#include "common.h" #include "llama.h" #include #include #include #include #include #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif struct results_perplexity { std::vector tokens; double ppl_value; std::vector logits; std::vector probs; }; struct results_log_softmax { double log_softmax; float logit; float prob; }; static void write_logfile( const llama_context * ctx, const gpt_params & params, const llama_model * model, const struct results_perplexity & results ) { if (params.logdir.empty()) { return; } if (params.hellaswag) { fprintf(stderr, "%s: warning: logging results is not implemented for HellaSwag. No files will be written.\n", __func__); return; } const std::string timestamp = get_sortable_timestamp(); const bool success = create_directory_with_parents(params.logdir); if (!success) { fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n", __func__, params.logdir.c_str()); return; } const std::string logfile_path = params.logdir + timestamp + ".yml"; FILE * logfile = fopen(logfile_path.c_str(), "w"); if (logfile == NULL) { fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str()); return; } fprintf(logfile, "binary: main\n"); char model_desc[128]; llama_model_desc(model, model_desc, sizeof(model_desc)); dump_non_result_info_yaml(logfile, params, ctx, timestamp, results.tokens, model_desc); fprintf(logfile, "\n"); fprintf(logfile, "######################\n"); fprintf(logfile, "# Perplexity Results #\n"); fprintf(logfile, "######################\n"); fprintf(logfile, "\n"); dump_vector_float_yaml(logfile, "logits", results.logits); fprintf(logfile, "ppl_value: %f\n", results.ppl_value); dump_vector_float_yaml(logfile, "probs", results.probs); llama_dump_timing_info_yaml(logfile, ctx); fclose(logfile); } static std::vector softmax(const std::vector& logits) { std::vector probs(logits.size()); float max_logit = logits[0]; for (float v : logits) { max_logit = std::max(max_logit, v); } double sum_exp = 0.0; for (size_t i = 0; i < logits.size(); i++) { // Subtract the maximum logit value from the current logit value for numerical stability const float logit = logits[i] - max_logit; const float exp_logit = expf(logit); sum_exp += exp_logit; probs[i] = exp_logit; } for (size_t i = 0; i < probs.size(); i++) { probs[i] /= sum_exp; } return probs; } static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) { float max_logit = logits[0]; for (int i = 1; i < n_vocab; ++i) { max_logit = std::max(max_logit, logits[i]); } double sum_exp = 0.0; for (int i = 0; i < n_vocab; ++i) { sum_exp += expf(logits[i] - max_logit); } return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp}; } static void process_logits( int n_vocab, const float * logits, const int * tokens, int n_token, std::vector & workers, double & nll, double & nll2, float * logit_history, float * prob_history ) { std::mutex mutex; int counter = 0; auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () { double local_nll = 0; double local_nll2 = 0; while (true) { std::unique_lock lock(mutex); int i = counter++; if (i >= n_token) { nll += local_nll; nll2 += local_nll2; break; } lock.unlock(); const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]); const double v = -results.log_softmax; local_nll += v; local_nll2 += v*v; logit_history[i] = results.logit; prob_history[i] = results.prob; } }; for (auto & w : workers) { w = std::thread(compute); } compute(); for (auto & w : workers) { w.join(); } } static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) { // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` // Output: `perplexity: 13.5106 [114/114]` // BOS tokens will be added for each chunk before eval const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); fprintf(stderr, "%s: tokenizing the input ..\n", __func__); std::vector tokens = ::llama_tokenize(ctx, params.prompt, add_bos); const int n_ctx = llama_n_ctx(ctx); if (int(tokens.size()) < 2*n_ctx) { fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx, n_ctx); fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size()); return {std::move(tokens), 0., {}, {}}; } std::vector logit_history; std::vector prob_history; logit_history.resize(tokens.size()); prob_history.resize(tokens.size()); if (params.ppl_stride <= 0) { fprintf(stderr, "%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride); return {tokens, -1, logit_history, prob_history}; } const int calc_chunk = n_ctx; fprintf(stderr, "%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk); if (int(tokens.size()) <= calc_chunk) { fprintf(stderr, "%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__, tokens.size(), n_ctx, params.ppl_stride); return {tokens, -1, logit_history, prob_history}; } const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride; const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max); const int n_vocab = llama_n_vocab(llama_get_model(ctx)); const int n_batch = params.n_batch; int count = 0; double nll = 0.0; fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch); for (int i = 0; i < n_chunk; ++i) { const int start = i * params.ppl_stride; const int end = start + calc_chunk; const int num_batches = (calc_chunk + n_batch - 1) / n_batch; //fprintf(stderr, "%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches); std::vector logits; const auto t_start = std::chrono::high_resolution_clock::now(); // clear the KV cache llama_kv_cache_clear(ctx); for (int j = 0; j < num_batches; ++j) { const int batch_start = start + j * n_batch; const int batch_size = std::min(end - batch_start, n_batch); //fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch); if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) { //fprintf(stderr, "%s : failed to eval\n", __func__); return {tokens, -1, logit_history, prob_history}; } // save original token and restore it after eval const auto token_org = tokens[batch_start]; // add BOS token for the first batch of each chunk if (add_bos && j == 0) { tokens[batch_start] = llama_token_bos(llama_get_model(ctx)); } const auto batch_logits = llama_get_logits(ctx); logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); if (j == 0) { tokens[batch_start] = token_org; } } const auto t_end = std::chrono::high_resolution_clock::now(); if (i == 0) { const float t_total = std::chrono::duration(t_end - t_start).count(); fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total); int total_seconds = (int)(t_total * n_chunk); if (total_seconds >= 60*60) { fprintf(stderr, "%d hours ", total_seconds / (60*60)); total_seconds = total_seconds % (60*60); } fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0); } //fprintf(stderr, "%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start); for (int j = n_ctx - params.ppl_stride - 1; j < n_ctx - 1; ++j) { // Calculate probability of next token, given the previous ones. const std::vector tok_logits( logits.begin() + (j + 0) * n_vocab, logits.begin() + (j + 1) * n_vocab); const float prob = softmax(tok_logits)[tokens[start + j + 1]]; logit_history[start + j + 1] = tok_logits[tokens[start + j + 1]]; prob_history[start + j + 1] = prob; nll += -std::log(prob); ++count; } // perplexity is e^(average negative log-likelihood) if (params.ppl_output_type == 0) { printf("[%d]%.4lf,", i + 1, std::exp(nll / count)); } else { printf("%8d %.4lf\n", i*params.ppl_stride, std::exp(nll / count)); } fflush(stdout); } printf("\n"); return {tokens, std::exp(nll / count), logit_history, prob_history}; } static results_perplexity perplexity(llama_context * ctx, const gpt_params & params) { if (params.ppl_stride > 0) { return perplexity_v2(ctx, params); } // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` // Output: `perplexity: 13.5106 [114/114]` // BOS tokens will be added for each chunk before eval const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); const int n_ctx = llama_n_ctx(ctx); auto tim1 = std::chrono::high_resolution_clock::now(); fprintf(stderr, "%s: tokenizing the input ..\n", __func__); std::vector tokens = ::llama_tokenize(ctx, params.prompt, add_bos); auto tim2 = std::chrono::high_resolution_clock::now(); fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast(tim2-tim1).count()); if (int(tokens.size()) < 2*n_ctx) { fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx, n_ctx); fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size()); return {std::move(tokens), 0., {}, {}}; } std::vector logit_history; logit_history.resize(tokens.size()); std::vector prob_history; prob_history.resize(tokens.size()); const int n_chunk_max = tokens.size() / n_ctx; const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max); const int n_vocab = llama_n_vocab(llama_get_model(ctx)); const int n_batch = params.n_batch; int count = 0; double nll = 0.0; double nll2 = 0.0; fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch); std::vector workers(std::thread::hardware_concurrency() - 1); for (int i = 0; i < n_chunk; ++i) { const int start = i * n_ctx; const int end = start + n_ctx; const int num_batches = (n_ctx + n_batch - 1) / n_batch; std::vector logits; const auto t_start = std::chrono::high_resolution_clock::now(); // clear the KV cache llama_kv_cache_clear(ctx); for (int j = 0; j < num_batches; ++j) { const int batch_start = start + j * n_batch; const int batch_size = std::min(end - batch_start, n_batch); // save original token and restore it after eval const auto token_org = tokens[batch_start]; // add BOS token for the first batch of each chunk if (add_bos && j == 0) { tokens[batch_start] = llama_token_bos(llama_get_model(ctx)); } if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) { fprintf(stderr, "%s : failed to eval\n", __func__); return {tokens, -1, logit_history, prob_history}; } // restore the original token in case it was set to BOS tokens[batch_start] = token_org; const auto * batch_logits = llama_get_logits(ctx); logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); } const auto t_end = std::chrono::high_resolution_clock::now(); if (i == 0) { const float t_total = std::chrono::duration(t_end - t_start).count(); fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total); int total_seconds = (int)(t_total * n_chunk); if (total_seconds >= 60*60) { fprintf(stderr, "%d hours ", total_seconds / (60*60)); total_seconds = total_seconds % (60*60); } fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0); } // We get the logits for all the tokens in the context window (params.n_ctx) // from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity, // calculate the perplexity over the last half of the window (so the model always has // some context to predict the token). // // We rely on the fact that attention in the forward pass only looks at previous // tokens here, so the logits returned for each token are an accurate representation // of what the model would have predicted at that point. // // Example, we have a context window of 512, we will compute perplexity for each of the // last 256 tokens. Then, we split the input up into context window size chunks to // process the entire prompt. const int first = n_ctx/2; process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first, workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first); count += n_ctx - first - 1; // perplexity is e^(average negative log-likelihood) if (params.ppl_output_type == 0) { printf("[%d]%.4lf,", i + 1, std::exp(nll / count)); } else { double av = nll/count; double av2 = nll2/count - av*av; if (av2 > 0) av2 = sqrt(av2/(count-1)); printf("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2); } fflush(stdout); } printf("\n"); nll2 /= count; nll /= count; const double ppl = exp(nll); nll2 -= nll * nll; if (nll2 > 0) { nll2 = sqrt(nll2/(count-1)); printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl); } else { printf("Unexpected negative standard deviation of log(prob)\n"); } return {tokens, ppl, logit_history, prob_history}; } static std::vector evaluate_tokens(llama_context * ctx, std::vector & tokens, int n_past, int n_batch, int n_vocab) { std::vector result; result.reserve(tokens.size() * n_vocab); size_t n_chunk = (tokens.size() + n_batch - 1)/n_batch; for (size_t i_chunk = 0; i_chunk < n_chunk; ++i_chunk) { size_t n_tokens = tokens.size() - i_chunk * n_batch; n_tokens = std::min(n_tokens, size_t(n_batch)); llama_kv_cache_seq_rm(ctx, 0, n_past, -1); if (llama_decode(ctx, llama_batch_get_one(tokens.data() + i_chunk * n_batch, n_tokens, n_past, 0))) { fprintf(stderr, "%s : failed to eval\n", __func__); return {}; } const auto logits = llama_get_logits(ctx); result.insert(result.end(), logits, logits + n_tokens * n_vocab); n_past += n_tokens; } return result; } static void hellaswag_compute_logprobs(const float * batch_logits, int n_vocab, std::vector& workers, const std::vector>& eval_pairs, std::vector& eval_results) { constexpr int k_token_chunk = 4; if (eval_results.size() != eval_pairs.size()) { eval_results.resize(eval_pairs.size()); } if (eval_pairs.empty()) return; size_t max_threads = std::min((eval_pairs.size() + k_token_chunk - 1)/k_token_chunk, workers.size()); std::atomic counter(0); auto compute = [&counter, &eval_pairs, &eval_results, batch_logits, n_vocab] () { float local_logprobs[k_token_chunk]; while (true) { size_t first = counter.fetch_add(k_token_chunk, std::memory_order_relaxed); if (first >= eval_results.size()) break; size_t last = std::min(first + k_token_chunk, eval_results.size()); for (size_t i = first; i < last; ++i) { auto logits = batch_logits + eval_pairs[i].first * n_vocab; float max_logit = logits[0]; for (int j = 1; j < n_vocab; ++j) { max_logit = std::max(max_logit, logits[j]); } float sum_p = 0.f; for (int j = 0; j < n_vocab; ++j) { sum_p += expf(logits[j] - max_logit); } local_logprobs[i - first] = logits[eval_pairs[i].second] - max_logit - std::log(sum_p); } std::memcpy(eval_results.data() + first, local_logprobs, (last - first)*sizeof(float)); } }; for (size_t it = 0; it < max_threads; ++it) { workers[it] = std::thread(compute); } for (size_t it = 0; it < max_threads; ++it) { workers[it].join(); } } static void hellaswag_score(llama_context * ctx, const gpt_params & params) { // Calculates hellaswag score (acc_norm) from prompt // // Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl // All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68 // // All 10042 tasks should be extracted to keep the results standardized like other implementations. // // Datafile layout: // ['??'] denotes json fields // 6 lines per task: // ['activity_label'] + ": " +['ctx'] - The first part of the query, the context // ['label'] - The index the best common sense ending aka gold ending // ['endings'][0] - Endings added to the first part of the query // ['endings'][1] // ['endings'][2] // ['endings'][3] std::vector prompt_lines; std::istringstream strstream(params.prompt); std::string line; while (std::getline(strstream,line,'\n')) { prompt_lines.push_back(line); } if (prompt_lines.size() % 6 != 0) { fprintf(stderr, "%s : number of lines in prompt not a multiple of 6.\n", __func__); return; } size_t hs_task_count = prompt_lines.size()/6; fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count); const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM; fprintf(stderr, "================================= is_spm = %d\n", is_spm); // This is needed as usual for LLaMA models const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); // Number of tasks to use when computing the score if (params.hellaswag_tasks < hs_task_count) { hs_task_count = params.hellaswag_tasks; } // The tasks should be randomized so the score stabilizes quickly. bool randomize_tasks = true; // The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now std::mt19937 rng(1); // Dataholder for hellaswag tasks struct hs_data_t { std::string context; size_t gold_ending_idx; std::string ending[4]; size_t ending_logprob_count[4]; double ending_logprob[4]; size_t i_batch; // starting index in the llama_batch size_t common_prefix; // max number of initial tokens that are the same in all sentences size_t required_tokens; // needed number of tokens to evaluate all 4 endings std::vector seq_tokens[4]; }; fprintf(stderr, "%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") ); // Select and read data from prompt lines std::vector hs_data(hs_task_count); for (size_t i = 0; i < hs_task_count; i++) { size_t idx = i; auto & hs_cur = hs_data[i]; // Select a random example of those left in the prompt if (randomize_tasks) { std::uniform_int_distribution dist(0, prompt_lines.size()/6-1 ) ; idx = dist(rng); } hs_cur.context = prompt_lines[idx*6]; hs_cur.gold_ending_idx = std::stoi( prompt_lines[idx*6+1] ); for (size_t j = 0; j < 4; j++) { hs_cur.ending[j] = prompt_lines[idx*6+2+j]; hs_cur.seq_tokens[j] = ::llama_tokenize(ctx, hs_cur.context + " " + hs_cur.ending[j], add_bos); } // determine the common prefix of the endings hs_cur.common_prefix = 0; hs_cur.required_tokens = 0; for (size_t k = 0; k < hs_cur.seq_tokens[0].size(); k++) { if (hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[1][k] || hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[2][k] || hs_cur.seq_tokens[0][k] != hs_cur.seq_tokens[3][k]) { break; } hs_cur.common_prefix++; } hs_cur.required_tokens = hs_cur.common_prefix + hs_cur.seq_tokens[0].size() - hs_cur.common_prefix + hs_cur.seq_tokens[1].size() - hs_cur.common_prefix + hs_cur.seq_tokens[2].size() - hs_cur.common_prefix + hs_cur.seq_tokens[3].size() - hs_cur.common_prefix; //GGML_ASSERT(hs_cur.common_prefix >= ::llama_tokenize(ctx, hs_cur.context, add_bos).size()); // Delete the selected random example from the prompt if (randomize_tasks) { prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) ); } } fprintf(stderr, "%s : calculating hellaswag score over selected tasks.\n", __func__); printf("\ntask\tacc_norm\n"); double acc = 0.0f; const int n_vocab = llama_n_vocab(llama_get_model(ctx)); const int n_ctx = llama_n_ctx(ctx); const int n_batch = params.n_batch; const int max_tasks_per_batch = params.n_parallel; const int max_seq = 4*max_tasks_per_batch; llama_batch batch = llama_batch_init(n_ctx, 0, max_seq); std::vector tok_logits(n_vocab); std::vector batch_logits(n_ctx*n_vocab); std::vector> eval_pairs; std::vector eval_results; std::vector workers(std::thread::hardware_concurrency()); auto decode_helper = [&](llama_context * ctx, llama_batch & batch, int32_t n_batch) { for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) { const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i)); llama_batch batch_view = { n_tokens, batch.token + i, nullptr, batch.pos + i, batch.n_seq_id + i, batch.seq_id + i, batch.logits + i, 0, 0, 0, // unused }; const int ret = llama_decode(ctx, batch_view); if (ret != 0) { LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret); return false; } memcpy(batch_logits.data() + i*n_vocab, llama_get_logits(ctx), n_tokens*n_vocab*sizeof(float)); } return true; }; for (size_t i0 = 0; i0 < hs_task_count; i0++) { int n_cur = 0; size_t i1 = i0; size_t i_batch = 0; // this tells us where in `llama_batch` we are currently llama_batch_clear(batch); // batch as much tasks as possible into the available context // each task has 4 unique seuqnce ids - one for each ending // the common prefix is shared among the 4 sequences to save tokens // we extract logits only from the last common token and from all ending tokens of each sequence while (n_cur + (int) hs_data[i1].required_tokens <= n_ctx) { auto & hs_cur = hs_data[i1]; const int s0 = 4*(i1 - i0); if (s0 + 4 > max_seq) { break; } for (size_t i = 0; i < hs_cur.common_prefix; ++i) { llama_batch_add(batch, hs_cur.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3}, false); } batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix for (int s = 0; s < 4; ++s) { for (size_t i = hs_cur.common_prefix; i < hs_cur.seq_tokens[s].size(); ++i) { llama_batch_add(batch, hs_cur.seq_tokens[s][i], i, { s0 + s }, true); } } hs_cur.i_batch = i_batch; i_batch += hs_cur.required_tokens; n_cur += hs_data[i1].required_tokens; if (++i1 == hs_task_count) { break; } } if (i0 == i1) { fprintf(stderr, "%s : task %zu does not fit in the context window\n", __func__, i0); return; } llama_kv_cache_clear(ctx); // decode all tasks [i0, i1) if (!decode_helper(ctx, batch, n_batch)) { fprintf(stderr, "%s: llama_decode() failed\n", __func__); return; } // Compute log-probs in parallel // First we collect all tasks eval_pairs.clear(); for (size_t i = i0; i < i1; ++i) { auto & hs_cur = hs_data[i]; size_t li = hs_cur.common_prefix; for (int s = 0; s < 4; ++s) { for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) { eval_pairs.push_back(std::make_pair(hs_cur.i_batch + li++, hs_cur.seq_tokens[s][j + 1])); } ++li; } } // Then we do the actual calculation hellaswag_compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results); size_t ir = 0; // compute the logprobs for each ending of the decoded tasks for (size_t i = i0; i < i1; ++i) { auto & hs_cur = hs_data[i]; std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*(hs_cur.i_batch + hs_cur.common_prefix - 1), n_vocab*sizeof(float)); const auto first_probs = softmax(tok_logits); for (int s = 0; s < 4; ++s) { hs_cur.ending_logprob_count[s] = 1; hs_cur.ending_logprob[s] = std::log(first_probs[hs_cur.seq_tokens[s][hs_cur.common_prefix]]); for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) { hs_cur.ending_logprob[s] += eval_results[ir++]; hs_cur.ending_logprob_count[s]++; } hs_cur.ending_logprob[s] /= hs_cur.ending_logprob_count[s]; } // Find the ending with maximum logprob size_t ending_logprob_max_idx = 0; double ending_logprob_max_val = hs_cur.ending_logprob[0]; for (size_t s = 1; s < 4; s++) { if (hs_cur.ending_logprob[s] > ending_logprob_max_val) { ending_logprob_max_idx = s; ending_logprob_max_val = hs_cur.ending_logprob[s]; } } //printf("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_cur.gold_ending_idx); // If the gold ending got the maximum logprobe add one accuracy point if (ending_logprob_max_idx == hs_cur.gold_ending_idx) { acc += 1.0; } // Print the accumulated accuracy mean x 100 printf("%zu\t%.8lf\n", i + 1, acc/double(i + 1)*100.0); fflush(stdout); } i0 = i1 - 1; } llama_batch_free(batch); printf("\n"); } struct winogrande_entry { std::string first; std::string second; std::array choices; int answer; }; static std::vector load_winogrande_from_csv(const std::string& prompt) { std::vector result; std::istringstream in(prompt); std::string line; std::array comma_pos; while (true) { std::getline(in, line); if (in.fail() || in.eof()) break; int ipos = 0; bool quote_open = false; for (int i = 0; i < int(line.size()); ++i) { if (!quote_open) { if (line[i] == ',') { comma_pos[ipos++] = i; if (ipos == 4) break; } else if (line[i] == '"') { quote_open = true; } } else { if (line[i] == '"') { quote_open = false; } } } if (ipos != 4) { printf("%s: failed to find comma separators in <%s>\n", __func__, line.c_str()); continue; } auto sentence = line[comma_pos[0]+1] == '"' ? line.substr(comma_pos[0]+2, comma_pos[1] - comma_pos[0] - 3) : line.substr(comma_pos[0]+1, comma_pos[1] - comma_pos[0] - 1); auto choice1 = line.substr(comma_pos[1]+1, comma_pos[2] - comma_pos[1] - 1); auto choice2 = line.substr(comma_pos[2]+1, comma_pos[3] - comma_pos[2] - 1); auto answer = line.substr(comma_pos[3]+1, line.size() - comma_pos[3] - 1); auto index = line.substr(0, comma_pos[0]); int where = 0; for ( ; where < int(sentence.size()); ++where) { if (sentence[where] == '_') break; } if (where == int(sentence.size())) { printf("%s: no _ in <%s>\n", __func__, sentence.c_str()); continue; } std::istringstream stream(answer.c_str()); int i_answer; stream >> i_answer; if (stream.fail() || i_answer < 1 || i_answer > 2) { printf("%s: failed to parse answer <%s>\n", __func__, answer.c_str()); continue; } result.emplace_back(); auto& wg = result.back(); wg.first = sentence.substr(0, where); wg.second = sentence.substr(where + 1, sentence.size() - where - 1); wg.choices[0] = std::move(choice1); wg.choices[1] = std::move(choice2); wg.answer = i_answer; } return result; } /* * Evaluates the Winogrande score. * Uses a CSV containing task index, dentence, choice 1, choice 2, answer (1 or 2) * You can get one such dataset from e.g. https://huggingface.co/datasets/ikawrakow/winogrande-eval-for-llama.cpp * As an example, the 1st row in the above dataset is * * 0,Sarah was a much better surgeon than Maria so _ always got the easier cases.,Sarah,Maria,2 * */ static void winogrande_score(llama_context * ctx, const gpt_params & params) { constexpr int k_min_trailing_ctx = 3; auto data = load_winogrande_from_csv(params.prompt); if (data.empty()) { fprintf(stderr, "%s: no tasks\n", __func__); return; } fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, data.size()); if (params.winogrande_tasks > 0 && params.winogrande_tasks < data.size()) { fprintf(stderr, "%s : selecting %zu random tasks\n", __func__, params.winogrande_tasks); std::mt19937 rng(1); std::vector aux(data.size()); for (int i = 0; i < int(data.size()); ++i) { aux[i] = i; } float scale = 1/(1.f + (float)rng.max()); std::vector selected; selected.resize(params.winogrande_tasks); for (int i = 0; i < int(params.winogrande_tasks); ++i) { int j = int(scale*rng()*aux.size()); selected[i] = std::move(data[aux[j]]); aux[j] = aux.back(); aux.pop_back(); } data = std::move(selected); } // This is needed as usual for LLaMA models const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); fprintf(stderr, "%s : calculating winogrande score over selected tasks.\n", __func__); const int n_vocab = llama_n_vocab(llama_get_model(ctx)); const int n_ctx = llama_n_ctx(ctx); std::vector tok_logits(n_vocab); int n_correct = 0; int n_done = 0; for (size_t task_idx = 0; task_idx < data.size(); task_idx++) { const auto& task = data[task_idx]; auto base_context = ::llama_tokenize(ctx, task.first, add_bos); auto base_ctx_1st = ::llama_tokenize(ctx, task.first + task.choices[0], add_bos); auto base_ctx_2nd = ::llama_tokenize(ctx, task.first + task.choices[1], add_bos); auto sentence_1st = task.first + task.choices[0] + task.second; auto sentence_2nd = task.first + task.choices[1] + task.second; auto query_1st = ::llama_tokenize(ctx, sentence_1st, add_bos); auto query_2nd = ::llama_tokenize(ctx, sentence_2nd, add_bos); if (query_1st.size() > (size_t)n_ctx || query_2nd.size() > (size_t)n_ctx) { fprintf(stderr, "%s : number of tokens in queries %zu, %zu > n_ctxl\n", __func__, query_1st.size(), query_2nd.size()); return; } auto query_1st_size = query_1st.size(); auto query_2nd_size = query_2nd.size(); // Speedup small evaluations by evaluating atleast 32 tokens // For Winogrande this seems to slow it down rather than speed it up. //if (query_1st.size() < 32) query_1st.resize(32); //if (query_2nd.size() < 32) query_2nd.resize(32); llama_kv_cache_clear(ctx); auto logits_1st = evaluate_tokens(ctx, query_1st, 0, params.n_batch, n_vocab); llama_kv_cache_clear(ctx); auto logits_2nd = evaluate_tokens(ctx, query_2nd, 0, params.n_batch, n_vocab); if (logits_1st.empty() || logits_2nd.empty()) { fprintf(stderr, "%s : failed to eval\n", __func__); return; } bool skip_choice = query_1st_size - base_ctx_1st.size() > k_min_trailing_ctx && query_2nd_size - base_ctx_2nd.size() > k_min_trailing_ctx; float score_1st = 0; bool is_nan_1st = false; const auto& base_1 = skip_choice ? base_ctx_1st : base_context; const int last_1st = query_1st_size - base_1.size() > 1 ? 1 : 0; for (size_t j = base_1.size()-1; j < query_1st_size-1-last_1st; ++j) { std::memcpy(tok_logits.data(), logits_1st.data() + j*n_vocab, n_vocab*sizeof(float)); const float prob = softmax(tok_logits)[query_1st[j+1]]; if (std::isnan(prob) || !prob) { fprintf(stderr, "%s: %g probability for token %zu when evaluating <%s>. Base context has %zu tokens\n", __func__, prob, j, sentence_1st.c_str(), base_context.size()); is_nan_1st = true; break; } score_1st += std::log(prob); } score_1st /= (query_1st_size - base_1.size() - last_1st); float score_2nd = 0; bool is_nan_2nd = false; const auto& base_2 = skip_choice ? base_ctx_2nd : base_context; const int last_2nd = query_2nd_size - base_2.size() > 1 ? 1 : 0; for (size_t j = base_2.size()-1; j < query_2nd_size-1-last_2nd; ++j) { std::memcpy(tok_logits.data(), logits_2nd.data() + j*n_vocab, n_vocab*sizeof(float)); const float prob = softmax(tok_logits)[query_2nd[j+1]]; if (std::isnan(prob) || !prob) { fprintf(stderr, "%s: %g probability for token %zu when evaluating <%s>. Base context has %zu tokens\n", __func__, prob, j, sentence_2nd.c_str(), base_context.size()); is_nan_2nd = true; break; } score_2nd += std::log(prob); } score_2nd /= (query_2nd_size - base_2.size() - last_2nd); if (is_nan_1st || is_nan_2nd) { continue; } if (std::isnan(score_1st) || std::isnan(score_2nd)) { printf("================== NaN score %g, %g) for:\n", score_1st, score_2nd); printf("Q1: <%s> - %zu tokens\n", sentence_1st.c_str(), query_1st_size); printf("Q2: <%s> - %zu tokens\n", sentence_2nd.c_str(), query_2nd_size); printf("B : <%s> - %zu tokens\n", task.first.c_str(), base_context.size()); printf("base_1 has %zu tokens, base_2 has %zu tokens, skip_choice = %d\n", base_1.size(), base_2.size(), skip_choice); continue; } int result = score_1st > score_2nd ? 1 : 2; if (result == task.answer) { ++n_correct; } ++n_done; // Print the accumulated accuracy mean x 100 printf("%zu\t%.4lf\t%10.6f %10.6f %d %d\n",task_idx+1, 100.0 * n_correct/n_done,score_1st,score_2nd,result,task.answer); fflush(stdout); } printf("\n"); if (n_done < 100) return; const float p = 1.f*n_correct/n_done; const float sigma = 100.f*sqrt(p*(1-p)/(n_done-1)); printf("Final Winogrande score(%d tasks): %.4lf +/- %.4lf\n", n_done, 100*p, sigma); } int main(int argc, char ** argv) { gpt_params params; params.n_batch = 512; if (!gpt_params_parse(argc, argv, params)) { return 1; } params.logits_all = true; params.n_batch = std::min(params.n_batch, params.n_ctx); if (params.ppl_stride > 0) { fprintf(stderr, "Will perform strided perplexity calculation -> adjusting context size from %d to %d\n", params.n_ctx, params.n_ctx + params.ppl_stride/2); params.n_ctx += params.ppl_stride/2; } print_build_info(); if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); } fprintf(stderr, "%s: seed = %u\n", __func__, params.seed); std::mt19937 rng(params.seed); if (params.random_prompt) { params.prompt = gpt_random_prompt(rng); } llama_backend_init(params.numa); llama_model * model; llama_context * ctx; // load the model and apply lora adapter, if any std::tie(model, ctx) = llama_init_from_gpt_params(params); if (model == NULL) { fprintf(stderr, "%s: error: unable to load model\n", __func__); return 1; } const int n_ctx_train = llama_n_ctx_train(model); if (params.n_ctx > n_ctx_train) { fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, params.n_ctx); } // print system information { fprintf(stderr, "\n"); fprintf(stderr, "%s\n", get_system_info(params).c_str()); } struct results_perplexity results; if (params.hellaswag) { hellaswag_score(ctx, params); } else if (params.winogrande) { winogrande_score(ctx, params); } else { results = perplexity(ctx, params); } llama_print_timings(ctx); write_logfile(ctx, params, model, results); llama_free(ctx); llama_free_model(model); llama_backend_free(); return 0; }