#include "common.h" #include "llama.h" #include #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif struct results_perplexity { std::vector tokens; double ppl_value; std::vector logits; std::vector probs; }; struct results_log_softmax { double log_softmax; float logit; float prob; }; static void write_logfile( const llama_context * ctx, const gpt_params & params, const llama_model * model, const struct results_perplexity & results ) { if (params.logdir.empty()) { return; } if (params.hellaswag) { fprintf(stderr, "%s: warning: logging results is not implemented for HellaSwag. No files will be written.\n", __func__); return; } const std::string timestamp = get_sortable_timestamp(); const bool success = create_directory_with_parents(params.logdir); if (!success) { fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n", __func__, params.logdir.c_str()); return; } const std::string logfile_path = params.logdir + timestamp + ".yml"; FILE * logfile = fopen(logfile_path.c_str(), "w"); if (logfile == NULL) { fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str()); return; } fprintf(logfile, "binary: main\n"); char model_desc[128]; llama_model_desc(model, model_desc, sizeof(model_desc)); dump_non_result_info_yaml(logfile, params, ctx, timestamp, results.tokens, model_desc); fprintf(logfile, "\n"); fprintf(logfile, "######################\n"); fprintf(logfile, "# Perplexity Results #\n"); fprintf(logfile, "######################\n"); fprintf(logfile, "\n"); dump_vector_float_yaml(logfile, "logits", results.logits); fprintf(logfile, "ppl_value: %f\n", results.ppl_value); dump_vector_float_yaml(logfile, "probs", results.probs); llama_dump_timing_info_yaml(logfile, ctx); fclose(logfile); } static std::vector softmax(const std::vector& logits) { std::vector probs(logits.size()); float max_logit = logits[0]; for (float v : logits) { max_logit = std::max(max_logit, v); } double sum_exp = 0.0; for (size_t i = 0; i < logits.size(); i++) { // Subtract the maximum logit value from the current logit value for numerical stability const float logit = logits[i] - max_logit; const float exp_logit = expf(logit); sum_exp += exp_logit; probs[i] = exp_logit; } for (size_t i = 0; i < probs.size(); i++) { probs[i] /= sum_exp; } return probs; } static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) { float max_logit = logits[0]; for (int i = 1; i < n_vocab; ++i) { max_logit = std::max(max_logit, logits[i]); } double sum_exp = 0.0; for (int i = 0; i < n_vocab; ++i) { sum_exp += expf(logits[i] - max_logit); } return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp}; } static void process_logits( int n_vocab, const float * logits, const int * tokens, int n_token, std::vector & workers, double & nll, double & nll2, float * logit_history, float * prob_history ) { std::mutex mutex; int counter = 0; auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () { double local_nll = 0; double local_nll2 = 0; while (true) { std::unique_lock lock(mutex); int i = counter++; if (i >= n_token) { nll += local_nll; nll2 += local_nll2; break; } lock.unlock(); const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]); const double v = -results.log_softmax; local_nll += v; local_nll2 += v*v; logit_history[i] = results.logit; prob_history[i] = results.prob; } }; for (auto & w : workers) { w = std::thread(compute); } compute(); for (auto & w : workers) { w.join(); } } static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) { // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` // Output: `perplexity: 13.5106 [114/114]` // BOS tokens will be added for each chunk before eval const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM; const bool add_bos = is_spm; fprintf(stderr, "%s: tokenizing the input ..\n", __func__); std::vector tokens = ::llama_tokenize(ctx, params.prompt, add_bos); if (int(tokens.size()) < 2*params.n_ctx) { fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*params.n_ctx, params.n_ctx); fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size()); return {std::move(tokens), 0., {}, {}}; } std::vector logit_history; std::vector prob_history; logit_history.resize(tokens.size()); prob_history.resize(tokens.size()); if (params.ppl_stride <= 0) { fprintf(stderr, "%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride); return {tokens, -1, logit_history, prob_history}; } const int calc_chunk = params.n_ctx; fprintf(stderr, "%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk); if (int(tokens.size()) <= calc_chunk) { fprintf(stderr, "%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__, tokens.size(), params.n_ctx, params.ppl_stride); return {tokens, -1, logit_history, prob_history}; } const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride; const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max); const int n_vocab = llama_n_vocab(ctx); const int n_batch = params.n_batch; int count = 0; double nll = 0.0; fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch); for (int i = 0; i < n_chunk; ++i) { const int start = i * params.ppl_stride; const int end = start + calc_chunk; const int num_batches = (calc_chunk + n_batch - 1) / n_batch; //fprintf(stderr, "%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches); std::vector logits; const auto t_start = std::chrono::high_resolution_clock::now(); // clear the KV cache llama_kv_cache_keep_seq(ctx, -1); for (int j = 0; j < num_batches; ++j) { const int batch_start = start + j * n_batch; const int batch_size = std::min(end - batch_start, n_batch); //fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch); if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0), params.n_threads)) { //fprintf(stderr, "%s : failed to eval\n", __func__); return {tokens, -1, logit_history, prob_history}; } // save original token and restore it after eval const auto token_org = tokens[batch_start]; // add BOS token for the first batch of each chunk if (add_bos && j == 0) { tokens[batch_start] = llama_token_bos(ctx); } const auto batch_logits = llama_get_logits(ctx); logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); if (j == 0) { tokens[batch_start] = token_org; } } const auto t_end = std::chrono::high_resolution_clock::now(); if (i == 0) { const float t_total = std::chrono::duration(t_end - t_start).count(); fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total); int total_seconds = (int)(t_total * n_chunk); if (total_seconds >= 60*60) { fprintf(stderr, "%d hours ", total_seconds / (60*60)); total_seconds = total_seconds % (60*60); } fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0); } //fprintf(stderr, "%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start); for (int j = params.n_ctx - params.ppl_stride - 1; j < params.n_ctx - 1; ++j) { // Calculate probability of next token, given the previous ones. const std::vector tok_logits( logits.begin() + (j + 0) * n_vocab, logits.begin() + (j + 1) * n_vocab); const float prob = softmax(tok_logits)[tokens[start + j + 1]]; logit_history[start + j + 1] = tok_logits[tokens[start + j + 1]]; prob_history[start + j + 1] = prob; nll += -std::log(prob); ++count; } // perplexity is e^(average negative log-likelihood) if (params.ppl_output_type == 0) { printf("[%d]%.4lf,", i + 1, std::exp(nll / count)); } else { printf("%8d %.4lf\n", i*params.ppl_stride, std::exp(nll / count)); } fflush(stdout); } printf("\n"); return {tokens, std::exp(nll / count), logit_history, prob_history}; } static results_perplexity perplexity(llama_context * ctx, const gpt_params & params) { if (params.ppl_stride > 0) { return perplexity_v2(ctx, params); } // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` // Output: `perplexity: 13.5106 [114/114]` // BOS tokens will be added for each chunk before eval const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM; const bool add_bos = is_spm; auto tim1 = std::chrono::high_resolution_clock::now(); fprintf(stderr, "%s: tokenizing the input ..\n", __func__); std::vector tokens = ::llama_tokenize(ctx, params.prompt, add_bos); auto tim2 = std::chrono::high_resolution_clock::now(); fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast(tim2-tim1).count()); if (int(tokens.size()) < 2*params.n_ctx) { fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*params.n_ctx, params.n_ctx); fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size()); return {std::move(tokens), 0., {}, {}}; } std::vector logit_history; logit_history.resize(tokens.size()); std::vector prob_history; prob_history.resize(tokens.size()); const int n_chunk_max = tokens.size() / params.n_ctx; const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max); const int n_vocab = llama_n_vocab(ctx); const int n_batch = params.n_batch; int count = 0; double nll = 0.0; double nll2 = 0.0; fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch); std::vector workers(std::thread::hardware_concurrency() - 1); for (int i = 0; i < n_chunk; ++i) { const int start = i * params.n_ctx; const int end = start + params.n_ctx; const int num_batches = (params.n_ctx + n_batch - 1) / n_batch; std::vector logits; const auto t_start = std::chrono::high_resolution_clock::now(); // clear the KV cache llama_kv_cache_keep_seq(ctx, -1); for (int j = 0; j < num_batches; ++j) { const int batch_start = start + j * n_batch; const int batch_size = std::min(end - batch_start, n_batch); // save original token and restore it after eval const auto token_org = tokens[batch_start]; // add BOS token for the first batch of each chunk if (add_bos && j == 0) { tokens[batch_start] = llama_token_bos(ctx); } if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0), params.n_threads)) { fprintf(stderr, "%s : failed to eval\n", __func__); return {tokens, -1, logit_history, prob_history}; } // restore the original token in case it was set to BOS tokens[batch_start] = token_org; const auto batch_logits = llama_get_logits(ctx); logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); } const auto t_end = std::chrono::high_resolution_clock::now(); if (i == 0) { const float t_total = std::chrono::duration(t_end - t_start).count(); fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total); int total_seconds = (int)(t_total * n_chunk); if (total_seconds >= 60*60) { fprintf(stderr, "%d hours ", total_seconds / (60*60)); total_seconds = total_seconds % (60*60); } fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0); } // We get the logits for all the tokens in the context window (params.n_ctx) // from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity, // calculate the perplexity over the last half of the window (so the model always has // some context to predict the token). // // We rely on the fact that attention in the forward pass only looks at previous // tokens here, so the logits returned for each token are an accurate representation // of what the model would have predicted at that point. // // Example, we have a context window of 512, we will compute perplexity for each of the // last 256 tokens. Then, we split the input up into context window size chunks to // process the entire prompt. const int first = params.n_ctx/2; process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, params.n_ctx - 1 - first, workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first); count += params.n_ctx - first - 1; // perplexity is e^(average negative log-likelihood) if (params.ppl_output_type == 0) { printf("[%d]%.4lf,", i + 1, std::exp(nll / count)); } else { double av = nll/count; double av2 = nll2/count - av*av; if (av2 > 0) av2 = sqrt(av2/(count-1)); printf("%8d %.4lf %4lf %4lf\n", i*params.n_ctx, std::exp(nll / count), av, av2); } fflush(stdout); } printf("\n"); nll2 /= count; nll /= count; const double ppl = exp(nll); nll2 -= nll * nll; if (nll2 > 0) { nll2 = sqrt(nll2/(count-1)); printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl); } else { printf("Unexpected negative standard deviation of log(prob)\n"); } return {tokens, ppl, logit_history, prob_history}; } static std::vector hellaswag_evaluate_tokens( llama_context * ctx, const std::vector& tokens, int n_past, int n_batch, int n_vocab, int n_thread ) { std::vector result; result.reserve(tokens.size() * n_vocab); size_t n_chunk = (tokens.size() + n_batch - 1)/n_batch; for (size_t i_chunk = 0; i_chunk < n_chunk; ++i_chunk) { size_t n_tokens = tokens.size() - i_chunk * n_batch; n_tokens = std::min(n_tokens, size_t(n_batch)); if (llama_decode(ctx, llama_batch_get_one(tokens.data() + i_chunk * n_batch, n_tokens, n_past, 0), n_thread)) { fprintf(stderr, "%s : failed to eval\n", __func__); return {}; } const auto logits = llama_get_logits(ctx); result.insert(result.end(), logits, logits + n_tokens * n_vocab); n_past += n_tokens; } return result; } static void hellaswag_score(llama_context * ctx, const gpt_params & params) { // Calculates hellaswag score (acc_norm) from prompt // // Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl // All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68 // // All 10042 tasks should be extracted to keep the results standardized like other implementations. // // Datafile layout: // ['??'] denotes json fields // 6 lines per task: // ['activity_label'] + ": " +['ctx'] - The first part of the query, the context // ['label'] - The index the best common sense ending aka gold ending // ['endings'][0] - Endings added to the first part of the query // ['endings'][1] // ['endings'][2] // ['endings'][3] std::vector prompt_lines; std::istringstream strstream(params.prompt); std::string line; while (std::getline(strstream,line,'\n')) { prompt_lines.push_back(line); } if( prompt_lines.size() % 6 != 0) { fprintf(stderr, "%s : number of lines in prompt not a multiple of 6.\n", __func__); return; } size_t hs_task_count = prompt_lines.size()/6; fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count); const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM; fprintf(stderr, "================================= is_spm = %d\n", is_spm); // This is needed as usual for LLaMA models const bool add_bos = is_spm; // Number of tasks to use when computing the score if ( params.hellaswag_tasks < hs_task_count ) { hs_task_count = params.hellaswag_tasks; } // The tasks should be randomized so the score stabilizes quickly. bool randomize_tasks = true; // The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now std::mt19937 rng(1); // Dataholder for hellaswag tasks struct hs_data_t { std::string context; size_t gold_ending_idx; std::string ending[4]; size_t ending_logprob_count[4]; double ending_logprob[4]; }; fprintf(stderr, "%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") ); // Select and read data from prompt lines hs_data_t *hs_data = new hs_data_t[hs_task_count]; for (size_t i=0; i < hs_task_count; i++) { size_t idx = i; // Select a random example of those left in the prompt if (randomize_tasks) { std::uniform_int_distribution dist(0, prompt_lines.size()/6-1 ) ; idx = dist(rng); } hs_data[i].context = prompt_lines[idx*6]; hs_data[i].gold_ending_idx = std::stoi( prompt_lines[idx*6+1] ); for (size_t j=0; j < 4; j++) { hs_data[i].ending[j] = prompt_lines[idx*6+2+j]; } // Delete the selected random example from the prompt if (randomize_tasks) { prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) ); } } fprintf(stderr, "%s : calculating hellaswag score over selected tasks.\n", __func__); printf("\ntask\tacc_norm\n"); double acc = 0.0f; const int n_vocab = llama_n_vocab(ctx); std::vector> ending_tokens(4); std::vector tok_logits(n_vocab); for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) { // Tokenize the context to count tokens std::vector context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, add_bos); size_t context_size = context_embd.size(); for (int i = 0; i < 4; ++i) { ending_tokens[i] = ::llama_tokenize(ctx, hs_data[task_idx].context + " " + hs_data[task_idx].ending[i], add_bos); for (int k = 0; k < int(context_size); ++k) { if (ending_tokens[i][k] != context_embd[k]) { fprintf(stderr, "Oops: ending %d of task %d differs from context at position %d\n",i,int(task_idx),k); break; } } } // Do the 1st ending // In this case we include the context when evaluating //auto query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[0], add_bos); auto query_embd = ending_tokens[0]; auto query_size = query_embd.size(); // Stop if query wont fit the ctx window if (query_size > (size_t)params.n_ctx) { fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size); return; } // Speedup small evaluations by evaluating atleast 32 tokens if (query_size < 32) { query_embd.resize(32); } // clear the KV cache llama_kv_cache_keep_seq(ctx, -1); auto logits = hellaswag_evaluate_tokens(ctx, query_embd, 0, params.n_batch, n_vocab, params.n_threads); if (logits.empty()) { fprintf(stderr, "%s : failed to eval\n", __func__); return; } std::memcpy(tok_logits.data(), logits.data() + (context_size-1)*n_vocab, n_vocab*sizeof(float)); const auto first_probs = softmax(tok_logits); hs_data[task_idx].ending_logprob_count[0] = 1; hs_data[task_idx].ending_logprob[0] = std::log(first_probs[query_embd[context_size]]); // Calculate the logprobs over the ending for (size_t j = context_size; j < query_size - 1; j++) { std::memcpy(tok_logits.data(), logits.data() + j*n_vocab, n_vocab*sizeof(float)); const float prob = softmax(tok_logits)[query_embd[j + 1]]; hs_data[task_idx].ending_logprob[0] += std::log(prob); hs_data[task_idx].ending_logprob_count[0]++; } // Calculate the mean token logprob for acc_norm hs_data[task_idx].ending_logprob[0] /= hs_data[task_idx].ending_logprob_count[0]; // Do the remaining endings // For these, we use the bare ending with n_past = context_size // for (size_t ending_idx = 1; ending_idx < 4; ending_idx++) { // Tokenize the query query_embd.resize(ending_tokens[ending_idx].size() - context_size); std::memcpy(query_embd.data(), ending_tokens[ending_idx].data() + context_size, query_embd.size()*sizeof(int)); query_size = query_embd.size(); // Stop if query wont fit the ctx window if (context_size + query_size > (size_t)params.n_ctx) { fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size); return; } // Speedup small evaluations by evaluating atleast 32 tokens // No, resizing to 32 is actually slightly slower (at least on CUDA) //if (query_size < 32) { // query_embd.resize(32); //} // Evaluate the query logits = hellaswag_evaluate_tokens(ctx, query_embd, context_size, params.n_batch, n_vocab, params.n_threads); if (logits.empty()) { fprintf(stderr, "%s : failed to eval\n", __func__); return; } hs_data[task_idx].ending_logprob_count[ending_idx] = 1; hs_data[task_idx].ending_logprob[ending_idx] = std::log(first_probs[query_embd[0]]); // Calculate the logprobs over the ending for (size_t j = 0; j < query_size - 1; j++) { std::memcpy(tok_logits.data(), logits.data() + j*n_vocab, n_vocab*sizeof(float)); const float prob = softmax(tok_logits)[query_embd[j + 1]]; hs_data[task_idx].ending_logprob[ending_idx] += std::log(prob); hs_data[task_idx].ending_logprob_count[ending_idx]++; } // Calculate the mean token logprob for acc_norm hs_data[task_idx].ending_logprob[ending_idx] /= hs_data[task_idx].ending_logprob_count[ending_idx]; // printf("task %lu, ending %lu, whole_len %lu, context_len %lu, ending_logprob_count %lu, ending_logprob %.4f\n", // task_idx,ending_idx,whole_size,context_size, hs_data[task_idx].ending_logprob_count[ending_idx], hs_data[task_idx].ending_logprob[ending_idx] ); } // Find the ending with maximum logprob size_t ending_logprob_max_idx = 0; double ending_logprob_max_val = hs_data[task_idx].ending_logprob[0]; for (size_t j = 1; j < 4; j++) { if (hs_data[task_idx].ending_logprob[j] > ending_logprob_max_val) { ending_logprob_max_idx = j; ending_logprob_max_val = hs_data[task_idx].ending_logprob[j]; } } // printf("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_data[task_idx].gold_ending_idx); // If the gold ending got the maximum logprobe add one accuracy point if (ending_logprob_max_idx == hs_data[task_idx].gold_ending_idx) { acc += 1.0; } // Print the accumulated accuracy mean x 100 printf("%zu\t%.8lf\n",task_idx+1, acc/double(task_idx+1)*100.0); fflush(stdout); } delete [] hs_data; printf("\n"); } int main(int argc, char ** argv) { gpt_params params; params.n_batch = 512; if (!gpt_params_parse(argc, argv, params)) { return 1; } params.perplexity = true; params.n_batch = std::min(params.n_batch, params.n_ctx); if (params.ppl_stride > 0) { fprintf(stderr, "Will perform strided perplexity calculation -> adjusting context size from %d to %d\n", params.n_ctx, params.n_ctx + params.ppl_stride/2); params.n_ctx += params.ppl_stride/2; } print_build_info(); if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); } fprintf(stderr, "%s: seed = %u\n", __func__, params.seed); std::mt19937 rng(params.seed); if (params.random_prompt) { params.prompt = gpt_random_prompt(rng); } llama_backend_init(params.numa); llama_model * model; llama_context * ctx; // load the model and apply lora adapter, if any std::tie(model, ctx) = llama_init_from_gpt_params(params); if (model == NULL) { fprintf(stderr, "%s: error: unable to load model\n", __func__); return 1; } const int n_ctx_train = llama_n_ctx_train(ctx); if (params.n_ctx > n_ctx_train) { fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, params.n_ctx); } // print system information { fprintf(stderr, "\n"); fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info()); } struct results_perplexity results; if (params.hellaswag) { hellaswag_score(ctx, params); } else { results = perplexity(ctx, params); } llama_print_timings(ctx); write_logfile(ctx, params, model, results); llama_free(ctx); llama_free_model(model); llama_backend_free(); return 0; }