#include "common.h" #include "build-info.h" #include "llama.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__APPLE__) && defined(__MACH__) #include #include #endif #if defined(_WIN32) #define WIN32_LEAN_AND_MEAN #ifndef NOMINMAX # define NOMINMAX #endif #include #include #include #include #include #else #include #include #include #endif #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif int32_t get_num_physical_cores() { #ifdef __linux__ // enumerate the set of thread siblings, num entries is num cores std::unordered_set siblings; for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) { std::ifstream thread_siblings("/sys/devices/system/cpu" + std::to_string(cpu) + "/topology/thread_siblings"); if (!thread_siblings.is_open()) { break; // no more cpus } std::string line; if (std::getline(thread_siblings, line)) { siblings.insert(line); } } if (!siblings.empty()) { return static_cast(siblings.size()); } #elif defined(__APPLE__) && defined(__MACH__) int32_t num_physical_cores; size_t len = sizeof(num_physical_cores); int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0); if (result == 0) { return num_physical_cores; } result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0); if (result == 0) { return num_physical_cores; } #elif defined(_WIN32) //TODO: Implement #endif unsigned int n_threads = std::thread::hardware_concurrency(); return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4; } static void process_escapes(std::string& input) { std::size_t input_len = input.length(); std::size_t output_idx = 0; for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) { if (input[input_idx] == '\\' && input_idx + 1 < input_len) { switch (input[++input_idx]) { case 'n': input[output_idx++] = '\n'; break; case 'r': input[output_idx++] = '\r'; break; case 't': input[output_idx++] = '\t'; break; case '\'': input[output_idx++] = '\''; break; case '\"': input[output_idx++] = '\"'; break; case '\\': input[output_idx++] = '\\'; break; default: input[output_idx++] = '\\'; input[output_idx++] = input[input_idx]; break; } } else { input[output_idx++] = input[input_idx]; } } input.resize(output_idx); } bool gpt_params_parse(int argc, char ** argv, gpt_params & params) { bool invalid_param = false; std::string arg; gpt_params default_params; const std::string arg_prefix = "--"; for (int i = 1; i < argc; i++) { arg = argv[i]; if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { std::replace(arg.begin(), arg.end(), '_', '-'); } if (arg == "-s" || arg == "--seed") { if (++i >= argc) { invalid_param = true; break; } params.seed = std::stoul(argv[i]); } else if (arg == "-t" || arg == "--threads") { if (++i >= argc) { invalid_param = true; break; } params.n_threads = std::stoi(argv[i]); if (params.n_threads <= 0) { params.n_threads = std::thread::hardware_concurrency(); } } else if (arg == "-p" || arg == "--prompt") { if (++i >= argc) { invalid_param = true; break; } params.prompt = argv[i]; } else if (arg == "-e" || arg == "--escape") { params.escape = true; } else if (arg == "--prompt-cache") { if (++i >= argc) { invalid_param = true; break; } params.path_prompt_cache = argv[i]; } else if (arg == "--prompt-cache-all") { params.prompt_cache_all = true; } else if (arg == "--prompt-cache-ro") { params.prompt_cache_ro = true; } else if (arg == "-f" || arg == "--file") { if (++i >= argc) { invalid_param = true; break; } std::ifstream file(argv[i]); if (!file) { fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); invalid_param = true; break; } std::copy(std::istreambuf_iterator(file), std::istreambuf_iterator(), back_inserter(params.prompt)); if (params.prompt.back() == '\n') { params.prompt.pop_back(); } } else if (arg == "-n" || arg == "--n-predict") { if (++i >= argc) { invalid_param = true; break; } params.n_predict = std::stoi(argv[i]); } else if (arg == "--top-k") { if (++i >= argc) { invalid_param = true; break; } params.top_k = std::stoi(argv[i]); } else if (arg == "-c" || arg == "--ctx-size") { if (++i >= argc) { invalid_param = true; break; } params.n_ctx = std::stoi(argv[i]); } else if (arg == "--rope-freq-base") { if (++i >= argc) { invalid_param = true; break; } params.rope_freq_base = std::stof(argv[i]); } else if (arg == "--rope-freq-scale") { if (++i >= argc) { invalid_param = true; break; } params.rope_freq_scale = std::stof(argv[i]); } else if (arg == "--rope-scale") { if (++i >= argc) { invalid_param = true; break; } params.rope_freq_scale = 1.0f/std::stof(argv[i]); } else if (arg == "--memory-f32") { params.memory_f16 = false; } else if (arg == "--top-p") { if (++i >= argc) { invalid_param = true; break; } params.top_p = std::stof(argv[i]); } else if (arg == "--temp") { if (++i >= argc) { invalid_param = true; break; } params.temp = std::stof(argv[i]); } else if (arg == "--tfs") { if (++i >= argc) { invalid_param = true; break; } params.tfs_z = std::stof(argv[i]); } else if (arg == "--typical") { if (++i >= argc) { invalid_param = true; break; } params.typical_p = std::stof(argv[i]); } else if (arg == "--repeat-last-n") { if (++i >= argc) { invalid_param = true; break; } params.repeat_last_n = std::stoi(argv[i]); } else if (arg == "--repeat-penalty") { if (++i >= argc) { invalid_param = true; break; } params.repeat_penalty = std::stof(argv[i]); } else if (arg == "--frequency-penalty") { if (++i >= argc) { invalid_param = true; break; } params.frequency_penalty = std::stof(argv[i]); } else if (arg == "--presence-penalty") { if (++i >= argc) { invalid_param = true; break; } params.presence_penalty = std::stof(argv[i]); } else if (arg == "--mirostat") { if (++i >= argc) { invalid_param = true; break; } params.mirostat = std::stoi(argv[i]); } else if (arg == "--mirostat-lr") { if (++i >= argc) { invalid_param = true; break; } params.mirostat_eta = std::stof(argv[i]); } else if (arg == "--mirostat-ent") { if (++i >= argc) { invalid_param = true; break; } params.mirostat_tau = std::stof(argv[i]); } else if (arg == "--cfg-negative-prompt") { if (++i >= argc) { invalid_param = true; break; } params.cfg_negative_prompt = argv[i]; } else if (arg == "--cfg-negative-prompt-file") { if (++i >= argc) { invalid_param = true; break; } std::ifstream file(argv[i]); if (!file) { fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); invalid_param = true; break; } std::copy(std::istreambuf_iterator(file), std::istreambuf_iterator(), back_inserter(params.cfg_negative_prompt)); if (params.cfg_negative_prompt.back() == '\n') { params.cfg_negative_prompt.pop_back(); } } else if (arg == "--cfg-scale") { if (++i >= argc) { invalid_param = true; break; } params.cfg_scale = std::stof(argv[i]); } else if (arg == "-b" || arg == "--batch-size") { if (++i >= argc) { invalid_param = true; break; } params.n_batch = std::stoi(argv[i]); } else if (arg == "--keep") { if (++i >= argc) { invalid_param = true; break; } params.n_keep = std::stoi(argv[i]); } else if (arg == "--draft") { if (++i >= argc) { invalid_param = true; break; } params.n_draft = std::stoi(argv[i]); } else if (arg == "--chunks") { if (++i >= argc) { invalid_param = true; break; } params.n_chunks = std::stoi(argv[i]); } else if (arg == "-m" || arg == "--model") { if (++i >= argc) { invalid_param = true; break; } params.model = argv[i]; } else if (arg == "-md" || arg == "--model-draft") { if (++i >= argc) { invalid_param = true; break; } params.model_draft = argv[i]; } else if (arg == "-a" || arg == "--alias") { if (++i >= argc) { invalid_param = true; break; } params.model_alias = argv[i]; } else if (arg == "--lora") { if (++i >= argc) { invalid_param = true; break; } params.lora_adapter = argv[i]; params.use_mmap = false; } else if (arg == "--lora-base") { if (++i >= argc) { invalid_param = true; break; } params.lora_base = argv[i]; } else if (arg == "-i" || arg == "--interactive") { params.interactive = true; } else if (arg == "--embedding") { params.embedding = true; } else if (arg == "--interactive-first") { params.interactive_first = true; } else if (arg == "-ins" || arg == "--instruct") { params.instruct = true; } else if (arg == "--multiline-input") { params.multiline_input = true; } else if (arg == "--simple-io") { params.simple_io = true; } else if (arg == "--color") { params.use_color = true; } else if (arg == "--mlock") { params.use_mlock = true; } else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") { if (++i >= argc) { invalid_param = true; break; } #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD params.n_gpu_layers = std::stoi(argv[i]); #else fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n"); fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); #endif } else if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") { if (++i >= argc) { invalid_param = true; break; } #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD params.n_gpu_layers_draft = std::stoi(argv[i]); #else fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n"); fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); #endif } else if (arg == "--main-gpu" || arg == "-mg") { if (++i >= argc) { invalid_param = true; break; } #ifdef GGML_USE_CUBLAS params.main_gpu = std::stoi(argv[i]); #else fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.\n"); #endif } else if (arg == "--tensor-split" || arg == "-ts") { if (++i >= argc) { invalid_param = true; break; } #ifdef GGML_USE_CUBLAS std::string arg_next = argv[i]; // split string by , and / const std::regex regex{R"([,/]+)"}; std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1}; std::vector split_arg{it, {}}; GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES); for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) { if (i < split_arg.size()) { params.tensor_split[i] = std::stof(split_arg[i]); } else { params.tensor_split[i] = 0.0f; } } #else fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n"); #endif // GGML_USE_CUBLAS } else if (arg == "--no-mul-mat-q" || arg == "-nommq") { #ifdef GGML_USE_CUBLAS params.mul_mat_q = false; #else fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n"); #endif // GGML_USE_CUBLAS } else if (arg == "--low-vram" || arg == "-lv") { #ifdef GGML_USE_CUBLAS params.low_vram = true; #else fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n"); #endif // GGML_USE_CUBLAS } else if (arg == "--no-mmap") { params.use_mmap = false; } else if (arg == "--numa") { params.numa = true; } else if (arg == "--verbose-prompt") { params.verbose_prompt = true; } else if (arg == "-r" || arg == "--reverse-prompt") { if (++i >= argc) { invalid_param = true; break; } params.antiprompt.push_back(argv[i]); } else if (arg == "-ld" || arg == "--logdir") { if (++i >= argc) { invalid_param = true; break; } params.logdir = argv[i]; if (params.logdir.back() != DIRECTORY_SEPARATOR) { params.logdir += DIRECTORY_SEPARATOR; } } else if (arg == "--perplexity") { params.perplexity = true; } else if (arg == "--ppl-stride") { if (++i >= argc) { invalid_param = true; break; } params.ppl_stride = std::stoi(argv[i]); } else if (arg == "--ppl-output-type") { if (++i >= argc) { invalid_param = true; break; } params.ppl_output_type = std::stoi(argv[i]); } else if (arg == "--hellaswag") { params.hellaswag = true; } else if (arg == "--hellaswag-tasks") { if (++i >= argc) { invalid_param = true; break; } params.hellaswag_tasks = std::stoi(argv[i]); } else if (arg == "--ignore-eos") { params.ignore_eos = true; } else if (arg == "--no-penalize-nl") { params.penalize_nl = false; } else if (arg == "-l" || arg == "--logit-bias") { if (++i >= argc) { invalid_param = true; break; } std::stringstream ss(argv[i]); llama_token key; char sign; std::string value_str; try { if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) { params.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f); } else { throw std::exception(); } } catch (const std::exception&) { invalid_param = true; break; } } else if (arg == "-h" || arg == "--help") { gpt_print_usage(argc, argv, default_params); #ifndef LOG_DISABLE_LOGS log_print_usage(); #endif // LOG_DISABLE_LOGS exit(0); } else if (arg == "--random-prompt") { params.random_prompt = true; } else if (arg == "--in-prefix-bos") { params.input_prefix_bos = true; } else if (arg == "--in-prefix") { if (++i >= argc) { invalid_param = true; break; } params.input_prefix = argv[i]; } else if (arg == "--in-suffix") { if (++i >= argc) { invalid_param = true; break; } params.input_suffix = argv[i]; } else if (arg == "--grammar") { if (++i >= argc) { invalid_param = true; break; } params.grammar = argv[i]; } else if (arg == "--grammar-file") { if (++i >= argc) { invalid_param = true; break; } std::ifstream file(argv[i]); if (!file) { fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); invalid_param = true; break; } std::copy( std::istreambuf_iterator(file), std::istreambuf_iterator(), std::back_inserter(params.grammar) ); #ifndef LOG_DISABLE_LOGS // Parse args for logging parameters } else if ( log_param_single_parse( argv[i] ) ) { // Do nothing, log_param_single_parse automatically does it's thing // and returns if a match was found and parsed. } else if ( log_param_pair_parse( /*check_but_dont_parse*/ true, argv[i] ) ) { // We have a matching known parameter requiring an argument, // now we need to check if there is anything after this argv // and flag invalid_param or parse it. if (++i >= argc) { invalid_param = true; break; } if( !log_param_pair_parse( /*check_but_dont_parse*/ false, argv[i-1], argv[i]) ) { invalid_param = true; break; } // End of Parse args for logging parameters #endif // LOG_DISABLE_LOGS } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); gpt_print_usage(argc, argv, default_params); exit(1); } } if (invalid_param) { fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); gpt_print_usage(argc, argv, default_params); exit(1); } if (params.prompt_cache_all && (params.interactive || params.interactive_first || params.instruct)) { fprintf(stderr, "error: --prompt-cache-all not supported in interactive mode yet\n"); gpt_print_usage(argc, argv, default_params); exit(1); } if (params.escape) { process_escapes(params.prompt); process_escapes(params.input_prefix); process_escapes(params.input_suffix); } return true; } void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf("usage: %s [options]\n", argv[0]); printf("\n"); printf("options:\n"); printf(" -h, --help show this help message and exit\n"); printf(" -i, --interactive run in interactive mode\n"); printf(" --interactive-first run in interactive mode and wait for input right away\n"); printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n"); printf(" --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n"); printf(" -r PROMPT, --reverse-prompt PROMPT\n"); printf(" halt generation at PROMPT, return control in interactive mode\n"); printf(" (can be specified more than once for multiple prompts).\n"); printf(" --color colorise output to distinguish prompt and user input from generations\n"); printf(" -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n"); printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); printf(" -p PROMPT, --prompt PROMPT\n"); printf(" prompt to start generation with (default: empty)\n"); printf(" -e, --escape process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n"); printf(" --prompt-cache FNAME file to cache prompt state for faster startup (default: none)\n"); printf(" --prompt-cache-all if specified, saves user input and generations to cache as well.\n"); printf(" not supported with --interactive or other interactive options\n"); printf(" --prompt-cache-ro if specified, uses the prompt cache but does not update it.\n"); printf(" --random-prompt start with a randomized prompt.\n"); printf(" --in-prefix-bos prefix BOS to user inputs, preceding the `--in-prefix` string\n"); printf(" --in-prefix STRING string to prefix user inputs with (default: empty)\n"); printf(" --in-suffix STRING string to suffix after user inputs with (default: empty)\n"); printf(" -f FNAME, --file FNAME\n"); printf(" prompt file to start generation.\n"); printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict); printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx); printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k); printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p); printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z); printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)params.typical_p); printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", params.repeat_last_n); printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)params.repeat_penalty); printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)params.presence_penalty); printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)params.frequency_penalty); printf(" --mirostat N use Mirostat sampling.\n"); printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n"); printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", params.mirostat); printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)params.mirostat_eta); printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)params.mirostat_tau); printf(" -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n"); printf(" modifies the likelihood of token appearing in the completion,\n"); printf(" i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"); printf(" or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n"); printf(" --grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)\n"); printf(" --grammar-file FNAME file to read grammar from\n"); printf(" --cfg-negative-prompt PROMPT\n"); printf(" negative prompt to use for guidance. (default: empty)\n"); printf(" --cfg-negative-prompt-file FNAME\n"); printf(" negative prompt file to use for guidance. (default: empty)\n"); printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale); printf(" --rope-scale N RoPE context linear scaling factor, inverse of --rope-freq-scale (default: %g)\n", 1.0f/params.rope_freq_scale); printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: %.1f)\n", params.rope_freq_base); printf(" --rope-freq-scale N RoPE frequency linear scaling factor, inverse of --rope-scale (default: %g)\n", params.rope_freq_scale); printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n"); printf(" --no-penalize-nl do not penalize newline token\n"); printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n"); printf(" not recommended: doubles context memory required and no measurable increase in quality\n"); printf(" --temp N temperature (default: %.1f)\n", (double)params.temp); printf(" --perplexity compute perplexity over each ctx window of the prompt\n"); printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n"); printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks); printf(" --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep); printf(" --draft N number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft); printf(" --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks); if (llama_mlock_supported()) { printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n"); } if (llama_mmap_supported()) { printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n"); } printf(" --numa attempt optimizations that help on some NUMA systems\n"); printf(" if run without this previously, it is recommended to drop the system page cache before using this\n"); printf(" see https://github.com/ggerganov/llama.cpp/issues/1437\n"); #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD printf(" -ngl N, --n-gpu-layers N\n"); printf(" number of layers to store in VRAM\n"); printf(" -ngld N, --n-gpu-layers-draft N\n"); printf(" number of layers to store in VRAM for the draft model\n"); printf(" -ts SPLIT --tensor-split SPLIT\n"); printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n"); printf(" -lv, --low-vram don't allocate VRAM scratch buffer\n"); #ifdef GGML_USE_CUBLAS printf(" -nommq, --no-mul-mat-q\n"); printf(" use " GGML_CUBLAS_NAME " instead of custom mul_mat_q " GGML_CUDA_NAME " kernels.\n"); printf(" Not recommended since this is both slower and uses more VRAM.\n"); #endif // GGML_USE_CUBLAS #endif printf(" --verbose-prompt print prompt before generation\n"); fprintf(stderr, " --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n"); printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n"); printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n"); printf(" -m FNAME, --model FNAME\n"); printf(" model path (default: %s)\n", params.model.c_str()); printf(" -md FNAME, --model-draft FNAME\n"); printf(" draft model for speculative decoding (default: %s)\n", params.model.c_str()); printf(" -ld LOGDIR, --logdir LOGDIR\n"); printf(" path under which to save YAML logs (no logging if unset)\n"); printf("\n"); } std::string gpt_random_prompt(std::mt19937 & rng) { const int r = rng() % 10; switch (r) { case 0: return "So"; case 1: return "Once upon a time"; case 2: return "When"; case 3: return "The"; case 4: return "After"; case 5: return "If"; case 6: return "import"; case 7: return "He"; case 8: return "She"; case 9: return "They"; default: return "To"; } return "The"; } // // Model utils // struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) { auto lparams = llama_context_default_params(); lparams.n_ctx = params.n_ctx; lparams.n_batch = params.n_batch; if (params.n_gpu_layers != -1) { lparams.n_gpu_layers = params.n_gpu_layers; } lparams.main_gpu = params.main_gpu; lparams.tensor_split = params.tensor_split; lparams.low_vram = params.low_vram; lparams.mul_mat_q = params.mul_mat_q; lparams.seed = params.seed; lparams.f16_kv = params.memory_f16; lparams.use_mmap = params.use_mmap; lparams.use_mlock = params.use_mlock; lparams.logits_all = params.perplexity; lparams.embedding = params.embedding; lparams.rope_freq_base = params.rope_freq_base; lparams.rope_freq_scale = params.rope_freq_scale; return lparams; } std::tuple llama_init_from_gpt_params(gpt_params & params) { auto lparams = llama_context_params_from_gpt_params(params); llama_model * model = llama_load_model_from_file(params.model.c_str(), lparams); if (model == NULL) { fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); return std::make_tuple(nullptr, nullptr); } llama_context * lctx = llama_new_context_with_model(model, lparams); if (lctx == NULL) { fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str()); llama_free_model(model); return std::make_tuple(nullptr, nullptr); } if (!params.lora_adapter.empty()) { int err = llama_model_apply_lora_from_file(model, params.lora_adapter.c_str(), params.lora_base.empty() ? NULL : params.lora_base.c_str(), params.n_threads); if (err != 0) { fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__); llama_free(lctx); llama_free_model(model); return std::make_tuple(nullptr, nullptr); } } if (params.ignore_eos) { params.logit_bias[llama_token_eos(lctx)] = -INFINITY; } { LOG("warming up the model with an empty run\n"); std::vector tmp = { llama_token_bos(lctx), llama_token_eos(lctx), }; llama_eval(lctx, tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, params.n_threads); llama_reset_timings(lctx); } return std::make_tuple(model, lctx); } // // Vocab utils // std::vector llama_tokenize( struct llama_context * ctx, const std::string & text, bool add_bos) { // upper limit for the number of tokens int n_tokens = text.length() + add_bos; std::vector result(n_tokens); n_tokens = llama_tokenize(ctx, text.data(), text.length(), result.data(), result.size(), add_bos); if (n_tokens < 0) { result.resize(-n_tokens); int check = llama_tokenize(ctx, text.data(), text.length(), result.data(), result.size(), add_bos); GGML_ASSERT(check == -n_tokens); } else { result.resize(n_tokens); } return result; } std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) { std::vector result(8, 0); const int n_tokens = llama_token_to_piece(ctx, token, result.data(), result.size()); if (n_tokens < 0) { result.resize(-n_tokens); int check = llama_token_to_piece(ctx, token, result.data(), result.size()); GGML_ASSERT(check == -n_tokens); } else { result.resize(n_tokens); } return std::string(result.data(), result.size()); } std::string llama_detokenize_spm(llama_context * ctx, const std::vector & tokens) { const llama_token bos_id = llama_token_bos(ctx); std::string piece; std::string result; for (size_t i = 0; i < tokens.size(); ++i) { piece = llama_token_to_piece(ctx, tokens[i]); // remove the leading space of the first non-BOS token if (((tokens[0] == bos_id && i == 1) || (tokens[0] != bos_id && i == 0)) && piece[0] == ' ') { piece = piece.substr(1); } result += piece; } return result; } std::string llama_detokenize_bpe(llama_context * ctx, const std::vector & tokens) { std::string piece; std::string result; for (size_t i = 0; i < tokens.size(); ++i) { piece = llama_token_to_piece(ctx, tokens[i]); result += piece; } return result; } // // Sampling utils // llama_token llama_sample_token( struct llama_context * ctx, struct llama_context * ctx_guidance, struct llama_grammar * grammar, const struct gpt_params & params, const std::vector & last_tokens, std::vector & candidates, int idx) { const int n_ctx = llama_n_ctx(ctx); const int n_vocab = llama_n_vocab(ctx); const float temp = params.temp; const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k; const float top_p = params.top_p; const float tfs_z = params.tfs_z; const float typical_p = params.typical_p; const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n; const float repeat_penalty = params.repeat_penalty; const float alpha_presence = params.presence_penalty; const float alpha_frequency = params.frequency_penalty; const int mirostat = params.mirostat; const float mirostat_tau = params.mirostat_tau; const float mirostat_eta = params.mirostat_eta; const bool penalize_nl = params.penalize_nl; llama_token id = 0; float * logits = llama_get_logits(ctx) + idx * n_vocab; // Apply params.logit_bias map for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) { logits[it->first] += it->second; } candidates.clear(); for (llama_token token_id = 0; token_id < n_vocab; token_id++) { candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); } llama_token_data_array cur_p = { candidates.data(), candidates.size(), false }; if (ctx_guidance) { llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale); } // apply penalties if (!last_tokens.empty()) { const float nl_logit = logits[llama_token_nl(ctx)]; const int last_n_repeat = std::min(std::min((int)last_tokens.size(), repeat_last_n), n_ctx); llama_sample_repetition_penalty(ctx, &cur_p, last_tokens.data() + last_tokens.size() - last_n_repeat, last_n_repeat, repeat_penalty); llama_sample_frequency_and_presence_penalties(ctx, &cur_p, last_tokens.data() + last_tokens.size() - last_n_repeat, last_n_repeat, alpha_frequency, alpha_presence); if (!penalize_nl) { for (size_t idx = 0; idx < cur_p.size; idx++) { if (cur_p.data[idx].id == llama_token_nl(ctx)) { cur_p.data[idx].logit = nl_logit; break; } } } } if (grammar != NULL) { llama_sample_grammar(ctx, &cur_p, grammar); } if (temp <= 0) { // Greedy sampling id = llama_sample_token_greedy(ctx, &cur_p); } else { if (mirostat == 1) { static float mirostat_mu = 2.0f * mirostat_tau; const int mirostat_m = 100; llama_sample_temperature(ctx, &cur_p, temp); id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); } else if (mirostat == 2) { static float mirostat_mu = 2.0f * mirostat_tau; llama_sample_temperature(ctx, &cur_p, temp); id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &mirostat_mu); } else { // Temperature sampling llama_sample_top_k (ctx, &cur_p, top_k, 1); llama_sample_tail_free (ctx, &cur_p, tfs_z, 1); llama_sample_typical (ctx, &cur_p, typical_p, 1); llama_sample_top_p (ctx, &cur_p, top_p, 1); llama_sample_temperature(ctx, &cur_p, temp); { const int n_top = 10; LOG("top %d candidates:\n", n_top); for (int i = 0; i < n_top; i++) { const llama_token id = cur_p.data[i].id; LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p); } } id = llama_sample_token(ctx, &cur_p); LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str()); } } // printf("`%d`", candidates_p.size); if (grammar != NULL) { llama_grammar_accept_token(ctx, grammar, id); } return id; } // // YAML utils // // returns true if successful, false otherwise bool create_directory_with_parents(const std::string & path) { #ifdef _WIN32 std::wstring_convert> converter; std::wstring wpath = converter.from_bytes(path); // if the path already exists, check whether it's a directory const DWORD attributes = GetFileAttributesW(wpath.c_str()); if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) { return true; } size_t pos_slash = 0; // process path from front to back, procedurally creating directories while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) { const std::wstring subpath = wpath.substr(0, pos_slash); const wchar_t * test = subpath.c_str(); const bool success = CreateDirectoryW(test, NULL); if (!success) { const DWORD error = GetLastError(); // if the path already exists, ensure that it's a directory if (error == ERROR_ALREADY_EXISTS) { const DWORD attributes = GetFileAttributesW(subpath.c_str()); if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) { return false; } } else { return false; } } pos_slash += 1; } return true; #else // if the path already exists, check whether it's a directory struct stat info; if (stat(path.c_str(), &info) == 0) { return S_ISDIR(info.st_mode); } size_t pos_slash = 1; // skip leading slashes for directory creation // process path from front to back, procedurally creating directories while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) { const std::string subpath = path.substr(0, pos_slash); struct stat info; // if the path already exists, ensure that it's a directory if (stat(subpath.c_str(), &info) == 0) { if (!S_ISDIR(info.st_mode)) { return false; } } else { // create parent directories const int ret = mkdir(subpath.c_str(), 0755); if (ret != 0) { return false; } } pos_slash += 1; } return true; #endif // _WIN32 } void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector & data) { if (data.empty()) { fprintf(stream, "%s:\n", prop_name); return; } fprintf(stream, "%s: [", prop_name); for (size_t i = 0; i < data.size() - 1; ++i) { fprintf(stream, "%e, ", data[i]); } fprintf(stream, "%e]\n", data.back()); } void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector & data) { if (data.empty()) { fprintf(stream, "%s:\n", prop_name); return; } fprintf(stream, "%s: [", prop_name); for (size_t i = 0; i < data.size() - 1; ++i) { fprintf(stream, "%d, ", data[i]); } fprintf(stream, "%d]\n", data.back()); } void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data) { std::string data_str(data == NULL ? "" : data); if (data_str.empty()) { fprintf(stream, "%s:\n", prop_name); return; } size_t pos_start = 0; size_t pos_found = 0; if (!data_str.empty() && (std::isspace(data_str[0]) || std::isspace(data_str.back()))) { data_str = std::regex_replace(data_str, std::regex("\n"), "\\n"); data_str = std::regex_replace(data_str, std::regex("\""), "\\\""); data_str = "\"" + data_str + "\""; fprintf(stream, "%s: %s\n", prop_name, data_str.c_str()); return; } if (data_str.find('\n') == std::string::npos) { fprintf(stream, "%s: %s\n", prop_name, data_str.c_str()); return; } fprintf(stream, "%s: |\n", prop_name); while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) { fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str()); pos_start = pos_found + 1; } } std::string get_sortable_timestamp() { using clock = std::chrono::system_clock; const clock::time_point current_time = clock::now(); const time_t as_time_t = clock::to_time_t(current_time); char timestamp_no_ns[100]; std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t)); const int64_t ns = std::chrono::duration_cast( current_time.time_since_epoch() % 1000000000).count(); char timestamp_ns[11]; snprintf(timestamp_ns, 11, "%09" PRId64, ns); return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns); } void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx, const std::string & timestamp, const std::vector & prompt_tokens, const char * model_desc) { fprintf(stream, "build_commit: %s\n", BUILD_COMMIT); fprintf(stream, "build_number: %d\n", BUILD_NUMBER); fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false"); fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false"); fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false"); fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false"); fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false"); fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false"); fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false"); fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false"); fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false"); fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false"); fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false"); fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false"); fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false"); fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false"); fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false"); fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false"); fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false"); fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false"); #ifdef NDEBUG fprintf(stream, "debug: false\n"); #else fprintf(stream, "debug: true\n"); #endif // NDEBUG fprintf(stream, "model_desc: %s\n", model_desc); fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(lctx)); #ifdef __OPTIMIZE__ fprintf(stream, "optimize: true\n"); #else fprintf(stream, "optimize: false\n"); #endif // __OPTIMIZE__ fprintf(stream, "time: %s\n", timestamp.c_str()); fprintf(stream, "\n"); fprintf(stream, "###############\n"); fprintf(stream, "# User Inputs #\n"); fprintf(stream, "###############\n"); fprintf(stream, "\n"); fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str()); fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch); dump_string_yaml_multiline(stream, "cfg_negative_prompt", params.cfg_negative_prompt.c_str()); fprintf(stream, "cfg_scale: %f # default: 1.0\n", params.cfg_scale); fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks); fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false"); fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx); fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false"); fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n"); fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", params.frequency_penalty); dump_string_yaml_multiline(stream, "grammar", params.grammar.c_str()); fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n"); fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false"); fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks); const auto logit_bias_eos = params.logit_bias.find(llama_token_eos(lctx)); const bool ignore_eos = logit_bias_eos != params.logit_bias.end() && logit_bias_eos->second == -INFINITY; fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false"); dump_string_yaml_multiline(stream, "in_prefix", params.input_prefix.c_str()); fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false"); dump_string_yaml_multiline(stream, "in_suffix", params.input_prefix.c_str()); fprintf(stream, "instruct: %s # default: false\n", params.instruct ? "true" : "false"); fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false"); fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false"); fprintf(stream, "keep: %d # default: 0\n", params.n_keep); fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str()); fprintf(stream, "logit_bias:\n"); for (std::pair lb : params.logit_bias) { if (ignore_eos && lb.first == logit_bias_eos->first) { continue; } fprintf(stream, " %d: %f", lb.first, lb.second); } fprintf(stream, "lora: %s\n", params.lora_adapter.c_str()); fprintf(stream, "lora_base: %s\n", params.lora_base.c_str()); fprintf(stream, "low_vram: %s # default: false\n", params.low_vram ? "true" : "false"); fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu); fprintf(stream, "memory_f32: %s # default: false\n", !params.memory_f16 ? "true" : "false"); fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", params.mirostat); fprintf(stream, "mirostat_ent: %f # default: 5.0\n", params.mirostat_tau); fprintf(stream, "mirostat_lr: %f # default: 0.1\n", params.mirostat_eta); fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false"); fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str()); fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str()); fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false"); fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers); fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict); fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", params.n_probs); fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false"); fprintf(stream, "no_mul_mat_q: %s # default: false\n", !params.mul_mat_q ? "true" : "false"); fprintf(stream, "no_penalize_nl: %s # default: false\n", !params.penalize_nl ? "true" : "false"); fprintf(stream, "numa: %s # default: false\n", params.numa ? "true" : "false"); fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type); fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride); fprintf(stream, "presence_penalty: %f # default: 0.0\n", params.presence_penalty); dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str()); fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str()); fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false"); fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false"); dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens); fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false"); fprintf(stream, "repeat_penalty: %f # default: 1.1\n", params.repeat_penalty); fprintf(stream, "reverse_prompt:\n"); for (std::string ap : params.antiprompt) { size_t pos = 0; while ((pos = ap.find('\n', pos)) != std::string::npos) { ap.replace(pos, 1, "\\n"); pos += 1; } fprintf(stream, " - %s\n", ap.c_str()); } fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base); fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale); fprintf(stream, "seed: %d # default: -1 (random seed)\n", params.seed); fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false"); fprintf(stream, "temp: %f # default: 0.8\n", params.temp); const std::vector tensor_split_vector(params.tensor_split, params.tensor_split + LLAMA_MAX_DEVICES); dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector); fprintf(stream, "tfs: %f # default: 1.0\n", params.tfs_z); fprintf(stream, "threads: %d # default: %d\n", params.n_threads, std::thread::hardware_concurrency()); fprintf(stream, "top_k: %d # default: 40\n", params.top_k); fprintf(stream, "top_p: %f # default: 0.95\n", params.top_p); fprintf(stream, "typical_p: %f # default: 1.0\n", params.typical_p); fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false"); }