#include "ggml.h" #include "ggml-alloc.h" #include "ggml-backend.h" #include "llama.h" #include "common.h" #include "train.h" #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif struct my_llama_hparams { uint32_t n_vocab = 32000; uint32_t kv_size = 512; uint32_t n_embd = 4096; uint32_t n_ff = 11008; uint32_t n_head = 32; uint32_t n_head_kv = 32; uint32_t n_layer = 32; // float f_norm_eps = 1e-5f; // falcon float f_norm_rms_eps = 1e-5f; // llama float rope_freq_base = 10000.0f; float rope_freq_scale = 1.0f; uint32_t n_gqa() const { return n_head/n_head_kv; } uint32_t n_embd_head() const { return n_embd/n_head; } uint32_t n_embd_gqa() const { return n_embd/n_gqa(); } bool operator!=(const my_llama_hparams& other) const { return memcmp(this, &other, sizeof(other)); } }; struct my_llama_layer { // normalization struct ggml_tensor * attention_norm; // attention struct ggml_tensor * wq; struct ggml_tensor * wk; struct ggml_tensor * wv; struct ggml_tensor * wo; // normalization struct ggml_tensor * ffn_norm; // ff struct ggml_tensor * ffn_gate; // w1 struct ggml_tensor * ffn_down; // w2 struct ggml_tensor * ffn_up; // w3 }; struct my_llama_model { struct my_llama_hparams hparams; struct ggml_tensor * tok_embeddings; struct ggml_tensor * norm; struct ggml_tensor * output; std::vector layers; }; struct my_llama_lora_hparams { uint32_t lora_r = 1; uint32_t lora_alpha = 1; uint32_t n_rank_attention_norm = 1; uint32_t n_rank_wq = 4; uint32_t n_rank_wk = 4; uint32_t n_rank_wv = 4; uint32_t n_rank_wo = 4; uint32_t n_rank_ffn_norm = 1; uint32_t n_rank_ffn_gate = 4; uint32_t n_rank_ffn_down = 4; uint32_t n_rank_ffn_up = 4; uint32_t n_rank_tok_embeddings = 4; uint32_t n_rank_norm = 1; uint32_t n_rank_output = 4; bool operator!=(const my_llama_lora_hparams& other) const { return memcmp(this, &other, sizeof(other)); } }; struct my_llama_lora_layer { // normalization struct ggml_tensor * attention_norm_a; struct ggml_tensor * attention_norm_b; // attention struct ggml_tensor * wq_a; struct ggml_tensor * wq_b; struct ggml_tensor * wk_a; struct ggml_tensor * wk_b; struct ggml_tensor * wv_a; struct ggml_tensor * wv_b; struct ggml_tensor * wo_a; struct ggml_tensor * wo_b; // normalization struct ggml_tensor * ffn_norm_a; struct ggml_tensor * ffn_norm_b; // ff struct ggml_tensor * ffn_gate_a; struct ggml_tensor * ffn_gate_b; struct ggml_tensor * ffn_down_a; struct ggml_tensor * ffn_down_b; struct ggml_tensor * ffn_up_a; struct ggml_tensor * ffn_up_b; }; struct my_llama_lora { struct ggml_context * ctx = NULL; ggml_backend_buffer_t data; my_llama_lora_hparams hparams; struct ggml_tensor * tok_embeddings_a; struct ggml_tensor * tok_embeddings_b; struct ggml_tensor * norm_a; struct ggml_tensor * norm_b; struct ggml_tensor * output_a; struct ggml_tensor * output_b; std::vector layers; }; // gguf constants static const char * LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora"; static const char * LLM_KV_TRAINING_TYPE = "training.type"; static const char * LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD = "training.lora.rank.token_embd"; static const char * LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM = "training.lora.rank.output_norm"; static const char * LLM_KV_TRAINING_LORA_RANK_OUTPUT = "training.lora.rank.output"; static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_NORM = "training.lora.rank.attn_norm"; static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_Q = "training.lora.rank.attn_q"; static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_K = "training.lora.rank.attn_k"; static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_V = "training.lora.rank.attn_v"; static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_OUT = "training.lora.rank.attn_output"; static const char * LLM_KV_TRAINING_LORA_RANK_FFN_NORM = "training.lora.rank.ffn_norm"; static const char * LLM_KV_TRAINING_LORA_RANK_FFN_GATE = "training.lora.rank.ffn_gate"; static const char * LLM_KV_TRAINING_LORA_RANK_FFN_DOWN = "training.lora.rank.ffn_down"; static const char * LLM_KV_TRAINING_LORA_RANK_FFN_UP = "training.lora.rank.ffn_up"; // gguf constants (sync with gguf.py) static const char * LLM_KV_GENERAL_ARCHITECTURE = "general.architecture"; static const char * LLM_KV_GENERAL_FILE_TYPE = "general.file_type"; static const char * LLM_KV_CONTEXT_LENGTH = "%s.context_length"; static const char * LLM_KV_EMBEDDING_LENGTH = "%s.embedding_length"; static const char * LLM_KV_BLOCK_COUNT = "%s.block_count"; static const char * LLM_KV_FEED_FORWARD_LENGTH = "%s.feed_forward_length"; static const char * LLM_KV_ATTENTION_HEAD_COUNT = "%s.attention.head_count"; static const char * LLM_KV_ATTENTION_HEAD_COUNT_KV = "%s.attention.head_count_kv"; static const char * LLM_KV_ATTENTION_LAYERNORM_RMS_EPS = "%s.attention.layer_norm_rms_epsilon"; static const char * LLM_KV_ROPE_DIMENSION_COUNT = "%s.rope.dimension_count"; static const char * LLM_KV_ROPE_FREQ_BASE = "%s.rope.freq_base"; // TODO load in llama.cpp static const char * LLM_KV_ROPE_SCALE_LINEAR = "%s.rope.scale_linear"; static const char * LLM_TENSOR_TOKEN_EMBD = "token_embd"; static const char * LLM_TENSOR_OUTPUT_NORM = "output_norm"; static const char * LLM_TENSOR_OUTPUT = "output"; static const char * LLM_TENSOR_ATTN_NORM = "blk.%d.attn_norm"; static const char * LLM_TENSOR_ATTN_Q = "blk.%d.attn_q"; static const char * LLM_TENSOR_ATTN_K = "blk.%d.attn_k"; static const char * LLM_TENSOR_ATTN_V = "blk.%d.attn_v"; static const char * LLM_TENSOR_ATTN_OUT = "blk.%d.attn_output"; static const char * LLM_TENSOR_FFN_NORM = "blk.%d.ffn_norm"; static const char * LLM_TENSOR_FFN_GATE = "blk.%d.ffn_gate"; static const char * LLM_TENSOR_FFN_DOWN = "blk.%d.ffn_down"; static const char * LLM_TENSOR_FFN_UP = "blk.%d.ffn_up"; static void print_params(struct my_llama_hparams * params) { printf("%s: n_vocab : %u\n", __func__, params->n_vocab); printf("%s: kv_size : %u\n", __func__, params->kv_size); printf("%s: n_embd : %u\n", __func__, params->n_embd); printf("%s: n_ff : %u\n", __func__, params->n_ff); printf("%s: n_head : %u\n", __func__, params->n_head); printf("%s: n_head_kv : %u\n", __func__, params->n_head_kv); printf("%s: n_layer : %u\n", __func__, params->n_layer); printf("%s: norm_rms_eps : %f\n", __func__, params->f_norm_rms_eps); printf("%s: rope_freq_base : %f\n", __func__, params->rope_freq_base); printf("%s: rope_freq_scale : %f\n", __func__, params->rope_freq_scale); } static void print_lora_params(struct my_llama_lora_hparams * params) { printf("%s: n_rank_attention_norm : %u\n", __func__, params->n_rank_attention_norm); printf("%s: n_rank_wq : %u\n", __func__, params->n_rank_wq); printf("%s: n_rank_wk : %u\n", __func__, params->n_rank_wk); printf("%s: n_rank_wv : %u\n", __func__, params->n_rank_wv); printf("%s: n_rank_wo : %u\n", __func__, params->n_rank_wo); printf("%s: n_rank_ffn_norm : %u\n", __func__, params->n_rank_ffn_norm); printf("%s: n_rank_ffn_gate : %u\n", __func__, params->n_rank_ffn_gate); printf("%s: n_rank_ffn_down : %u\n", __func__, params->n_rank_ffn_down); printf("%s: n_rank_ffn_up : %u\n", __func__, params->n_rank_ffn_up); printf("%s: n_rank_tok_embeddings : %u\n", __func__, params->n_rank_tok_embeddings); printf("%s: n_rank_norm : %u\n", __func__, params->n_rank_norm); printf("%s: n_rank_output : %u\n", __func__, params->n_rank_output); } #define GGUF_GET_KEY(ctx, dst, func, type, req, key) \ { \ const std::string skey(key); \ const int kid = gguf_find_key(ctx, skey.c_str()); \ if (kid >= 0) { \ enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \ if (ktype != (type)) { \ die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \ } \ (dst) = func(ctx, kid); \ } else if (req) { \ die_fmt("key not found in model: %s", skey.c_str()); \ } \ } static void load_model_hparams_gguf(struct gguf_context * ctx, struct my_llama_hparams * hparams, const char * expected_arch) { std::string arch; GGUF_GET_KEY(ctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE); if (expected_arch != NULL) { if (arch != expected_arch) { printf("%s: arch=%s expected_arch=%s\n", __func__, arch.c_str(), expected_arch); } GGML_ASSERT(arch == expected_arch); } std::vector keybuf; keybuf.resize(512); auto kv = [&arch, &keybuf](const char * key) -> const char * { snprintf(keybuf.data(), keybuf.size(), key, arch.c_str()); return keybuf.data(); }; GGUF_GET_KEY(ctx, hparams->n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH)); GGUF_GET_KEY(ctx, hparams->kv_size, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_CONTEXT_LENGTH)); GGUF_GET_KEY(ctx, hparams->n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH)); GGUF_GET_KEY(ctx, hparams->n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT)); GGUF_GET_KEY(ctx, hparams->n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT)); // n_head_kv is optional, default to n_head hparams->n_head_kv = hparams->n_head; GGUF_GET_KEY(ctx, hparams->n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV)); float rope_freq_scale = 1.0f; GGUF_GET_KEY(ctx, hparams->f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS)); GGUF_GET_KEY(ctx, hparams->rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE)); GGUF_GET_KEY(ctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR)); if (rope_freq_scale != 1.0f) { hparams->rope_freq_scale = 1.0f / rope_freq_scale; } } static void init_model(struct llama_model * input, struct my_llama_model * model, const char * fn_model, uint32_t kv_size) { auto & hparams = model->hparams; std::vector tn_buf; tn_buf.resize(GGML_MAX_NAME); auto tn = [&tn_buf](const char * key) -> const char * { snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key); return tn_buf.data(); }; auto tni = [&tn_buf](const char * key, int bid) -> const char * { snprintf(tn_buf.data(), tn_buf.size(), key, bid); std::string s = tn_buf.data(); snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str()); return tn_buf.data(); }; // get parameters directly from gguf file { struct gguf_init_params params = { /*.no_alloc = */ false, /*.ctx = */ NULL, }; struct gguf_context * mctx = gguf_init_from_file(fn_model, params); load_model_hparams_gguf(mctx, &hparams, "llama"); gguf_free(mctx); } hparams.n_vocab = llama_n_vocab(input); hparams.kv_size = kv_size; // get tensors from llama_model (possibly mmapped) model->tok_embeddings = llama_get_model_tensor(input, tn(LLM_TENSOR_TOKEN_EMBD)); model->norm = llama_get_model_tensor(input, tn(LLM_TENSOR_OUTPUT_NORM)); model->output = llama_get_model_tensor(input, tn(LLM_TENSOR_OUTPUT)); assert_shape_2d(model->tok_embeddings, hparams.n_embd, hparams.n_vocab); assert_shape_1d(model->norm, hparams.n_embd); assert_shape_2d(model->output, hparams.n_embd, hparams.n_vocab); model->layers.resize(hparams.n_layer); for (uint32_t i = 0; i < hparams.n_layer; ++i) { auto & layer = model->layers[i]; layer.attention_norm = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_NORM, i)); layer.wq = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_Q, i)); layer.wk = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_K, i)); layer.wv = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_V, i)); layer.wo = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_OUT, i)); layer.ffn_norm = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_NORM, i)); layer.ffn_gate = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_GATE, i)); layer.ffn_down = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_DOWN, i)); layer.ffn_up = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_UP, i)); assert_shape_1d(layer.attention_norm, hparams.n_embd); assert_shape_2d(layer.wq, hparams.n_embd, hparams.n_embd); assert_shape_2d(layer.wk, hparams.n_embd, hparams.n_embd_gqa()); assert_shape_2d(layer.wv, hparams.n_embd, hparams.n_embd_gqa()); assert_shape_2d(layer.wo, hparams.n_embd, hparams.n_embd); assert_shape_1d(layer.ffn_norm, hparams.n_embd); assert_shape_2d(layer.ffn_gate, hparams.n_embd, hparams.n_ff); assert_shape_2d(layer.ffn_down, hparams.n_ff, hparams.n_embd); assert_shape_2d(layer.ffn_up, hparams.n_embd, hparams.n_ff); } } static void set_param_lora(struct my_llama_lora * lora) { const uint32_t n_layer = lora->layers.size(); struct ggml_context* ctx = lora->ctx; ggml_set_param(ctx, lora->tok_embeddings_a); ggml_set_param(ctx, lora->tok_embeddings_b); ggml_set_param(ctx, lora->norm_a); ggml_set_param(ctx, lora->norm_b); ggml_set_param(ctx, lora->output_a); ggml_set_param(ctx, lora->output_b); for (uint32_t i = 0; i < n_layer; ++i) { auto & layer = lora->layers[i]; ggml_set_param(ctx, layer.attention_norm_a); ggml_set_param(ctx, layer.attention_norm_b); ggml_set_param(ctx, layer.wq_a); ggml_set_param(ctx, layer.wq_b); ggml_set_param(ctx, layer.wk_a); ggml_set_param(ctx, layer.wk_b); ggml_set_param(ctx, layer.wv_a); ggml_set_param(ctx, layer.wv_b); ggml_set_param(ctx, layer.wo_a); ggml_set_param(ctx, layer.wo_b); ggml_set_param(ctx, layer.ffn_norm_a); ggml_set_param(ctx, layer.ffn_norm_b); ggml_set_param(ctx, layer.ffn_gate_a); ggml_set_param(ctx, layer.ffn_gate_b); ggml_set_param(ctx, layer.ffn_down_a); ggml_set_param(ctx, layer.ffn_down_b); ggml_set_param(ctx, layer.ffn_up_a); ggml_set_param(ctx, layer.ffn_up_b); } } static void init_lora(const struct my_llama_model * model, struct my_llama_lora * lora) { const auto & lparams = lora->hparams; const uint32_t n_embd = model->hparams.n_embd; const uint32_t n_embd_gqa = model->hparams.n_embd_gqa(); const uint32_t n_layer = model->hparams.n_layer; const uint32_t n_vocab = model->hparams.n_vocab; const uint32_t n_ff = model->hparams.n_ff; std::vector tn_buf; tn_buf.resize(GGML_MAX_NAME); auto tn = [&tn_buf](const char * key, const char * suffix) -> const char * { snprintf(tn_buf.data(), tn_buf.size(), "%s%s", key, suffix); return tn_buf.data(); }; auto tni = [&tn_buf](const char * key, const char * suffix, int bid) -> const char * { snprintf(tn_buf.data(), tn_buf.size(), key, bid); std::string s = tn_buf.data(); snprintf(tn_buf.data(), tn_buf.size(), "%s%s", s.c_str(), suffix); return tn_buf.data(); }; // context for lora tensors without their data struct ggml_init_params ctx_lora_params; ctx_lora_params.mem_size = ggml_tensor_overhead()*2*(6 + n_layer*18); ctx_lora_params.mem_buffer = NULL; ctx_lora_params.no_alloc = true; struct ggml_context * ctx = ggml_init(ctx_lora_params); lora->ctx = ctx; lora->tok_embeddings_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_tok_embeddings, n_embd); lora->tok_embeddings_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_tok_embeddings, n_vocab); lora->norm_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_norm, n_embd); lora->norm_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_norm, 1); lora->output_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_output, n_embd); lora->output_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_output, n_vocab); ggml_set_name(lora->tok_embeddings_a, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.lora_a")); ggml_set_name(lora->tok_embeddings_b, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.lora_b")); ggml_set_name(lora->norm_a, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.lora_a")); ggml_set_name(lora->norm_b, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.lora_b")); ggml_set_name(lora->output_a, tn(LLM_TENSOR_OUTPUT, ".weight.lora_a")); ggml_set_name(lora->output_b, tn(LLM_TENSOR_OUTPUT, ".weight.lora_b")); lora->layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { auto & layer = lora->layers[i]; layer.attention_norm_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_attention_norm, n_embd); layer.attention_norm_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_attention_norm, 1); layer.wq_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wq, n_embd); layer.wq_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wq, n_embd); layer.wk_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wk, n_embd); layer.wk_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wk, n_embd_gqa); layer.wv_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wv, n_embd); layer.wv_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wv, n_embd_gqa); layer.wo_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wo, n_embd); layer.wo_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wo, n_embd); layer.ffn_norm_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_norm, n_embd); layer.ffn_norm_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_norm, 1); layer.ffn_gate_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_gate, n_embd); layer.ffn_gate_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_gate, n_ff); layer.ffn_down_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_down, n_ff); layer.ffn_down_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_down, n_embd); layer.ffn_up_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_up, n_embd); layer.ffn_up_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_up, n_ff); ggml_set_name(layer.attention_norm_a, tni(LLM_TENSOR_ATTN_NORM, ".weight.lora_a", i)); ggml_set_name(layer.attention_norm_b, tni(LLM_TENSOR_ATTN_NORM, ".weight.lora_b", i)); ggml_set_name(layer.wq_a, tni(LLM_TENSOR_ATTN_Q, ".weight.lora_a", i)); ggml_set_name(layer.wq_b, tni(LLM_TENSOR_ATTN_Q, ".weight.lora_b", i)); ggml_set_name(layer.wk_a, tni(LLM_TENSOR_ATTN_K, ".weight.lora_a", i)); ggml_set_name(layer.wk_b, tni(LLM_TENSOR_ATTN_K, ".weight.lora_b", i)); ggml_set_name(layer.wv_a, tni(LLM_TENSOR_ATTN_V, ".weight.lora_a", i)); ggml_set_name(layer.wv_b, tni(LLM_TENSOR_ATTN_V, ".weight.lora_b", i)); ggml_set_name(layer.wo_a, tni(LLM_TENSOR_ATTN_OUT, ".weight.lora_a", i)); ggml_set_name(layer.wo_b, tni(LLM_TENSOR_ATTN_OUT, ".weight.lora_b", i)); ggml_set_name(layer.ffn_norm_a, tni(LLM_TENSOR_FFN_NORM, ".weight.lora_a", i)); ggml_set_name(layer.ffn_norm_b, tni(LLM_TENSOR_FFN_NORM, ".weight.lora_b", i)); ggml_set_name(layer.ffn_gate_a, tni(LLM_TENSOR_FFN_GATE, ".weight.lora_a", i)); ggml_set_name(layer.ffn_gate_b, tni(LLM_TENSOR_FFN_GATE, ".weight.lora_b", i)); ggml_set_name(layer.ffn_down_a, tni(LLM_TENSOR_FFN_DOWN, ".weight.lora_a", i)); ggml_set_name(layer.ffn_down_b, tni(LLM_TENSOR_FFN_DOWN, ".weight.lora_b", i)); ggml_set_name(layer.ffn_up_a, tni(LLM_TENSOR_FFN_UP, ".weight.lora_a", i)); ggml_set_name(layer.ffn_up_b, tni(LLM_TENSOR_FFN_UP, ".weight.lora_b", i)); } set_param_lora(lora); // allocate data for lora tensors lora->data = ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_cpu_buffer_type()); } static void randomize_lora(struct my_llama_lora * lora, int seed, float mean, float std, float min, float max) { const uint32_t n_layer = lora->layers.size(); struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max); randomize_tensor_normal(lora->tok_embeddings_a, rnd); ggml_set_zero(lora->tok_embeddings_b); randomize_tensor_normal(lora->norm_a, rnd); ggml_set_zero(lora->norm_b); randomize_tensor_normal(lora->output_a, rnd); ggml_set_zero(lora->output_b); for (uint32_t i = 0; i < n_layer; ++i) { auto & layer = lora->layers[i]; randomize_tensor_normal(layer.attention_norm_a, rnd); ggml_set_zero(layer.attention_norm_b); randomize_tensor_normal(layer.wq_a, rnd); ggml_set_zero(layer.wq_b); randomize_tensor_normal(layer.wk_a, rnd); ggml_set_zero(layer.wk_b); randomize_tensor_normal(layer.wv_a, rnd); ggml_set_zero(layer.wv_b); randomize_tensor_normal(layer.wo_a, rnd); ggml_set_zero(layer.wo_b); randomize_tensor_normal(layer.ffn_norm_a, rnd); ggml_set_zero(layer.ffn_norm_b); randomize_tensor_normal(layer.ffn_gate_a, rnd); ggml_set_zero(layer.ffn_gate_b); randomize_tensor_normal(layer.ffn_down_a, rnd); ggml_set_zero(layer.ffn_down_b); randomize_tensor_normal(layer.ffn_up_a, rnd); ggml_set_zero(layer.ffn_up_b); } free_random_normal_distribution(rnd); } static struct ggml_tensor * llama_build_lora_finetune_graphs( struct my_llama_model * model, struct my_llama_lora * lora, ggml_gallocr_t alloc, struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, struct ggml_cgraph * gb_tmp, struct ggml_tensor * * logits, struct ggml_tensor * tokens_input, struct ggml_tensor * targets, const int n_tokens, const int n_batch, const bool enable_flash_attn, const bool enable_checkpointing, const bool measure_only) { ggml_set_scratch(ctx, { 0, 0, nullptr, }); const int n_past = 0; const int N = n_tokens; const auto & hparams = model->hparams; const int kv_size = hparams.kv_size; const int n_vocab = hparams.n_vocab; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_head = hparams.n_head; const int n_head_kv = hparams.n_head_kv; const int n_ff = hparams.n_ff; const int n_rot = hparams.n_embd_head(); const int n_embd_head = hparams.n_embd_head(); const int n_embd_gqa = hparams.n_embd_gqa(); const float rms_norm_eps = hparams.f_norm_rms_eps; const float rope_freq_base = hparams.rope_freq_base; const float rope_freq_scale = hparams.rope_freq_scale; GGML_ASSERT((size_t) n_layer == lora->layers.size()); auto set_name = [](struct ggml_tensor * t, const char * n) { ggml_set_name(t, n); if (t->grad) { ggml_format_name(t->grad, "%s->grad", n); } }; // KQ_pos - contains the positions struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N); ggml_set_input(KQ_pos); // rope has so much parameters that we make a custom function for it auto rope = [ctx, KQ_pos, n_rot, kv_size, rope_freq_base, rope_freq_scale] (struct ggml_tensor * t) -> struct ggml_tensor * { // not capturing these, to silcence warnings const int rope_mode = 0; return ggml_rope_custom(ctx, t, KQ_pos, n_rot, rope_mode, kv_size, 0, rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f ); }; set_name(tokens_input, "tokens_input"); set_name(targets, "targets"); GGML_ASSERT(tokens_input->type == GGML_TYPE_I32); auto add_to_f32 = [] (struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) { if (ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16) { return ggml_add_cast(ctx, a, b, GGML_TYPE_F32); } else if (a->type == GGML_TYPE_F32) { return ggml_add(ctx, a, b); } else { die_fmt("%s: Finetuning on tensors with type '%s' is not yet supported.\n", __func__, ggml_type_name(a->type)); } }; struct ggml_tensor * tok_embeddings = add_to_f32(ctx, model->tok_embeddings, ggml_mul_mat(ctx, lora->tok_embeddings_a, lora->tok_embeddings_b)); struct ggml_tensor * norm = add_to_f32(ctx, model->norm, ggml_mul_mat(ctx, lora->norm_a, lora->norm_b)); struct ggml_tensor * output = add_to_f32(ctx, model->output, ggml_mul_mat(ctx, lora->output_a, lora->output_b)); struct ggml_tensor * t00 = ggml_reshape_1d(ctx, tokens_input, N*n_batch); set_name(t00, "t00"); assert_shape_1d(t00, N*n_batch); struct ggml_tensor * t01 = ggml_get_rows(ctx, tok_embeddings, t00); set_name(t01, "t01"); assert_shape_2d(t01, n_embd, N*n_batch); struct ggml_tensor * cur = t01; std::vector checkpoints; if (enable_checkpointing) { checkpoints.push_back(tokens_input); checkpoints.push_back(targets); checkpoints.push_back(t00); checkpoints.push_back(t01); } const float kv_scale = 1.0f/sqrtf(float(n_embd)/n_head); for (int il = 0; il < n_layer; ++il) { struct my_llama_layer & layer = model->layers[il]; struct my_llama_lora_layer & llayer = lora->layers[il]; struct ggml_tensor * attention_norm = add_to_f32(ctx, layer.attention_norm, ggml_mul_mat(ctx, llayer.attention_norm_a, llayer.attention_norm_b)); struct ggml_tensor * ffn_norm = add_to_f32(ctx, layer.ffn_norm, ggml_mul_mat(ctx, llayer.ffn_norm_a, llayer.ffn_norm_b)); struct ggml_tensor * wq = add_to_f32(ctx, layer.wq, ggml_mul_mat(ctx, llayer.wq_a, llayer.wq_b)); struct ggml_tensor * wk = add_to_f32(ctx, layer.wk, ggml_mul_mat(ctx, llayer.wk_a, llayer.wk_b)); struct ggml_tensor * wv = add_to_f32(ctx, layer.wv, ggml_mul_mat(ctx, llayer.wv_a, llayer.wv_b)); struct ggml_tensor * wo = add_to_f32(ctx, layer.wo, ggml_mul_mat(ctx, llayer.wo_a, llayer.wo_b)); struct ggml_tensor * ffn_gate = add_to_f32(ctx, layer.ffn_gate, ggml_mul_mat(ctx, llayer.ffn_gate_a, llayer.ffn_gate_b)); struct ggml_tensor * ffn_down = add_to_f32(ctx, layer.ffn_down, ggml_mul_mat(ctx, llayer.ffn_down_a, llayer.ffn_down_b)); struct ggml_tensor * ffn_up = add_to_f32(ctx, layer.ffn_up, ggml_mul_mat(ctx, llayer.ffn_up_a, llayer.ffn_up_b)); struct ggml_tensor * t02 = ggml_rms_norm (ctx, cur, rms_norm_eps); set_name(t02, "t02"); assert_shape_2d(t02, n_embd, N*n_batch); struct ggml_tensor * t03 = ggml_repeat (ctx, attention_norm, t02); set_name(t03, "t03"); assert_shape_2d(t03, n_embd, N*n_batch); struct ggml_tensor * t04 = ggml_mul (ctx, t03, t02); set_name(t04, "t04"); assert_shape_2d(t04, n_embd, N*n_batch); struct ggml_tensor * t05 = ggml_mul_mat (ctx, wq, t04); set_name(t05, "t05"); assert_shape_2d(t05, n_embd, N*n_batch); struct ggml_tensor * t06 = ggml_reshape_4d (ctx, t05, n_embd_head, n_head, N, n_batch); set_name(t06, "t06"); assert_shape_4d(t06, n_embd_head, n_head, N, n_batch); struct ggml_tensor * t07 = rope (t06); set_name(t07, "t07"); assert_shape_4d(t07, n_embd_head, n_head, N, n_batch); struct ggml_tensor * t08 = ggml_mul_mat (ctx, wk, t04); set_name(t08, "t08"); assert_shape_2d(t08, n_embd_gqa, N*n_batch); struct ggml_tensor * t09 = ggml_reshape_4d (ctx, t08, n_embd_head, n_head_kv, N, n_batch); set_name(t09, "t09"); assert_shape_4d(t09, n_embd_head, n_head_kv, N, n_batch); struct ggml_tensor * t10 = rope (t09); set_name(t10, "t10"); assert_shape_4d(t10, n_embd_head, n_head_kv, N, n_batch); struct ggml_tensor * t11; if (ggml_is_quantized(wv->type)) { struct ggml_tensor * t11_1 = ggml_mul_mat (ctx, wv, t04); set_name(t11_1, "t11_1"); assert_shape_2d(t11_1, n_embd_gqa, N*n_batch); struct ggml_tensor * t11_2 = ggml_transpose(ctx, t11_1); set_name(t11_2, "t11_2"); assert_shape_2d(t11_2, N*n_batch, n_embd_gqa); t11 = ggml_cont (ctx, t11_2); set_name(t11, "t11"); assert_shape_2d(t11, N*n_batch, n_embd_gqa); } else { t11 = ggml_mul_mat (ctx, t04, wv); set_name(t11, "t11"); assert_shape_2d(t11, N*n_batch, n_embd_gqa); } struct ggml_tensor * t12 = ggml_reshape_4d (ctx, t11, N, n_batch, n_embd_head, n_head_kv); set_name(t12, "t12"); assert_shape_4d(t12, N, n_batch, n_embd_head, n_head_kv); struct ggml_tensor * t13 = ggml_permute (ctx, t07, 0, 2, 1, 3); set_name(t13, "t13"); assert_shape_4d(t13, n_embd_head, N, n_head, n_batch); struct ggml_tensor * t14 = ggml_permute (ctx, t10, 0, 2, 1, 3); set_name(t14, "t14"); assert_shape_4d(t14, n_embd_head, N, n_head_kv, n_batch); struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd_head, n_head_kv, n_batch); struct ggml_tensor * t16; if (enable_flash_attn) { t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd_head, N, n_head, n_batch); } else { struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch); struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch); struct ggml_tensor * t16_2 = ggml_diag_mask_inf_inplace(ctx, t16_1, n_past); set_name(t16_2, "t16_2"); assert_shape_4d(t16_2, N, N, n_head, n_batch); struct ggml_tensor * t16_3 = ggml_soft_max_inplace (ctx, t16_2); set_name(t16_3, "t16_3"); assert_shape_4d(t16_3, N, N, n_head, n_batch); t16 = ggml_mul_mat(ctx, t15, t16_3); set_name(t16, "t16"); assert_shape_4d(t16, n_embd_head, N, n_head, n_batch); } struct ggml_tensor * t17 = ggml_permute (ctx, t16, 0, 2, 1, 3); set_name(t17, "t17"); assert_shape_4d(t17, n_embd_head, n_head, N, n_batch); struct ggml_tensor * t18 = ggml_cont (ctx, t17); set_name(t18, "t18"); assert_shape_4d(t18, n_embd_head, n_head, N, n_batch); struct ggml_tensor * t19 = ggml_reshape_2d (ctx, t18, n_embd, N*n_batch); set_name(t19, "t19"); assert_shape_2d(t19, n_embd, N*n_batch); struct ggml_tensor * t20 = ggml_mul_mat (ctx, wo, t19); set_name(t20, "t20"); assert_shape_2d(t20, n_embd, N*n_batch); struct ggml_tensor * t21 = ggml_add (ctx, t20, cur); set_name(t21, "t21"); assert_shape_2d(t21, n_embd, N*n_batch); struct ggml_tensor * t22 = ggml_rms_norm (ctx, t21, rms_norm_eps); set_name(t22, "t22"); assert_shape_2d(t22, n_embd, N*n_batch); struct ggml_tensor * t23 = ggml_repeat (ctx, ffn_norm, t22); set_name(t23, "t23"); assert_shape_2d(t23, n_embd, N*n_batch); struct ggml_tensor * t24 = ggml_mul (ctx, t23, t22); set_name(t24, "t24"); assert_shape_2d(t24, n_embd, N*n_batch); struct ggml_tensor * t25 = ggml_mul_mat (ctx, ffn_up, t24); set_name(t25, "t25"); assert_shape_2d(t25, n_ff, N*n_batch); struct ggml_tensor * t26 = ggml_mul_mat (ctx, ffn_gate, t24); set_name(t26, "t26"); assert_shape_2d(t26, n_ff, N*n_batch); struct ggml_tensor * t27 = ggml_silu (ctx, t26); set_name(t27, "t27"); assert_shape_2d(t27, n_ff, N*n_batch); struct ggml_tensor * t28 = ggml_mul (ctx, t27, t25); set_name(t28, "t28"); assert_shape_2d(t28, n_ff, N*n_batch); struct ggml_tensor * t29 = ggml_mul_mat (ctx, ffn_down, t28); set_name(t29, "t29"); assert_shape_2d(t29, n_embd, N*n_batch); struct ggml_tensor * t30 = ggml_add (ctx, t29, t21); set_name(t30, "t30"); assert_shape_2d(t30, n_embd, N*n_batch); cur = t30; if (enable_checkpointing) { checkpoints.push_back(cur); } } struct ggml_tensor * t31 = ggml_rms_norm (ctx, cur, rms_norm_eps); set_name(t31, "t31"); assert_shape_2d(t31, n_embd, N*n_batch); struct ggml_tensor * t32 = ggml_repeat (ctx, norm, t31); set_name(t32, "t32"); assert_shape_2d(t32, n_embd, N*n_batch); struct ggml_tensor * t33 = ggml_mul (ctx, t32, t31); set_name(t33, "t33"); assert_shape_2d(t33, n_embd, N*n_batch); struct ggml_tensor * t34 = ggml_mul_mat (ctx, output, t33); set_name(t34, "t34"); assert_shape_2d(t34, n_vocab, N*n_batch); struct ggml_tensor * t35 = ggml_reshape_3d (ctx, t34, n_vocab, N, n_batch); set_name(t35, "t35"); assert_shape_3d(t35, n_vocab, N, n_batch); struct ggml_tensor * t36 = ggml_cross_entropy_loss(ctx, t35, targets); set_name(t36, "t36"); assert_shape_1d(t36, 1); if (enable_checkpointing) { checkpoints.push_back(t31); checkpoints.push_back(t32); checkpoints.push_back(t33); checkpoints.push_back(t34); checkpoints.push_back(t35); checkpoints.push_back(t36); } ggml_build_forward_expand(gf, t36); if (enable_checkpointing) { ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size()); } else { ggml_graph_cpy(gf, gb); ggml_build_backward_expand(ctx, gf, gb, true); } GGML_ASSERT(alloc != NULL); // make sure some tensors are not reallocated by inserting new temporary nodes depending on them int n_leafs_before = gb->n_leafs; int n_nodes_before = gb->n_nodes; // output tensors ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, 1.0f)); ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, 1.0f)); // input gradient ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, 1.0f)); GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL); ggml_set_input(t36->grad); // KQ_pos ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, 1.0f)); // make sure base model tensors data cannot be used in viewable operations ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->tok_embeddings, 1.0f)); ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->norm, 1.0f)); ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->output, 1.0f)); for (int il = 0; il < n_layer; ++il) { struct my_llama_layer & layer = model->layers[il]; ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.attention_norm, 1.0f)); ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_norm, 1.0f)); ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wq, 1.0f)); ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wk, 1.0f)); ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wv, 1.0f)); ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wo, 1.0f)); ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_gate, 1.0f)); ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_down, 1.0f)); ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_up, 1.0f)); } // allocating checkpoints in one block to reduce memory fragmentation // note: they will be freed in reverse order for (unsigned int i = 0; i < checkpoints.size(); ++i) { if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) { ggml_set_input(checkpoints[i]); } } if (measure_only) { ggml_gallocr_reserve(alloc, gb); } else { ggml_gallocr_alloc_graph(alloc, gb); // set KQ_pos { int * data = (int *) KQ_pos->data; for (int i = 0; i < N; ++i) { data[i] = n_past + i; } } } // remove the additional nodes and leafs for (int i = n_leafs_before; i < gb->n_leafs; ++i) { gb->leafs[i] = NULL; } for (int i = n_nodes_before; i < gb->n_nodes; ++i) { gb->nodes[i] = NULL; } gb->n_leafs = n_leafs_before; gb->n_nodes = n_nodes_before; *logits = t35; return t36; } static void load_llama_lora_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct my_llama_lora * lora) { // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read std::string arch; std::vector keybuf; keybuf.resize(512); GGUF_GET_KEY(fctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE); GGML_ASSERT(arch == "llama"); uint32_t ftype_u; GGUF_GET_KEY(fctx, ftype_u, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_GENERAL_FILE_TYPE); GGML_ASSERT((enum llama_ftype) ftype_u == LLAMA_FTYPE_ALL_F32); struct my_llama_hparams hparams; load_model_hparams_gguf(fctx, &hparams, arch.c_str()); // parameters that define tensor shapes must match GGML_ASSERT(hparams.n_embd == model->hparams.n_embd); GGML_ASSERT(hparams.n_ff == model->hparams.n_ff); GGML_ASSERT(hparams.n_head == model->hparams.n_head); GGML_ASSERT(hparams.n_head_kv == model->hparams.n_head_kv); GGML_ASSERT(hparams.n_layer == model->hparams.n_layer); GGUF_GET_KEY(fctx, lora->hparams.n_rank_tok_embeddings, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD); GGUF_GET_KEY(fctx, lora->hparams.n_rank_norm, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM); GGUF_GET_KEY(fctx, lora->hparams.n_rank_output, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_OUTPUT); GGUF_GET_KEY(fctx, lora->hparams.n_rank_attention_norm, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_NORM); GGUF_GET_KEY(fctx, lora->hparams.n_rank_wq, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_Q); GGUF_GET_KEY(fctx, lora->hparams.n_rank_wk, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_K); GGUF_GET_KEY(fctx, lora->hparams.n_rank_wv, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_V); GGUF_GET_KEY(fctx, lora->hparams.n_rank_wo, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_OUT); GGUF_GET_KEY(fctx, lora->hparams.n_rank_ffn_norm, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_NORM); GGUF_GET_KEY(fctx, lora->hparams.n_rank_ffn_gate, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_GATE); GGUF_GET_KEY(fctx, lora->hparams.n_rank_ffn_down, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_DOWN); GGUF_GET_KEY(fctx, lora->hparams.n_rank_ffn_up, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_UP); init_lora(model, lora); copy_tensor_by_name(lora->tok_embeddings_a, f_ggml_ctx, ggml_get_name(lora->tok_embeddings_a)); copy_tensor_by_name(lora->tok_embeddings_b, f_ggml_ctx, ggml_get_name(lora->tok_embeddings_b)); copy_tensor_by_name(lora->norm_a, f_ggml_ctx, ggml_get_name(lora->norm_a)); copy_tensor_by_name(lora->norm_b, f_ggml_ctx, ggml_get_name(lora->norm_b)); copy_tensor_by_name(lora->output_a, f_ggml_ctx, ggml_get_name(lora->output_a)); copy_tensor_by_name(lora->output_b, f_ggml_ctx, ggml_get_name(lora->output_b)); for (uint32_t i = 0; i < lora->layers.size(); ++i) { auto & layer = lora->layers[i]; copy_tensor_by_name(layer.attention_norm_a, f_ggml_ctx, ggml_get_name(layer.attention_norm_a)); copy_tensor_by_name(layer.attention_norm_b, f_ggml_ctx, ggml_get_name(layer.attention_norm_b)); copy_tensor_by_name(layer.wq_a, f_ggml_ctx, ggml_get_name(layer.wq_a)); copy_tensor_by_name(layer.wq_b, f_ggml_ctx, ggml_get_name(layer.wq_b)); copy_tensor_by_name(layer.wk_a, f_ggml_ctx, ggml_get_name(layer.wk_a)); copy_tensor_by_name(layer.wk_b, f_ggml_ctx, ggml_get_name(layer.wk_b)); copy_tensor_by_name(layer.wv_a, f_ggml_ctx, ggml_get_name(layer.wv_a)); copy_tensor_by_name(layer.wv_b, f_ggml_ctx, ggml_get_name(layer.wv_b)); copy_tensor_by_name(layer.wo_a, f_ggml_ctx, ggml_get_name(layer.wo_a)); copy_tensor_by_name(layer.wo_b, f_ggml_ctx, ggml_get_name(layer.wo_b)); copy_tensor_by_name(layer.ffn_norm_a, f_ggml_ctx, ggml_get_name(layer.ffn_norm_a)); copy_tensor_by_name(layer.ffn_norm_b, f_ggml_ctx, ggml_get_name(layer.ffn_norm_b)); copy_tensor_by_name(layer.ffn_gate_a, f_ggml_ctx, ggml_get_name(layer.ffn_gate_a)); copy_tensor_by_name(layer.ffn_gate_b, f_ggml_ctx, ggml_get_name(layer.ffn_gate_b)); copy_tensor_by_name(layer.ffn_down_a, f_ggml_ctx, ggml_get_name(layer.ffn_down_a)); copy_tensor_by_name(layer.ffn_down_b, f_ggml_ctx, ggml_get_name(layer.ffn_down_b)); copy_tensor_by_name(layer.ffn_up_a, f_ggml_ctx, ggml_get_name(layer.ffn_up_a)); copy_tensor_by_name(layer.ffn_up_b, f_ggml_ctx, ggml_get_name(layer.ffn_up_b)); } } static void save_llama_lora_gguf(struct gguf_context * fctx, struct my_llama_model * model, struct my_llama_lora * lora) { const char * arch = "llama"; enum llama_ftype ftype = LLAMA_FTYPE_ALL_F32; std::vector keybuf; keybuf.resize(512); auto kv = [arch, &keybuf](const char * key) -> const char * { snprintf(keybuf.data(), keybuf.size(), key, arch); return keybuf.data(); }; gguf_set_val_str(fctx, LLM_KV_GENERAL_ARCHITECTURE, arch); gguf_set_val_u32(fctx, LLM_KV_GENERAL_FILE_TYPE, ftype); gguf_set_val_u32(fctx, kv(LLM_KV_CONTEXT_LENGTH), model->hparams.kv_size); gguf_set_val_u32(fctx, kv(LLM_KV_EMBEDDING_LENGTH), model->hparams.n_embd); gguf_set_val_u32(fctx, kv(LLM_KV_FEED_FORWARD_LENGTH), model->hparams.n_ff); gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT), model->hparams.n_head); gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV), model->hparams.n_head_kv); gguf_set_val_u32(fctx, kv(LLM_KV_BLOCK_COUNT), model->hparams.n_layer); gguf_set_val_u32(fctx, kv(LLM_KV_ROPE_DIMENSION_COUNT), model->hparams.n_embd_head()); gguf_set_val_f32(fctx, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS), model->hparams.f_norm_rms_eps); gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_FREQ_BASE), model->hparams.rope_freq_base); gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_SCALE_LINEAR), model->hparams.rope_freq_scale); gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD, lora->hparams.n_rank_tok_embeddings); gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM, lora->hparams.n_rank_norm); gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_OUTPUT, lora->hparams.n_rank_output); gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_NORM, lora->hparams.n_rank_attention_norm); gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_Q, lora->hparams.n_rank_wq); gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_K, lora->hparams.n_rank_wk); gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_V, lora->hparams.n_rank_wv); gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_OUT, lora->hparams.n_rank_wo); gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_NORM, lora->hparams.n_rank_ffn_norm); gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_GATE, lora->hparams.n_rank_ffn_gate); gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_DOWN, lora->hparams.n_rank_ffn_down); gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_UP, lora->hparams.n_rank_ffn_up); gguf_add_tensor(fctx, lora->tok_embeddings_a); gguf_add_tensor(fctx, lora->tok_embeddings_b); gguf_add_tensor(fctx, lora->norm_a); gguf_add_tensor(fctx, lora->norm_b); gguf_add_tensor(fctx, lora->output_a); gguf_add_tensor(fctx, lora->output_b); for (uint32_t i = 0; i < lora->layers.size(); ++i) { auto & layer = lora->layers[i]; gguf_add_tensor(fctx, layer.attention_norm_a); gguf_add_tensor(fctx, layer.attention_norm_b); gguf_add_tensor(fctx, layer.wq_a); gguf_add_tensor(fctx, layer.wq_b); gguf_add_tensor(fctx, layer.wk_a); gguf_add_tensor(fctx, layer.wk_b); gguf_add_tensor(fctx, layer.wv_a); gguf_add_tensor(fctx, layer.wv_b); gguf_add_tensor(fctx, layer.wo_a); gguf_add_tensor(fctx, layer.wo_b); gguf_add_tensor(fctx, layer.ffn_norm_a); gguf_add_tensor(fctx, layer.ffn_norm_b); gguf_add_tensor(fctx, layer.ffn_gate_a); gguf_add_tensor(fctx, layer.ffn_gate_b); gguf_add_tensor(fctx, layer.ffn_down_a); gguf_add_tensor(fctx, layer.ffn_down_b); gguf_add_tensor(fctx, layer.ffn_up_a); gguf_add_tensor(fctx, layer.ffn_up_b); } } static void load_checkpoint_lora_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) { std::string train_type = LLM_KV_TRAINING_TYPE_FINETUNE_LORA; GGUF_GET_KEY(fctx, train_type, gguf_get_val_str, GGUF_TYPE_STRING, false, LLM_KV_TRAINING_TYPE); GGML_ASSERT(train_type == LLM_KV_TRAINING_TYPE_FINETUNE_LORA); load_train_state_gguf(fctx, f_ggml_ctx, train); load_llama_lora_gguf(fctx, f_ggml_ctx, model, lora); } static void save_checkpoint_lora_gguf(struct gguf_context * fctx, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) { gguf_set_val_str(fctx, LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_FINETUNE_LORA); save_llama_lora_gguf(fctx, model, lora); save_train_state_gguf(fctx, train); } static bool load_checkpoint_lora_file(const char * filename, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) { struct ggml_context * f_ggml_ctx; struct gguf_init_params params; params.no_alloc = false; params.ctx = &f_ggml_ctx; struct gguf_context * fctx = gguf_init_from_file(filename, params); if (fctx == NULL) { return false; } load_checkpoint_lora_gguf(fctx, f_ggml_ctx, model, lora, train); gguf_free(fctx); return true; } static void save_checkpoint_lora_file(const char * filename, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) { printf("%s: saving to %s\n", __func__, filename); struct gguf_context * fctx = gguf_init_empty(); save_checkpoint_lora_gguf(fctx, model, lora, train); // write file const bool only_meta = false; gguf_write_to_file(fctx, filename, only_meta); gguf_free(fctx); } struct llama_file { // use FILE * so we don't have to re-open the file to mmap FILE * fp; size_t size; llama_file(const char * fname, const char * mode) { fp = std::fopen(fname, mode); if (fp == NULL) { size = 0; } else { seek(0, SEEK_END); size = tell(); seek(0, SEEK_SET); } } size_t tell() const { #ifdef _WIN32 __int64 ret = _ftelli64(fp); #else long ret = std::ftell(fp); #endif GGML_ASSERT(ret != -1); // this really shouldn't fail return (size_t) ret; } void seek(size_t offset, int whence) { #ifdef _WIN32 int ret = _fseeki64(fp, (__int64) offset, whence); #else int ret = std::fseek(fp, (long) offset, whence); #endif GGML_ASSERT(ret == 0); // same } void read_raw(void * ptr, size_t size) { if (size == 0) { return; } errno = 0; std::size_t ret = std::fread(ptr, size, 1, fp); if (ferror(fp)) { die_fmt("read error: %s", strerror(errno)); } if (ret != 1) { die("unexpectedly reached end of file"); } } std::uint32_t read_u32() { std::uint32_t ret; read_raw(&ret, sizeof(ret)); return ret; } std::string read_string(std::uint32_t len) { std::vector chars(len); read_raw(chars.data(), len); return std::string(chars.data(), len); } void write_raw(const void * ptr, size_t size) { if (size == 0) { return; } errno = 0; size_t ret = std::fwrite(ptr, size, 1, fp); if (ret != 1) { die_fmt("write error: %s", strerror(errno)); } } void write_u32(std::uint32_t val) { write_raw(&val, sizeof(val)); } ~llama_file() { if (fp) { std::fclose(fp); } } }; static void write_tensor(struct llama_file * file, struct ggml_tensor * tensor, const char * name) { if (tensor == NULL) { file->write_u32(0); file->write_u32(0); file->write_u32(GGML_TYPE_F32); file->seek((0-file->tell()) & 31, SEEK_CUR); return; } if (name == NULL) { name = ggml_get_name(tensor); } uint32_t name_len = strlen(name); uint32_t nd = ggml_n_dims(tensor); uint32_t ne[4] = { (uint32_t)tensor->ne[0], (uint32_t)tensor->ne[1], (uint32_t)tensor->ne[2], (uint32_t)tensor->ne[3] }; file->write_u32(nd); file->write_u32(name_len); file->write_u32(tensor->type); file->write_raw(ne, sizeof(ne[0]) * nd); file->write_raw(name, name_len); file->seek((0-file->tell()) & 31, SEEK_CUR); file->write_raw(tensor->data, ggml_nbytes(tensor)); } static void save_as_llama_lora(const char * filename, struct my_llama_lora * lora) { printf("%s: saving to %s\n", __func__, filename); struct llama_file file(filename, "wb"); if (file.fp == NULL) { return; } std::vector tn_buf; tn_buf.resize(GGML_MAX_NAME); auto tn = [&tn_buf](const char * key, const char * suffix) -> const char * { snprintf(tn_buf.data(), tn_buf.size(), "%s%s", key, suffix); return tn_buf.data(); }; auto tni = [&tn_buf](const char * key, int bid, const char * suffix) -> const char * { snprintf(tn_buf.data(), tn_buf.size(), key, bid); std::string s = tn_buf.data(); snprintf(tn_buf.data(), tn_buf.size(), "%s%s", s.c_str(), suffix); return tn_buf.data(); }; // write_magic file.write_u32(LLAMA_FILE_MAGIC_GGLA); // magic file.write_u32(1); // version // write_hparams file.write_u32(lora->hparams.lora_r); file.write_u32(lora->hparams.lora_alpha); // write tensors write_tensor(&file, lora->tok_embeddings_a, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.loraA")); write_tensor(&file, lora->tok_embeddings_b, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.loraB")); write_tensor(&file, lora->norm_a, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.loraA")); write_tensor(&file, lora->norm_b, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.loraB")); write_tensor(&file, lora->output_a, tn(LLM_TENSOR_OUTPUT, ".weight.loraA")); write_tensor(&file, lora->output_b, tn(LLM_TENSOR_OUTPUT, ".weight.loraB")); for (uint32_t i = 0; i < lora->layers.size(); ++i) { auto & layer = lora->layers[i]; write_tensor(&file, layer.attention_norm_a, tni(LLM_TENSOR_ATTN_NORM, i, ".weight.loraA")); write_tensor(&file, layer.attention_norm_b, tni(LLM_TENSOR_ATTN_NORM, i, ".weight.loraB")); write_tensor(&file, layer.wq_a, tni(LLM_TENSOR_ATTN_Q, i, ".weight.loraA")); write_tensor(&file, layer.wq_b, tni(LLM_TENSOR_ATTN_Q, i, ".weight.loraB")); write_tensor(&file, layer.wk_a, tni(LLM_TENSOR_ATTN_K, i, ".weight.loraA")); write_tensor(&file, layer.wk_b, tni(LLM_TENSOR_ATTN_K, i, ".weight.loraB")); write_tensor(&file, layer.wv_a, tni(LLM_TENSOR_ATTN_V, i, ".weight.loraA")); write_tensor(&file, layer.wv_b, tni(LLM_TENSOR_ATTN_V, i, ".weight.loraB")); write_tensor(&file, layer.wo_a, tni(LLM_TENSOR_ATTN_OUT, i, ".weight.loraA")); write_tensor(&file, layer.wo_b, tni(LLM_TENSOR_ATTN_OUT, i, ".weight.loraB")); write_tensor(&file, layer.ffn_norm_a, tni(LLM_TENSOR_FFN_NORM, i, ".weight.loraA")); write_tensor(&file, layer.ffn_norm_b, tni(LLM_TENSOR_FFN_NORM, i, ".weight.loraB")); write_tensor(&file, layer.ffn_gate_a, tni(LLM_TENSOR_FFN_GATE, i, ".weight.loraA")); write_tensor(&file, layer.ffn_gate_b, tni(LLM_TENSOR_FFN_GATE, i, ".weight.loraB")); write_tensor(&file, layer.ffn_down_a, tni(LLM_TENSOR_FFN_DOWN, i, ".weight.loraA")); write_tensor(&file, layer.ffn_down_b, tni(LLM_TENSOR_FFN_DOWN, i, ".weight.loraB")); write_tensor(&file, layer.ffn_up_a, tni(LLM_TENSOR_FFN_UP, i, ".weight.loraA")); write_tensor(&file, layer.ffn_up_b, tni(LLM_TENSOR_FFN_UP, i, ".weight.loraB")); } } struct train_params { struct train_params_common common; const char * fn_model_base; const char * fn_lora_out; bool only_write_lora; float f_norm_rms_eps; float rope_freq_base; float rope_freq_scale; bool custom_f_norm_rms_eps; bool custom_rope_freq_base; bool custom_rope_freq_scale; int32_t lora_r; int32_t lora_alpha; bool custom_lora_alpha; uint32_t n_rank_attention_norm; uint32_t n_rank_wq; uint32_t n_rank_wk; uint32_t n_rank_wv; uint32_t n_rank_wo; uint32_t n_rank_ffn_norm; uint32_t n_rank_ffn_gate; uint32_t n_rank_ffn_down; uint32_t n_rank_ffn_up; uint32_t n_rank_tok_embeddings; uint32_t n_rank_norm; uint32_t n_rank_output; bool custom_n_rank_attention_norm; bool custom_n_rank_wq; bool custom_n_rank_wk; bool custom_n_rank_wv; bool custom_n_rank_wo; bool custom_n_rank_ffn_norm; bool custom_n_rank_ffn_gate; bool custom_n_rank_ffn_down; bool custom_n_rank_ffn_up; bool custom_n_rank_tok_embeddings; bool custom_n_rank_norm; bool custom_n_rank_output; }; static struct train_params get_default_train_params() { struct train_params params; params.common = get_default_train_params_common(); params.fn_model_base = ""; params.fn_lora_out = "ggml-lora-ITERATION-f32.gguf"; params.only_write_lora = false; params.f_norm_rms_eps = 1e-5f; params.rope_freq_base = 10000.0f; params.rope_freq_scale = 1.0f; params.custom_f_norm_rms_eps = false; params.custom_rope_freq_base = false; params.custom_rope_freq_scale = false; params.lora_r = 4; params.lora_alpha = 4; params.custom_lora_alpha = false; params.n_rank_attention_norm = 1; params.n_rank_wq = 4; params.n_rank_wk = 4; params.n_rank_wv = 4; params.n_rank_wo = 4; params.n_rank_ffn_norm = 1; params.n_rank_ffn_gate = 4; params.n_rank_ffn_down = 4; params.n_rank_ffn_up = 4; params.n_rank_tok_embeddings = 4; params.n_rank_norm = 1; params.n_rank_output = 4; params.custom_n_rank_attention_norm = false; params.custom_n_rank_wq = false; params.custom_n_rank_wk = false; params.custom_n_rank_wv = false; params.custom_n_rank_wo = false; params.custom_n_rank_ffn_norm = false; params.custom_n_rank_ffn_gate = false; params.custom_n_rank_ffn_down = false; params.custom_n_rank_ffn_up = false; params.custom_n_rank_tok_embeddings = false; params.custom_n_rank_norm = false; params.custom_n_rank_output = false; return params; } static void train_print_usage(int argc, char ** argv, const struct train_params * params) { fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help show this help message and exit\n"); fprintf(stderr, " --model-base FNAME model path from which to load base model (default '%s')\n", params->fn_model_base); fprintf(stderr, " --lora-out FNAME path to save llama lora (default '%s')\n", params->fn_lora_out); fprintf(stderr, " --only-write-lora only save llama lora, don't do any training. use this if you only want to convert a checkpoint to a lora adapter.\n"); fprintf(stderr, " --norm-rms-eps F RMS-Norm epsilon value (default %f)\n", params->f_norm_rms_eps); fprintf(stderr, " --rope-freq-base F Frequency base for ROPE (default %f)\n", params->rope_freq_base); fprintf(stderr, " --rope-freq-scale F Frequency scale for ROPE (default %f)\n", params->rope_freq_scale); fprintf(stderr, " --lora-alpha N LORA alpha : resulting LORA scaling is alpha/r. (default %d)\n", params->lora_alpha); fprintf(stderr, " --lora-r N LORA r: default rank. Also specifies resulting scaling together with lora-alpha. (default %d)\n", params->lora_r); fprintf(stderr, " --rank-att-norm N LORA rank for attention norm tensor, overrides default rank. Norm tensors should generally have rank 1.\n"); fprintf(stderr, " --rank-ffn-norm N LORA rank for feed-forward norm tensor, overrides default rank. Norm tensors should generally have rank 1.\n"); fprintf(stderr, " --rank-out-norm N LORA rank for output norm tensor, overrides default rank. Norm tensors should generally have rank 1.\n"); fprintf(stderr, " --rank-tok-embd N LORA rank for token embeddings tensor, overrides default rank.\n"); fprintf(stderr, " --rank-out N LORA rank for output tensor, overrides default rank.\n"); fprintf(stderr, " --rank-wq N LORA rank for wq tensor, overrides default rank.\n"); fprintf(stderr, " --rank-wk N LORA rank for wk tensor, overrides default rank.\n"); fprintf(stderr, " --rank-wv N LORA rank for wv tensor, overrides default rank.\n"); fprintf(stderr, " --rank-wo N LORA rank for wo tensor, overrides default rank.\n"); fprintf(stderr, " --rank-ffn_gate N LORA rank for ffn_gate tensor, overrides default rank.\n"); fprintf(stderr, " --rank-ffn_down N LORA rank for ffn_down tensor, overrides default rank.\n"); fprintf(stderr, " --rank-ffn_up N LORA rank for ffn_up tensor, overrides default rank.\n"); print_common_train_usage(argc, argv, ¶ms->common); } static bool train_params_parse(int argc, char ** argv, struct train_params * params) { bool invalid_param = false; std::string arg; struct train_params default_params = get_default_train_params(); const std::string arg_prefix = "--"; for (int i = 1; i < argc; i++) { arg = argv[i]; if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { std::replace(arg.begin(), arg.end(), '_', '-'); } if (consume_common_train_arg(argc, argv, &i, ¶ms->common, &invalid_param)) { if (invalid_param) { break; } else if (params->common.print_usage) { train_print_usage(argc, argv, &default_params); exit(0); } } else if (arg == "--model-base") { if (++i >= argc) { invalid_param = true; break; } params->fn_model_base = argv[i]; } else if (arg == "--lora-out") { if (++i >= argc) { invalid_param = true; break; } params->fn_lora_out = argv[i]; } else if (arg == "--only-write-lora") { params->only_write_lora = true; } else if (arg == "--norm-rms-eps") { if (++i >= argc) { invalid_param = true; break; } params->f_norm_rms_eps = std::stof(argv[i]); params->custom_f_norm_rms_eps = true; } else if (arg == "--rope-freq-base") { if (++i >= argc) { invalid_param = true; break; } params->rope_freq_base = std::stof(argv[i]); params->custom_rope_freq_base = true; } else if (arg == "--rope-freq-scale") { if (++i >= argc) { invalid_param = true; break; } params->rope_freq_scale = std::stof(argv[i]); params->custom_rope_freq_scale = true; } else if (arg == "--lora-alpha") { if (++i >= argc) { invalid_param = true; break; } params->lora_alpha = std::stoi(argv[i]); params->custom_lora_alpha = true; } else if (arg == "--lora-r") { if (++i >= argc) { invalid_param = true; break; } params->lora_r = std::stoi(argv[i]); } else if (arg == "--rank-att-norm") { if (++i >= argc) { invalid_param = true; break; } params->n_rank_attention_norm = std::stoi(argv[i]); params->custom_n_rank_attention_norm = true; } else if (arg == "--rank-ffn-norm") { if (++i >= argc) { invalid_param = true; break; } params->n_rank_ffn_norm = std::stoi(argv[i]); params->custom_n_rank_ffn_norm = true; } else if (arg == "--rank-out-norm") { if (++i >= argc) { invalid_param = true; break; } params->n_rank_norm = std::stoi(argv[i]); params->custom_n_rank_norm = true; } else if (arg == "--rank-tok-embd") { if (++i >= argc) { invalid_param = true; break; } params->n_rank_tok_embeddings = std::stoi(argv[i]); params->custom_n_rank_tok_embeddings = true; } else if (arg == "--rank-out") { if (++i >= argc) { invalid_param = true; break; } params->n_rank_output = std::stoi(argv[i]); params->custom_n_rank_output = true; } else if (arg == "--rank-wq") { if (++i >= argc) { invalid_param = true; break; } params->n_rank_wq = std::stoi(argv[i]); params->custom_n_rank_wq = true; } else if (arg == "--rank-wk") { if (++i >= argc) { invalid_param = true; break; } params->n_rank_wk = std::stoi(argv[i]); params->custom_n_rank_wk = true; } else if (arg == "--rank-wv") { if (++i >= argc) { invalid_param = true; break; } params->n_rank_wv = std::stoi(argv[i]); params->custom_n_rank_wv = true; } else if (arg == "--rank-wo") { if (++i >= argc) { invalid_param = true; break; } params->n_rank_wo = std::stoi(argv[i]); params->custom_n_rank_wo = true; } else if (arg == "--rank-ffn_gate") { if (++i >= argc) { invalid_param = true; break; } params->n_rank_ffn_gate = std::stoi(argv[i]); params->custom_n_rank_ffn_gate = true; } else if (arg == "--rank-ffn_down") { if (++i >= argc) { invalid_param = true; break; } params->n_rank_ffn_down = std::stoi(argv[i]); params->custom_n_rank_ffn_down = true; } else if (arg == "--rank-ffn_up") { if (++i >= argc) { invalid_param = true; break; } params->n_rank_ffn_up = std::stoi(argv[i]); params->custom_n_rank_ffn_up = true; } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); train_print_usage(argc, argv, &default_params); exit(1); } } if (invalid_param) { fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); train_print_usage(argc, argv, &default_params); exit(1); } finish_processing_train_args(¶ms->common); return true; } struct save_train_files_data { const char * fn_checkpoint_out; const char * fn_lora_out; const char * pattern_fn_it; const char * fn_latest; struct my_llama_model * model; struct my_llama_lora * lora; }; static void save_train_files(void * vdata, struct train_state * train) { struct save_train_files_data * data = (struct save_train_files_data *) vdata; int64_t iter = train->opt->iter; if (strlen(data->fn_checkpoint_out) > 0) { save_checkpoint_lora_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->model, data->lora, train); save_checkpoint_lora_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->model, data->lora, train); } if (strlen(data->fn_lora_out) > 0) { save_as_llama_lora(get_train_filename(data->fn_lora_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->lora); save_as_llama_lora(get_train_filename(data->fn_lora_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->lora); } } static int64_t get_parameter_count(struct my_llama_lora* lora) { int64_t nx = 0; nx += ggml_nelements(lora->tok_embeddings_a); nx += ggml_nelements(lora->tok_embeddings_b); nx += ggml_nelements(lora->norm_a); nx += ggml_nelements(lora->norm_b); nx += ggml_nelements(lora->output_a); nx += ggml_nelements(lora->output_b); for (uint32_t i = 0; i < lora->layers.size(); ++i) { auto & layer = lora->layers[i]; nx += ggml_nelements(layer.attention_norm_a); nx += ggml_nelements(layer.attention_norm_b); nx += ggml_nelements(layer.wq_a); nx += ggml_nelements(layer.wq_b); nx += ggml_nelements(layer.wk_a); nx += ggml_nelements(layer.wk_b); nx += ggml_nelements(layer.wv_a); nx += ggml_nelements(layer.wv_b); nx += ggml_nelements(layer.wo_a); nx += ggml_nelements(layer.wo_b); nx += ggml_nelements(layer.ffn_norm_a); nx += ggml_nelements(layer.ffn_norm_b); nx += ggml_nelements(layer.ffn_gate_a); nx += ggml_nelements(layer.ffn_gate_b); nx += ggml_nelements(layer.ffn_down_a); nx += ggml_nelements(layer.ffn_down_b); nx += ggml_nelements(layer.ffn_up_a); nx += ggml_nelements(layer.ffn_up_b); } return nx; } int main(int argc, char ** argv) { struct train_params params = get_default_train_params(); if (!train_params_parse(argc, argv, ¶ms)) { return 1; } if (params.common.seed == LLAMA_DEFAULT_SEED) { params.common.seed = time(NULL); } printf("%s: seed: %u\n", __func__, params.common.seed); srand(params.common.seed); struct llama_model_params llama_mparams = llama_model_default_params(); llama_mparams.n_gpu_layers = params.common.n_gpu_layers; llama_mparams.vocab_only = false; printf("%s: model base = '%s'\n", __func__, params.fn_model_base); struct llama_model * lmodel = llama_load_model_from_file(params.fn_model_base, llama_mparams); struct llama_context_params llama_cparams = llama_context_default_params(); struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_cparams); struct my_llama_model model; init_model(lmodel, &model, params.fn_model_base, params.common.n_ctx); struct my_llama_lora lora; struct train_state * train = init_train_state(); struct ggml_opt_context * opt = train->opt; // set params from command line if (params.custom_f_norm_rms_eps) { model.hparams.f_norm_rms_eps = params.f_norm_rms_eps; } if (params.custom_rope_freq_base) { model.hparams.rope_freq_base = params.rope_freq_base; } if (params.custom_rope_freq_scale) { model.hparams.rope_freq_scale = params.rope_freq_scale; } lora.hparams.lora_r = params.lora_r; lora.hparams.lora_alpha = params.custom_lora_alpha ? params.lora_alpha : params.lora_r; uint32_t n_rank_attention_norm = params.custom_n_rank_attention_norm ? params.n_rank_attention_norm : 1; uint32_t n_rank_wq = params.custom_n_rank_wq ? params.n_rank_wq : params.lora_r; uint32_t n_rank_wk = params.custom_n_rank_wk ? params.n_rank_wk : params.lora_r; uint32_t n_rank_wv = params.custom_n_rank_wv ? params.n_rank_wv : params.lora_r; uint32_t n_rank_wo = params.custom_n_rank_wo ? params.n_rank_wo : params.lora_r; uint32_t n_rank_ffn_norm = params.custom_n_rank_ffn_norm ? params.n_rank_ffn_norm : 1; uint32_t n_rank_ffn_gate = params.custom_n_rank_ffn_gate ? params.n_rank_ffn_gate : params.lora_r; uint32_t n_rank_ffn_down = params.custom_n_rank_ffn_down ? params.n_rank_ffn_down : params.lora_r; uint32_t n_rank_ffn_up = params.custom_n_rank_ffn_up ? params.n_rank_ffn_up : params.lora_r; uint32_t n_rank_tok_embeddings = params.custom_n_rank_tok_embeddings ? params.n_rank_tok_embeddings : params.lora_r; uint32_t n_rank_norm = params.custom_n_rank_norm ? params.n_rank_norm : 1; uint32_t n_rank_output = params.custom_n_rank_output ? params.n_rank_output : params.lora_r; lora.hparams.n_rank_attention_norm = n_rank_attention_norm; lora.hparams.n_rank_wq = n_rank_wq; lora.hparams.n_rank_wk = n_rank_wk; lora.hparams.n_rank_wv = n_rank_wv; lora.hparams.n_rank_wo = n_rank_wo; lora.hparams.n_rank_ffn_norm = n_rank_ffn_norm; lora.hparams.n_rank_ffn_gate = n_rank_ffn_gate; lora.hparams.n_rank_ffn_down = n_rank_ffn_down; lora.hparams.n_rank_ffn_up = n_rank_ffn_up; lora.hparams.n_rank_tok_embeddings = n_rank_tok_embeddings; lora.hparams.n_rank_norm = n_rank_norm; lora.hparams.n_rank_output = n_rank_output; // set opt params from command line opt->params = ggml_opt_default_params(GGML_OPT_ADAM); opt->params.print_forward_graph = false; opt->params.print_backward_graph = false; opt->params.graph_size = LLAMA_TRAIN_MAX_NODES; opt->params.n_threads = params.common.n_threads; opt->params.past = params.common.opt_past; opt->params.delta = params.common.opt_delta; opt->params.max_no_improvement = params.common.opt_max_no_improvement; opt->params.n_gradient_accumulation = params.common.n_gradient_accumulation; opt->params.adam.n_iter = params.common.adam_n_iter; opt->params.adam.sched = 1.0f; opt->params.adam.alpha = params.common.adam_alpha; opt->params.adam.decay = params.common.adam_decay; opt->params.adam.decay_min_ndim = params.common.adam_decay_min_ndim; opt->params.adam.beta1 = params.common.adam_beta1; opt->params.adam.beta2 = params.common.adam_beta2; opt->params.adam.gclip = params.common.adam_gclip; opt->params.adam.eps_f = params.common.adam_eps_f; printf("%s: init model\n", __func__); bool existed = load_checkpoint_lora_file(params.common.fn_checkpoint_in, &model, &lora, train); if (existed) { // overwrite last kv_size with user provided kv_size if (params.common.custom_n_ctx) { model.hparams.kv_size = params.common.n_ctx; } const bool opt_param_count_changed = ( (lora.hparams.n_rank_attention_norm != n_rank_attention_norm) || (lora.hparams.n_rank_wq != n_rank_wq) || (lora.hparams.n_rank_wk != n_rank_wk) || (lora.hparams.n_rank_wv != n_rank_wv) || (lora.hparams.n_rank_wo != n_rank_wo) || (lora.hparams.n_rank_ffn_norm != n_rank_ffn_norm) || (lora.hparams.n_rank_ffn_gate != n_rank_ffn_gate) || (lora.hparams.n_rank_ffn_down != n_rank_ffn_down) || (lora.hparams.n_rank_ffn_up != n_rank_ffn_up) || (lora.hparams.n_rank_tok_embeddings != n_rank_tok_embeddings) || (lora.hparams.n_rank_norm != n_rank_norm) || (lora.hparams.n_rank_output != n_rank_output) ); const bool opt_past_changed = opt->params.past != params.common.opt_past; if (opt_param_count_changed) { print_lora_params(&lora.hparams); die("Provided rank differs from checkpoint file. To use different rank start finetune from scratch with empty input checkpoint, e.g --checkpoint-in ''. Aborting."); // need to discard previous optimizer gradient statistics and opt_init with new shapes // TODO } if (opt_past_changed) { die("Optimizer parameter '--opt-past N' differs from checkpoint file. To use different value finetune from scratch with empty input checkpoint, e.g --checkpoint-in ''. Aborting"); // need to discard previous optimizer past function value statistics and opt_init with new shapes // TODO } } else { // existed == false init_lora(&model, &lora); randomize_lora(&lora, params.common.seed, 0.0f, 1.0f, -1.0f, +1.0f); if (!params.only_write_lora) { ggml_opt_init(opt->ctx, opt, opt->params, get_parameter_count(&lora)); } } opt->iter = train->train_its; print_params(&model.hparams); print_lora_params(&lora.hparams); printf("%s: total train_iterations %llu\n", __func__, (long long unsigned) train->train_its); printf("%s: seen train_samples %llu\n", __func__, (long long unsigned) train->train_samples); printf("%s: seen train_tokens %llu\n", __func__, (long long unsigned) train->train_tokens); printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs); printf("%s: lora_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(lora.ctx) + ggml_backend_buffer_get_size(lora.data)), (float) (ggml_used_mem(lora.ctx) + ggml_backend_buffer_get_size(lora.data)) / (1024.0f*1024.0f)); if (params.only_write_lora) { save_train_files_data save_data; save_data.fn_checkpoint_out = ""; save_data.fn_lora_out = params.fn_lora_out; save_data.pattern_fn_it = params.common.pattern_fn_it; save_data.fn_latest = params.common.fn_latest; save_data.model = &model; save_data.lora = &lora; save_train_files(&save_data, train); free_train_state(train); ggml_free(lora.ctx); llama_free(lctx); llama_free_model(lmodel); return 0; } printf("%s: opt_size = %zu bytes (%.1f MB)\n", __func__, ggml_get_mem_size(opt->ctx), (float) ggml_get_mem_size(opt->ctx) / (1024.0f*1024.0f)); printf("%s: opt iter %d\n", __func__, opt->iter); int n_tokens = model.hparams.kv_size; int n_vocab = model.hparams.n_vocab; int n_batch = params.common.n_batch; // context for input tensors without their data struct ggml_init_params ctx_input_params = { ggml_tensor_overhead() * 2, // mem_size NULL, // mem_buffer true, // no_alloc }; struct ggml_context * ctx_input = ggml_init(ctx_input_params); // the input tensors struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx_input, GGML_TYPE_I32, n_tokens, n_batch); struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); // allocate input tensors // measure required memory for input tensors ggml_backend_buffer_t input_data = ggml_backend_alloc_ctx_tensors_from_buft(ctx_input, ggml_backend_cpu_buffer_type()); size_t max_input_size = ggml_backend_buffer_get_size(input_data); printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f)); // context for compute tensors without their data const size_t estimated_compute_size_wo_data = ( 2*LLAMA_TRAIN_MAX_NODES*ggml_tensor_overhead() + (params.common.use_checkpointing ? 3 : 2)*(GGML_OBJECT_SIZE+ggml_graph_overhead_custom(LLAMA_TRAIN_MAX_NODES, true)) ); struct ggml_init_params ctx_compute_params = { estimated_compute_size_wo_data, // mem_size NULL, // mem_buffer true, // no_alloc }; struct ggml_context * ctx_compute = NULL; struct ggml_tensor * loss = NULL; struct ggml_tensor * logits = NULL; struct ggml_cgraph * gf = NULL; struct ggml_cgraph * gb = NULL; struct ggml_cgraph * gb_tmp = NULL; // measure required memory for compute tensors size_t best_compute_size = SIZE_MAX; enum ggml_cgraph_eval_order best_order = GGML_CGRAPH_EVAL_ORDER_COUNT; // find best evaluation order for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) { ctx_compute = ggml_init(ctx_compute_params); ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type()); gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true); gf->order = (enum ggml_cgraph_eval_order) order; gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true); gb_tmp = params.common.use_checkpointing ? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true) : NULL; loss = llama_build_lora_finetune_graphs( &model, &lora, alloc, ctx_compute, gf, gb, gb_tmp, &logits, tokens_input, target_probs, n_tokens, n_batch, params.common.use_flash, params.common.use_checkpointing, true ); size_t max_compute_size = ggml_gallocr_get_buffer_size(alloc, 0); // FIXME: this will still allocate the buffer if (max_compute_size < best_compute_size) { best_compute_size = max_compute_size; best_order = gf->order; } ggml_gallocr_free(alloc); ggml_free(ctx_compute); } size_t max_compute_size = best_compute_size; printf("%s: compute_size = %zu bytes (%.1f MB)\n", __func__, max_compute_size, (float) max_compute_size / (1024.0f*1024.0f)); printf("%s: evaluation order = %s\n", __func__, (best_order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? "LEFT_TO_RIGHT" : (best_order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? "RIGHT_TO_LEFT" : "invalid"); // allocate compute tensors ctx_compute = ggml_init(ctx_compute_params); ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type()); gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true); gf->order = best_order; gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true); gb_tmp = params.common.use_checkpointing ? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true) : NULL; loss = llama_build_lora_finetune_graphs( &model, &lora, alloc, ctx_compute, gf, gb, gb_tmp, &logits, tokens_input, target_probs, n_tokens, n_batch, params.common.use_flash, params.common.use_checkpointing, false ); // tokenize data std::vector train_tokens; std::vector train_samples_begin; std::vector train_samples_size; printf("%s: tokenize training data from %s\n", __func__, params.common.fn_train_data); printf("%s: sample-start: %s\n", __func__, params.common.sample_start.c_str()); printf("%s: include-sample-start: %s\n", __func__, params.common.include_sample_start ? "true" : "false"); tokenize_file(lctx, params.common.fn_train_data, params.common.sample_start, params.common.include_sample_start, params.common.overlapping_samples, n_tokens, train_tokens, train_samples_begin, train_samples_size); GGML_ASSERT(train_samples_begin.size() == train_samples_size.size()); printf("%s: number of training tokens: %zu\n", __func__, train_tokens.size()); std::vector token_noccurs; token_noccurs.resize(model.hparams.n_vocab, 0); for (unsigned int i = 0; i < train_tokens.size(); ++i) { ++token_noccurs[train_tokens[i]]; } int n_unique_tokens = 0; for (unsigned int i = 0; i < token_noccurs.size(); ++i) { if (token_noccurs[i] == 0) continue; ++n_unique_tokens; } printf("%s: number of unique tokens: %d\n", __func__, n_unique_tokens); size_t shuffle_samples_hash = compute_samples_hash(params.common.fn_train_data, train_samples_begin.data(), train_samples_size.data(), train_samples_size.size()); const bool changed_train_data = (shuffle_samples_hash != train->shuffle_samples_hash) || (train->shuffle_sample_count != train_samples_size.size()); if (changed_train_data) { printf("%s: train data seems to have changed. restarting shuffled epoch.\n", __func__); } if (params.common.force_reshuffle) { printf("%s: forced reshuffling of data. restarting with newly shuffled epoch.\n", __func__); } if ((train->shuffle_rng_state_current == "") || changed_train_data || params.common.force_reshuffle) { train->shuffle_rng_state_current = mt19937_seed_to_state(params.common.seed); train->shuffle_sample_count = train_samples_size.size(); train->shuffle_next_sample = 0; train->shuffle_samples_hash = shuffle_samples_hash; } std::vector train_shuffled_samples_offs; std::vector train_shuffled_samples_begin; std::vector train_shuffled_samples_size; train_shuffled_samples_offs.resize(train_samples_begin.size()); train_shuffled_samples_begin.resize(train_samples_begin.size()); train_shuffled_samples_size.resize(train_samples_size.size()); train->shuffle_rng_state_next = shuffle_samples( train->shuffle_rng_state_current, train_shuffled_samples_offs.data(), train_shuffled_samples_begin.data(), train_shuffled_samples_size.data(), train_samples_begin.data(), train_samples_size.data(), train_samples_size.size()); printf("%s: begin training\n", __func__); save_train_files_data save_data; save_data.fn_checkpoint_out = params.common.fn_checkpoint_out; save_data.fn_lora_out = params.fn_lora_out; save_data.pattern_fn_it = params.common.pattern_fn_it; save_data.fn_latest = params.common.fn_latest; save_data.model = &model; save_data.lora = &lora; struct train_opt_callback_data opt_cb_data; opt_cb_data.params = ¶ms.common; opt_cb_data.train = train; opt_cb_data.save_cb = &save_train_files; opt_cb_data.save_data = &save_data; opt_cb_data.lctx = lctx; opt_cb_data.last_save_iter = opt->iter; opt_cb_data.tokens_data = train_tokens.data(); opt_cb_data.tokens_size = train_tokens.size(); opt_cb_data.samples_begin = train_samples_begin.data(); opt_cb_data.samples_size = train_samples_size.data(); opt_cb_data.shuffled_samples_offs = train_shuffled_samples_offs.data(); opt_cb_data.shuffled_samples_begin = train_shuffled_samples_begin.data(); opt_cb_data.shuffled_samples_size = train_shuffled_samples_size.data(); opt_cb_data.samples_count = train_samples_size.size(); opt_cb_data.tokens_input = tokens_input; opt_cb_data.target_probs = target_probs; opt_cb_data.first_iter = opt->iter; opt_cb_data.first_epoch = train->train_epochs; opt_cb_data.iter_at_last_epoch = -1; opt_cb_data.last_time = ggml_time_ms(); opt_cb_data.millis_per_iter = 0.0; // measure required memory for work buffer size_t max_work_size = ggml_graph_plan(gb, params.common.n_threads).work_size + GGML_OBJECT_SIZE; printf("%s: work_size = %zu bytes (%.1f MB)\n", __func__, max_work_size, (float) max_work_size / (1024.0f*1024.0f)); // context for work buffer struct ggml_init_params ctx_work_params = { max_work_size, // mem_size NULL, // mem_buffer false, // no_alloc }; struct ggml_context * ctx_work = ggml_init(ctx_work_params); int64_t t0 = ggml_time_ms(); ggml_opt_resume_g(ctx_work, opt, loss, gf, gb, &train_opt_callback, (void *) &opt_cb_data); ggml_free(ctx_work); ggml_free(ctx_compute); ggml_free(ctx_input); ggml_gallocr_free(alloc); int64_t t1 = ggml_time_ms(); printf("%s: total training time: ", __func__); print_duration((double) (t1 - t0)); printf("\n"); int new_iters = opt->iter - opt_cb_data.last_save_iter; if (new_iters > 0) { train->train_its += new_iters; train->train_tokens += new_iters * opt->params.n_gradient_accumulation * n_batch * n_tokens; save_train_files(&save_data, train); opt_cb_data.last_save_iter = opt->iter; } ggml_free(opt->ctx); free_train_state(train); ggml_free(lora.ctx); llama_free(lctx); llama_free_model(lmodel); return 0; }