snprintf(buf, buf_size, "%s", it->second.c_str()); } int32_t llama_model_meta_count(const struct llama_model * model) { return (int)model->gguf_kv.size(); } int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) { if (i < 0 || i >= (int)model->gguf_kv.size()) { if (buf_size > 0) { buf[0] = '\0'; } return -1; } auto it = model->gguf_kv.begin(); std::advance(it, i); return snprintf(buf, buf_size, "%s", it->first.c_str()); } int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) { if (i < 0 || i >= (int)model->gguf_kv.size()) { if (buf_size > 0) { buf[0] = '\0'; } return -1; } auto it = model->gguf_kv.begin(); std::advance(it, i); return snprintf(buf, buf_size, "%s", it->second.c_str()); } int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) { return snprintf(buf, buf_size, "%s %s %s", llama_model_arch_name(model->arch), llama_model_type_name(model->type), llama_model_ftype_name(model->ftype).c_str()); } uint64_t llama_model_size(const struct llama_model * model) { uint64_t size = 0; for (const auto & it : model->tensors_by_name) { size += ggml_nbytes(it.second); } return size; } uint64_t llama_model_n_params(const struct llama_model * model) { uint64_t nparams = 0; for (const auto & it : model->tensors_by_name) { nparams += ggml_nelements(it.second); } return nparams; } struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) { auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(), [name](const std::pair & it) { return it.first == name; }); if (it == model->tensors_by_name.end()) { return nullptr; } return it->second; } uint32_t llama_model_quantize( const char * fname_inp, const char * fname_out, const llama_model_quantize_params * params) { try { llama_model_quantize_internal(fname_inp, fname_out, params); return 0; } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what()); return 1; } } int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) { try { return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what()); return 1; } } static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) { GGML_ASSERT(cvec.tensors.empty()); GGML_ASSERT(cvec.ctxs.empty()); GGML_ASSERT(cvec.bufs.empty()); // count layer buffer types std::map buft_layer_count; for (int64_t i = 0; i < model.hparams.n_layer; i++) { buft_layer_count[model.buft_layer[i].buft]++; } // allocate contexts std::map ctx_map; for (auto & it : buft_layer_count) { int n_layers = it.second; struct ggml_init_params params = { /*.mem_size =*/ n_layers * ggml_tensor_overhead(), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; ggml_context * ctx = ggml_init(params); if (!ctx) { LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__); return 1; } ctx_map[it.first] = ctx; } // make tensors cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0 for (size_t il = 1; il < model.hparams.n_layer; il++) { struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft); ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd); cvec.tensors.push_back(tensor); } // allocate tensors / buffers and zero for (auto it : ctx_map) { ggml_backend_buffer_type_t buft = it.first; ggml_context * ctx = it.second; ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); if (!buf) { LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__); return false; } ggml_backend_buffer_clear(buf, 0); cvec.ctxs.push_back(ctx); cvec.bufs.push_back(buf); } return true; } int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) { const llama_model & model = lctx->model; llama_control_vector & cvec = lctx->cvec; if (data == nullptr) { // disable the current control vector (but leave allocated for later) cvec.layer_start = -1; cvec.layer_end = -1; return 0; } if (n_embd != (int) model.hparams.n_embd) { LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__); return 1; } if (cvec.tensors.empty()) { if (!llama_control_vector_init(cvec, model)) { return 1; } } cvec.layer_start = il_start; cvec.layer_end = il_end; for (size_t il = 1; il < model.hparams.n_layer; il++) { assert(cvec.tensors[il] != nullptr); const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present if (off + n_embd <= len) { ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il])); } } return 0; } struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) { struct llama_kv_cache_view result = { /*.n_cells = */ 0, /*.n_seq_max = */ n_seq_max, /*.token_count = */ 0, /*.used_cells = */ llama_get_kv_cache_used_cells(ctx), /*.max_contiguous = */ 0, /*.max_contiguous_idx = */ -1, /*.cells = */ nullptr, /*.cells_sequences = */ nullptr, }; return result; } void llama_kv_cache_view_free(struct llama_kv_cache_view * view) { if (view->cells != nullptr) { free(view->cells); view->cells = nullptr; } if (view->cells_sequences != nullptr) { free(view->cells_sequences); view->cells_sequences = nullptr; } } void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) { if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) { view->n_cells = int32_t(ctx->kv_self.size); void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells); GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells"); view->cells = (struct llama_kv_cache_view_cell *)p; p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells); GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences"); view->cells_sequences = (llama_seq_id *)p; } const std::vector & kv_cells = ctx->kv_self.cells; llama_kv_cache_view_cell * c_curr = view->cells; llama_seq_id * cs_curr = view->cells_sequences; int32_t used_cells = 0; int32_t token_count = 0; int32_t curr_contig_idx = -1; uint32_t max_contig = 0; int32_t max_contig_idx = -1; for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) { const size_t curr_size = kv_cells[i].seq_id.size(); token_count += curr_size; c_curr->pos = kv_cells[i].pos + kv_cells[i].delta; if (curr_size > 0) { if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) { max_contig = i - curr_contig_idx; max_contig_idx = curr_contig_idx; } curr_contig_idx = -1; } else if (curr_contig_idx < 0) { curr_contig_idx = i; } int seq_idx = 0; for (const llama_seq_id it : kv_cells[i].seq_id) { if (seq_idx >= view->n_seq_max) { break; } cs_curr[seq_idx] = it; seq_idx++; } if (seq_idx != 0) { used_cells++; } for (; seq_idx < view->n_seq_max; seq_idx++) { cs_curr[seq_idx] = -1; } } if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) { max_contig_idx = curr_contig_idx; max_contig = kv_cells.size() - curr_contig_idx; } view->max_contiguous = max_contig; view->max_contiguous_idx = max_contig_idx; view->token_count = token_count; view->used_cells = used_cells; if (uint32_t(used_cells) != ctx->kv_self.used) { LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n", __func__, ctx->kv_self.used, used_cells); } } int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) { int result = 0; for (uint32_t i = 0; i < ctx->kv_self.size; i++) { result += ctx->kv_self.cells[i].seq_id.size(); } return result; } int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) { return ctx->kv_self.used; } void llama_kv_cache_clear(struct llama_context * ctx) { llama_kv_cache_clear(ctx->kv_self); } bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) { return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1); } void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { if (seq_id_src == seq_id_dst) { return; } llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1); } void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) { llama_kv_cache_seq_keep(ctx->kv_self, seq_id); } void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) { if (delta == 0) { return; } llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta); } void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { if (d == 1) { return; } llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d); } llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) { return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id); } void llama_kv_cache_defrag(struct llama_context * ctx) { llama_kv_cache_defrag(ctx->kv_self); } void llama_kv_cache_update(struct llama_context * ctx) { llama_kv_cache_update_internal(*ctx); } // Returns the *maximum* size of the state size_t llama_get_state_size(const struct llama_context * ctx) { const auto & cparams = ctx->cparams; const auto & hparams = ctx->model.hparams; // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state. // for reference, std::mt19937(1337) serializes to 6701 bytes. const size_t s_rng_size = sizeof(size_t); const size_t s_rng = LLAMA_MAX_RNG_STATE; const size_t s_n_outputs = sizeof(size_t); // assume worst case for outputs although only currently set ones are serialized const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t); const size_t s_logits_size = sizeof(size_t); const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0; const size_t s_embedding_size = sizeof(size_t); const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0; const size_t s_kv_buf_size = sizeof(size_t); const size_t s_kv_head = sizeof(uint32_t); const size_t s_kv_size = sizeof(uint32_t); const size_t s_kv_used = sizeof(uint32_t); const size_t s_kv = ctx->kv_self.total_size(); const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id); const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell; const size_t s_total = ( + s_rng_size + s_rng + s_n_outputs + s_output_pos + s_logits_size + s_logits + s_embedding_size + s_embedding + s_kv_buf_size + s_kv_head + s_kv_size + s_kv_used + s_kv + s_kv_cells ); return s_total; } // llama_context_data struct llama_data_context { virtual void write(const void * src, size_t size) = 0; virtual size_t get_size_written() = 0; virtual ~llama_data_context() = default; }; struct llama_data_buffer_context : llama_data_context { uint8_t * ptr; size_t size_written = 0; llama_data_buffer_context(uint8_t * p) : ptr(p) {} void write(const void * src, size_t size) override { memcpy(ptr, src, size); ptr += size; size_written += size; } size_t get_size_written() override { return size_written; } }; struct llama_data_file_context : llama_data_context { llama_file * file; size_t size_written = 0; llama_data_file_context(llama_file * f) : file(f) {} void write(const void * src, size_t size) override { file->write_raw(src, size); size_written += size; } size_t get_size_written() override { return size_written; } }; /** copy state data into either a buffer or file depending on the passed in context * * file context: * llama_file file("/path", "wb"); * llama_data_file_context data_ctx(&file); * llama_copy_state_data(ctx, &data_ctx); * * buffer context: * std::vector buf(max_size, 0); * llama_data_buffer_context data_ctx(&buf.data()); * llama_copy_state_data(ctx, &data_ctx); * */ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) { // copy rng { std::ostringstream rng_ss; rng_ss << ctx->rng; const std::string & rng_str = rng_ss.str(); const size_t rng_size = rng_str.size(); GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE); data_ctx->write(&rng_size, sizeof(rng_size)); data_ctx->write(rng_str.data(), rng_size); } // copy outputs { // Can't use ctx->n_outputs because it's not for the // entire last batch when n_ubatch is smaller than n_batch size_t n_outputs = 0; // copy output ids { std::vector output_pos; const size_t n_batch = ctx->cparams.n_batch; const auto & output_ids = ctx->output_ids; output_pos.resize(ctx->output_size); // build a more compact representation of the output ids for (size_t i = 0; i < n_batch; ++i) { // map an output id to a position in the batch int32_t pos = output_ids[i]; if (pos >= 0) { if ((size_t) pos >= n_outputs) { n_outputs = pos + 1; } GGML_ASSERT((size_t) pos < ctx->output_size); output_pos[pos] = i; } } data_ctx->write(&n_outputs, sizeof(n_outputs)); if (n_outputs) { data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t)); } } // copy logits { const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab); data_ctx->write(&logits_size, sizeof(logits_size)); if (logits_size) { data_ctx->write(ctx->logits, logits_size * sizeof(float)); } } // copy embeddings { const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd); data_ctx->write(&embeddings_size, sizeof(embeddings_size)); if (embeddings_size) { data_ctx->write(ctx->embd, embeddings_size * sizeof(float)); } } } // copy kv cache { const auto & kv_self = ctx->kv_self; const auto & hparams = ctx->model.hparams; const uint32_t n_layer = hparams.n_layer; const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s(); const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s(); // NOTE: kv_size and kv_buf_size are mostly used for sanity checks const uint32_t kv_head = llama_kv_cache_cell_max(kv_self); const uint32_t kv_size = kv_self.size; const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head; const uint32_t kv_used = kv_self.used; data_ctx->write(&kv_buf_size, sizeof(kv_buf_size)); data_ctx->write(&kv_head, sizeof(kv_head)); data_ctx->write(&kv_size, sizeof(kv_size)); data_ctx->write(&kv_used, sizeof(kv_used)); if (kv_buf_size) { const size_t pre_kv_buf_size = data_ctx->get_size_written(); std::vector tmp_buf; for (int il = 0; il < (int) n_layer; ++il) { const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head); tmp_buf.resize(k_size); ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size()); data_ctx->write(tmp_buf.data(), tmp_buf.size()); if (kv_self.recurrent) { // v is contiguous for recurrent models // TODO: use other tensors for state models than k and v const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head); tmp_buf.resize(v_size); ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size()); data_ctx->write(tmp_buf.data(), tmp_buf.size()); continue; } // v is not contiguous, copy row by row const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head); const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size); tmp_buf.resize(v_row_size); for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) { ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size()); data_ctx->write(tmp_buf.data(), tmp_buf.size()); } } GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size); } for (uint32_t i = 0; i < kv_head; ++i) { const auto & cell = kv_self.cells[i]; const llama_pos pos = cell.pos; const size_t seq_id_size = cell.seq_id.size(); data_ctx->write(&pos, sizeof(pos)); data_ctx->write(&seq_id_size, sizeof(seq_id_size)); for (auto seq_id : cell.seq_id) { data_ctx->write(&seq_id, sizeof(seq_id)); } } } } size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) { llama_data_buffer_context data_ctx(dst); llama_copy_state_data_internal(ctx, &data_ctx); return data_ctx.get_size_written(); } // Sets the state reading from the specified source address size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) { const uint8_t * inp = src; // set rng { size_t rng_size; memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size); GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE); std::string rng_str((const char *)inp, rng_size); inp += rng_size; std::istringstream rng_ss(rng_str); rng_ss >> ctx->rng; GGML_ASSERT(!rng_ss.fail()); } // set output ids { size_t n_outputs; std::vector output_pos; memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs); GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs)); if (n_outputs) { output_pos.resize(n_outputs); memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t)); inp += n_outputs * sizeof(int32_t); for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) { int32_t id = output_pos[i]; GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch); ctx->output_ids[id] = i; } } } // set logits { size_t logits_size; memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size); GGML_ASSERT(ctx->logits_size >= logits_size); if (logits_size) { memcpy(ctx->logits, inp, logits_size * sizeof(float)); inp += logits_size * sizeof(float); } } // set embeddings { size_t embeddings_size; memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size); GGML_ASSERT(ctx->embd_size >= embeddings_size); if (embeddings_size) { memcpy(ctx->embd, inp, embeddings_size * sizeof(float)); inp += embeddings_size * sizeof(float); } } // set kv cache { const auto & kv_self = ctx->kv_self; const auto & hparams = ctx->model.hparams; const uint32_t n_layer = hparams.n_layer; const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s(); const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s(); size_t kv_buf_size; uint32_t kv_head; uint32_t kv_size; uint32_t kv_used; memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size); memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head); memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size); memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used); if (kv_self.size != kv_size) { // the KV cache needs to be big enough to load all the KV cells from the saved state GGML_ASSERT(kv_self.size >= kv_head); LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n", __func__, kv_head, kv_size, kv_self.size); } if (kv_buf_size) { const size_t pre_kv_buf_size = inp - src; GGML_ASSERT(kv_self.total_size() >= kv_buf_size); for (int il = 0; il < (int) n_layer; ++il) { const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head); ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size); inp += k_size; if (kv_self.recurrent) { // v is contiguous for recurrent models // TODO: use other tensors for state models than k and v const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head); ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size); inp += v_size; continue; } // v is not contiguous, copy row by row const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head); const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size); for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) { ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size); inp += v_row_size; } } GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size); } llama_kv_cache_clear(ctx); ctx->kv_self.head = kv_head; ctx->kv_self.used = kv_used; for (uint32_t i = 0; i < kv_head; ++i) { llama_pos pos; size_t seq_id_size; memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos); memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size); ctx->kv_self.cells[i].pos = pos; llama_seq_id seq_id; for (size_t j = 0; j < seq_id_size; ++j) { memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id); ctx->kv_self.cells[i].seq_id.insert(seq_id); } } } const size_t nread = inp - src; const size_t max_size = llama_get_state_size(ctx); GGML_ASSERT(nread <= max_size); return nread; } static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { llama_file file(path_session, "rb"); // sanity checks { const uint32_t magic = file.read_u32(); const uint32_t version = file.read_u32(); if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) { LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version); return false; } llama_hparams session_hparams; file.read_raw(&session_hparams, sizeof(llama_hparams)); if (session_hparams != ctx->model.hparams) { LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__); return false; } } // load the prompt { const uint32_t n_token_count = file.read_u32(); if (n_token_count > n_token_capacity) { LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity); return false; } file.read_raw(tokens_out, sizeof(llama_token) * n_token_count); *n_token_count_out = n_token_count; } // restore the context state { const size_t n_state_size_cur = file.size - file.tell(); const size_t n_state_size_max = llama_get_state_size(ctx); if (n_state_size_cur > n_state_size_max) { LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur); return false; } std::vector state_data(n_state_size_max); file.read_raw(state_data.data(), n_state_size_cur); llama_set_state_data(ctx, state_data.data()); } return true; } bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { try { return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out); } catch (const std::exception & err) { LLAMA_LOG_ERROR("error loading session file: %s\n", err.what()); return false; } } bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) { llama_file file(path_session, "wb"); file.write_u32(LLAMA_SESSION_MAGIC); file.write_u32(LLAMA_SESSION_VERSION); file.write_raw(&ctx->model.hparams, sizeof(llama_hparams)); // save the prompt file.write_u32((uint32_t) n_token_count); file.write_raw(tokens, sizeof(llama_token) * n_token_count); // save the context state using stream saving llama_data_file_context data_ctx(&file); llama_copy_state_data_internal(ctx, &data_ctx); return true; } void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) { ctx->cparams.n_threads = n_threads; ctx->cparams.n_threads_batch = n_threads_batch; } void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) { ctx->abort_callback = abort_callback; ctx->abort_callback_data = abort_callback_data; } void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) { ctx->cparams.causal_attn = causal_attn; } struct llama_batch llama_batch_get_one( llama_token * tokens, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) { return { /*n_tokens =*/ n_tokens, /*tokens =*/ tokens, /*embd =*/ nullptr, /*pos =*/ nullptr, /*n_seq_id =*/ nullptr, /*seq_id =*/ nullptr, /*logits =*/ nullptr, /*all_pos_0 =*/ pos_0, /*all_pos_1 =*/ 1, /*all_seq_id =*/ seq_id, }; } struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) { llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, }; if (embd) { batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd); } else { batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc); } batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc); batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc); batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1)); for (int i = 0; i < n_tokens_alloc; ++i) { batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max); } batch.seq_id[n_tokens_alloc] = nullptr; batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc); return batch; } void llama_batch_free(struct llama_batch batch) { if (batch.token) free(batch.token); if (batch.embd) free(batch.embd); if (batch.pos) free(batch.pos); if (batch.n_seq_id) free(batch.n_seq_id); if (batch.seq_id) { for (int i = 0; batch.seq_id[i] != nullptr; ++i) { free(batch.seq_id[i]); } free(batch.seq_id); } if (batch.logits) free(batch.logits); } int32_t llama_decode( struct llama_context * ctx, struct llama_batch batch) { const int ret = llama_decode_internal(*ctx, batch); if (ret < 0) { LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret); } return ret; } void llama_synchronize(struct llama_context * ctx) { ggml_backend_sched_synchronize(ctx->sched); // FIXME: if multiple single tokens are evaluated without a synchronization, // the stats will be added to the prompt evaluation stats // this should only happen when using batch size 1 to evaluate a batch // add the evaluation to the stats if (ctx->n_queued_tokens == 1) { ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us; ctx->n_eval++; } else if (ctx->n_queued_tokens > 1) { ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us; ctx->n_p_eval += ctx->n_queued_tokens; } // get a more accurate load time, upon first eval if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) { ctx->t_load_us = ggml_time_us() - ctx->t_start_us; ctx->has_evaluated_once = true; } ctx->n_queued_tokens = 0; ctx->t_compute_start_us = 0; } float * llama_get_logits(struct llama_context * ctx) { llama_synchronize(ctx); return ctx->logits; } float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) { llama_synchronize(ctx); try { if (ctx->logits == nullptr) { throw std::runtime_error("no logits"); } if ((size_t) i >= ctx->output_ids.size()) { throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size())); } const int32_t j = ctx->output_ids[i]; if (j < 0) { throw std::runtime_error(format("batch.logits[%d] != true", i)); } if ((size_t) j >= ctx->output_size) { // This should not happen throw std::runtime_error(format("corrupt output buffer (j=%d, output_size=%lu)", j, ctx->output_size)); } return ctx->logits + j*ctx->model.hparams.n_vocab; } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what()); #ifndef NDEBUG GGML_ASSERT(false); #endif return nullptr; } } float * llama_get_embeddings(struct llama_context * ctx) { llama_synchronize(ctx); return ctx->embd; } float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) { llama_synchronize(ctx); try { if (ctx->embd == nullptr) { throw std::runtime_error("no embeddings"); } if ((size_t) i >= ctx->output_ids.size()) { throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size())); } const int32_t j = ctx->output_ids[i]; if (j < 0) { throw std::runtime_error(format("batch.logits[%d] != true", i)); } if ((size_t) j >= ctx->output_size) { // This should not happen throw std::runtime_error(format("corrupt output buffer (j=%d, output_size=%lu)", j, ctx->output_size)); } return ctx->embd + j*ctx->model.hparams.n_embd; } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what()); #ifndef NDEBUG GGML_ASSERT(false); #endif return nullptr; } } float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) { llama_synchronize(ctx); auto it = ctx->embd_seq.find(seq_id); if (it == ctx->embd_seq.end()) { return nullptr; } return it->second.data(); } const char * llama_token_get_text(const struct llama_model * model, llama_token token) { GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE); return model->vocab.id_to_token[token].text.c_str(); } float llama_token_get_score(const struct llama_model * model, llama_token token) { GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE); return model->vocab.id_to_token[token].score; } llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) { GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE); return model->vocab.id_to_token[token].type; } llama_token llama_token_bos(const struct llama_model * model) { return model->vocab.special_bos_id; } llama_token llama_token_eos(const struct llama_model * model) { return model->vocab.special_eos_id; } llama_token llama_token_nl(const struct llama_model * model) { return model->vocab.linefeed_id; } int32_t llama_add_bos_token(const struct llama_model * model) { return model->vocab.special_add_bos; } int32_t llama_add_eos_token(const struct llama_model * model) { return model->vocab.special_add_eos; } llama_token llama_token_prefix(const struct llama_model * model) { return model->vocab.special_prefix_id; } llama_token llama_token_middle(const struct llama_model * model) { return model->vocab.special_middle_id; } llama_token llama_token_suffix(const struct llama_model * model) { return model->vocab.special_suffix_id; } llama_token llama_token_eot(const struct llama_model * model) { return model->vocab.special_eot_id; } int32_t llama_tokenize( const struct llama_model * model, const char * text, int32_t text_len, llama_token * tokens, int32_t n_tokens_max, bool add_bos, bool special) { auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_bos, special); if (n_tokens_max < (int) res.size()) { // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__); return -((int) res.size()); } for (size_t i = 0; i < res.size(); i++) { tokens[i] = res[i]; } return res.size(); } static std::string llama_decode_text(const std::string & text) { std::string decoded_text; auto unicode_sequences = unicode_cpts_from_utf8(text); for (auto & unicode_sequence : unicode_sequences) { decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(unicode_sequence)); } return decoded_text; } // does not write null-terminator to buf int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length) { if (0 <= token && token < llama_n_vocab(model)) { switch (llama_vocab_get_type(model->vocab)) { case LLAMA_VOCAB_TYPE_WPM: case LLAMA_VOCAB_TYPE_SPM: { // NOTE: we accept all unsupported token types, // suppressing them like CONTROL tokens. if (llama_is_normal_token(model->vocab, token)) { std::string result = model->vocab.id_to_token[token].text; llama_unescape_whitespace(result); if (length < (int) result.length()) { return -(int) result.length(); } memcpy(buf, result.c_str(), result.length()); return result.length(); } else if (llama_is_user_defined_token(model->vocab, token)) { std::string result = model->vocab.id_to_token[token].text; if (length < (int) result.length()) { return -(int) result.length(); } memcpy(buf, result.c_str(), result.length()); return result.length(); } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT if (length < 3) { return -3; } memcpy(buf, "\xe2\x96\x85", 3); return 3; } else if (llama_is_control_token(model->vocab, token)) { ; } else if (llama_is_byte_token(model->vocab, token)) { if (length < 1) { return -1; } buf[0] = llama_token_to_byte(model->vocab, token); return 1; } break; } case LLAMA_VOCAB_TYPE_BPE: { // NOTE: we accept all unsupported token types, // suppressing them like CONTROL tokens. if (llama_is_normal_token(model->vocab, token)) { std::string result = model->vocab.id_to_token[token].text; result = llama_decode_text(result); if (length < (int) result.length()) { return -(int) result.length(); } memcpy(buf, result.c_str(), result.length()); return result.length(); } else if (llama_is_user_defined_token(model->vocab, token)) { std::string result = model->vocab.id_to_token[token].text; if (length < (int) result.length()) { return -(int) result.length(); } memcpy(buf, result.c_str(), result.length()); return result.length(); } else if (llama_is_control_token(model->vocab, token)) { ; } break; } default: GGML_ASSERT(false); } } return 0; } // trim whitespace from the beginning and end of a string static std::string trim(const std::string & str) { size_t start = 0; size_t end = str.size(); while (start < end && isspace(str[start])) { start += 1; } while (end > start && isspace(str[end - 1])) { end -= 1; } return str.substr(start, end - start); } // Simple version of "llama_apply_chat_template" that only works with strings // This function uses heuristic checks to determine commonly used template. It is not a jinja parser. static int32_t llama_chat_apply_template_internal( const std::string & tmpl, const std::vector & chat, std::string & dest, bool add_ass) { // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527 std::stringstream ss; if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) { // chatml template for (auto message : chat) { ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n"; } if (add_ass) { ss << "<|im_start|>assistant\n"; } } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) { // llama2 template and its variants // [variant] support system message bool support_system_message = tmpl.find("<>") != std::string::npos; // [variant] space before + after response bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos; // [variant] add BOS inside history bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos; // [variant] trim spaces from the input message bool strip_message = tmpl.find("content.strip()") != std::string::npos; // construct the prompt bool is_inside_turn = true; // skip BOS at the beginning ss << "[INST] "; for (auto message : chat) { std::string content = strip_message ? trim(message->content) : message->content; std::string role(message->role); if (!is_inside_turn) { is_inside_turn = true; ss << (add_bos_inside_history ? "[INST] " : "[INST] "); } if (role == "system") { if (support_system_message) { ss << "<>\n" << content << "\n<>\n\n"; } else { // if the model does not support system message, we still include it in the first message, but without <> ss << content << "\n"; } } else if (role == "user") { ss << content << " [/INST]"; } else { ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << ""; is_inside_turn = false; } } // llama2 templates seem to not care about "add_generation_prompt" } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) { // zephyr template for (auto message : chat) { ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n"; } if (add_ass) { ss << "<|assistant|>\n"; } } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) { // mlabonne/AlphaMonarch-7B template (the is included inside history) for (auto message : chat) { std::string bos = (message == chat.front()) ? "" : ""; // skip BOS for first message ss << bos << message->role << "\n" << message->content << "\n"; } if (add_ass) { ss << "assistant\n"; } } else if (tmpl == "gemma" || tmpl.find("") != std::string::npos) { // google/gemma-7b-it std::string system_prompt = ""; for (auto message : chat) { std::string role(message->role); if (role == "system") { // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken system_prompt = trim(message->content); continue; } // in gemma, "assistant" is "model" role = role == "assistant" ? "model" : message->role; ss << "" << role << "\n"; if (!system_prompt.empty() && role != "model") { ss << system_prompt << "\n\n"; system_prompt = ""; } ss << trim(message->content) << "\n"; } if (add_ass) { ss << "model\n"; } } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) { // OrionStarAI/Orion-14B-Chat std::string system_prompt = ""; for (auto message : chat) { std::string role(message->role); if (role == "system") { // there is no system message support, we will merge it with user prompt system_prompt = message->content; continue; } else if (role == "user") { ss << "Human: "; if (!system_prompt.empty()) { ss << system_prompt << "\n\n"; system_prompt = ""; } ss << message->content << "\n\nAssistant: "; } else { ss << message->content << ""; } } } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) { // openchat/openchat-3.5-0106, for (auto message : chat) { std::string role(message->role); if (role == "system") { ss << message->content << "<|end_of_turn|>"; } else { role[0] = toupper(role[0]); ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>"; } } if (add_ass) { ss << "GPT4 Correct Assistant:"; } } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) { // eachadea/vicuna-13b-1.1 (and Orca variant) for (auto message : chat) { std::string role(message->role); if (role == "system") { // Orca-Vicuna variant uses a system prefix if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) { ss << "SYSTEM: " << message->content << "\n"; } else { ss << message->content << "\n\n"; } } else if (role == "user") { ss << "USER: " << message->content << "\n"; } else if (role == "assistant") { ss << "ASSISTANT: " << message->content << "\n"; } } if (add_ass) { ss << "ASSISTANT:"; } } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) { // deepseek-ai/deepseek-coder-33b-instruct for (auto message : chat) { std::string role(message->role); if (role == "system") { ss << message->content; } else if (role == "user") { ss << "### Instruction:\n" << message->content << "\n"; } else if (role == "assistant") { ss << "### Response:\n" << message->content << "\n<|EOT|>\n"; } } if (add_ass) { ss << "### Response:\n"; } } else { // template not supported return -1; } dest = ss.str(); return dest.size(); } LLAMA_API int32_t llama_chat_apply_template( const struct llama_model * model, const char * tmpl, const struct llama_chat_message * chat, size_t n_msg, bool add_ass, char * buf, int32_t length) { std::string curr_tmpl(tmpl == nullptr ? "" : tmpl); if (tmpl == nullptr) { GGML_ASSERT(model != nullptr); // load template from model std::vector model_template(2048, 0); // longest known template is about 1200 bytes std::string template_key = "tokenizer.chat_template"; int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size()); if (res < 0) { // worst case: there is no information about template, we will use chatml by default curr_tmpl = "chatml"; // see llama_chat_apply_template_internal } else { curr_tmpl = std::string(model_template.data(), model_template.size()); } } // format the chat to string std::vector chat_vec; chat_vec.resize(n_msg); for (size_t i = 0; i < n_msg; i++) { chat_vec[i] = &chat[i]; } std::string formatted_chat; int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass); if (res < 0) { return res; } if (buf && length > 0) { strncpy(buf, formatted_chat.c_str(), length); } return res; } LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) { static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf"; if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) { return strlen(split_path); } return 0; } int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) { std::string str_split_path(split_path); char postfix[32]; snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count); std::string str_postfix(postfix); // check if dest ends with postfix int size_prefix = str_split_path.size() - str_postfix.size(); if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) { snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path); return size_prefix; } return 0; } struct llama_timings llama_get_timings(struct llama_context * ctx) { struct llama_timings result = { /*.t_start_ms =*/ 1e-3 * ctx->t_start_us, /*.t_end_ms =*/ 1.00 * ggml_time_ms(), /*.t_load_ms =*/ 1e-3 * ctx->t_load_us, /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us, /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us, /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us, /*.n_sample =*/ std::max(1, ctx->n_sample), /*.n_p_eval =*/ std::max(1, ctx->n_p_eval), /*.n_eval =*/ std::max(1, ctx->n_eval), }; return result; } void llama_print_timings(struct llama_context * ctx) { const llama_timings timings = llama_get_timings(ctx); LLAMA_LOG_INFO("\n"); LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms); LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample); LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n", __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval); LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval); LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval)); } void llama_reset_timings(struct llama_context * ctx) { ctx->t_start_us = ggml_time_us(); ctx->t_sample_us = ctx->n_sample = 0; ctx->t_eval_us = ctx->n_eval = 0; ctx->t_p_eval_us = ctx->n_p_eval = 0; } const char * llama_print_system_info(void) { static std::string s; s = ""; s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | "; s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | "; s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | "; s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | "; s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | "; s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | "; s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | "; s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | "; s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | "; s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | "; s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | "; s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | "; s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | "; s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | "; s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | "; s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | "; s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | "; return s.c_str(); } void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) { fprintf(stream, "\n"); fprintf(stream, "###########\n"); fprintf(stream, "# Timings #\n"); fprintf(stream, "###########\n"); fprintf(stream, "\n"); fprintf(stream, "mst_eval: %.2f # ms / token during generation\n", 1.0e-3 * ctx->t_eval_us / ctx->n_eval); fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n", 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval); fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n", 1.0e-3 * ctx->t_sample_us / ctx->n_sample); fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval); fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval); fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample); fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us); fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us); fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us); fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us); fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n", 1.0e6 * ctx->n_eval / ctx->t_eval_us); fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n", 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us); fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n", 1.0e6 * ctx->n_sample / ctx->t_sample_us); } // For internal test use const std::vector> & llama_internal_get_tensor_map( struct llama_context * ctx ) { return ctx->model.tensors_by_name; } void llama_log_set(ggml_log_callback log_callback, void * user_data) { g_state.log_callback = log_callback ? log_callback : llama_log_callback_default; g_state.log_callback_user_data = user_data; #ifdef GGML_USE_METAL ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data); #endif } static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) { va_list args_copy; va_copy(args_copy, args); char buffer[128]; int len = vsnprintf(buffer, 128, format, args); if (len < 128) { g_state.log_callback(level, buffer, g_state.log_callback_user_data); } else { char* buffer2 = new char[len+1]; vsnprintf(buffer2, len+1, format, args_copy); buffer2[len] = 0; g_state.log_callback(level, buffer2, g_state.log_callback_user_data); delete[] buffer2; } va_end(args_copy); } static void llama_log_internal(ggml_log_level level, const char * format, ...) { va_list args; va_start(args, format); llama_log_internal_v(level, format, args); va_end(args); } static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) { (void) level; (void) user_data; fputs(text, stderr); fflush(stderr); }