#if defined(__GNUC__) #pragma GCC diagnostic ignored "-Wpedantic" #pragma GCC diagnostic ignored "-Wunused-local-typedefs" #endif #include "mmq.h" #include "ggml-impl.h" #include "ggml-quants.h" #include #include #if defined(__gnu_linux__) #include #include #endif #if defined(_OPENMP) #include #endif #if (defined(_WIN32) || defined(_WIN64)) #define RESTRICT __restrict #else #define RESTRICT __restrict__ #endif #if (defined(_WIN32) || defined(_WIN64)) #define ALWAYS_INLINE __forceinline #elif __has_attribute(always_inline) || defined(__GNUC__) #define ALWAYS_INLINE __attribute__((__always_inline__)) inline #else #define ALWAYS_INLINE inline #endif #if defined(__AMX_INT8__) namespace { // Forced unrolling template struct Unroll { template ALWAYS_INLINE void operator()(const Func& f, Args... args) const { Unroll{}(f, args...); f(std::integral_constant{}, args...); } }; template <> struct Unroll<1> { template ALWAYS_INLINE void operator()(const Func& f, Args... args) const { f(std::integral_constant{}, args...); } }; // type traits template struct PackedTypes {}; template <> struct PackedTypes { using type = int8_t; }; template <> struct PackedTypes { using type = uint8_t; }; template <> struct PackedTypes { using type = int8_t; }; template using packed_B_type = typename PackedTypes::type; template struct do_compensate : std::integral_constant::value> {}; template struct do_unpack : std::integral_constant::value || std::is_same::value> {}; template struct is_type_qkk : std::integral_constant::value || std::is_same::value || std::is_same::value || std::is_same::value> {}; #define GGML_DISPATCH_FLOATING_TYPES(TYPE, ...) \ [&] { \ switch (TYPE) { \ case GGML_TYPE_F16: { \ using type = ggml_fp16_t; \ constexpr int blck_size = 16; \ return __VA_ARGS__(); \ } \ case GGML_TYPE_BF16: { \ using type = ggml_bf16_t; \ constexpr int blck_size = 32; \ return __VA_ARGS__(); \ } \ default: \ fprintf(stderr, "Unsupported floating data type\n"); \ } \ }() #define GGML_DISPATCH_QTYPES(QT, ...) \ [&] { \ switch (QT) { \ case GGML_TYPE_Q4_0: { \ using type = block_q4_0; \ using vec_dot_type = block_q8_0; \ constexpr int blck_size = QK4_0; \ return __VA_ARGS__(); \ } \ case GGML_TYPE_Q4_1: { \ using type = block_q4_1; \ using vec_dot_type = block_q8_1; \ constexpr int blck_size = QK4_1; \ return __VA_ARGS__(); \ } \ case GGML_TYPE_Q8_0: { \ using type = block_q8_0; \ using vec_dot_type = block_q8_0; \ constexpr int blck_size = QK8_0; \ return __VA_ARGS__(); \ } \ case GGML_TYPE_Q4_K: { \ using type = block_q4_K; \ using vec_dot_type = block_q8_K; \ constexpr int blck_size = QK_K; \ return __VA_ARGS__(); \ } \ case GGML_TYPE_Q5_K: { \ using type = block_q5_K; \ using vec_dot_type = block_q8_K; \ constexpr int blck_size = QK_K; \ return __VA_ARGS__(); \ } \ case GGML_TYPE_Q6_K: { \ using type = block_q6_K; \ using vec_dot_type = block_q8_K; \ constexpr int blck_size = QK_K; \ return __VA_ARGS__(); \ } \ case GGML_TYPE_IQ4_XS: { \ using type = block_iq4_xs; \ using vec_dot_type = block_q8_K; \ constexpr int blck_size = QK_K; \ return __VA_ARGS__(); \ } \ default: \ fprintf(stderr, "Unsupported quantized data type: %d\n", int(TYPE)); \ } \ }() #define GGML_DISPATCH_BOOL(BOOL_V, BOOL_NAME, ...) \ [&] { \ if (BOOL_V) { \ constexpr bool BOOL_NAME = true; \ return __VA_ARGS__(); \ } else { \ constexpr bool BOOL_NAME = false; \ return __VA_ARGS__(); \ } \ }() // define amx tile config data structure struct tile_config_t{ uint8_t palette_id = 0; uint8_t start_row = 0; uint8_t reserved_0[14] = {0}; uint16_t colsb[16] = {0}; uint8_t rows[16] = {0}; }; // Notes: amx tile config // // Typically, TMUL calculates A and B of size 16 x 64 containing INT8 values, // and accumulate the result to a 16 x 16 matrix C containing INT32 values, // // As many GGUF quantized types as `block_size` of 32, so a 16-16-32 config is used // instead of the normally used 16-16-64 config. // // Block A: {16, 32}, dtype = int8_t // Block B: {16, 32}, dtype = uint8_t/int8_t // Block C: {16, 16}, dtype = int32_t // // Block B needs to be prepacked to vnni format before feeding into TMUL: // packed_B: from {n, k} to {k/vnni_blk, n, vnni_blck}, viewed in 2d, we get {8, 64} // // Therefore, we get tileconfig: // A B C // rows 16 8 16 // colsb 32 64 16 // // For tile distribution, follow a 2-2-4 pattern, e.g. A used TMM2-TMM3, B used TMM0-TMM1, // C used TMM4-TMM7: // B TMM0 B TMM1 // A TMM2 C TMM4 C TMM6 // A TMM3 C TMM5 C TMM7 // // Each `amx` kernel handles 4 blocks at a time: 2MB * 2NB, when m < 2 * BLOCK_M, unpack A // will be needed. // // Here another commonly used pattern 1-3-3 is skipped, as it is mostly used when m <=16; // and the sinlge batch gemm (m=1) has a special fast path with `avx512-vnni`. // // ref: https://www.intel.com/content/www/us/en/developer/articles/code-sample/ // advanced-matrix-extensions-intrinsics-functions.html // #define TC_CONFIG_TILE(i, r, cb) tc.rows[i] = r; tc.colsb[i] = cb void ggml_tile_config_init(void) { static thread_local bool is_first_time = true; if (!is_first_time) { return; } static thread_local tile_config_t tc; tile_config_t current_tc; _tile_storeconfig(¤t_tc); // load only when config changes if (tc.palette_id == 0 || (memcmp(¤t_tc.colsb, &tc.colsb, sizeof(uint16_t) * 8) != 0 && memcmp(¤t_tc.rows, &tc.rows, sizeof(uint8_t) * 8) != 0)) { tc.palette_id = 1; tc.start_row = 0; TC_CONFIG_TILE(TMM0, 8, 64); TC_CONFIG_TILE(TMM1, 8, 64); TC_CONFIG_TILE(TMM2, 16, 32); TC_CONFIG_TILE(TMM3, 16, 32); TC_CONFIG_TILE(TMM4, 16, 64); TC_CONFIG_TILE(TMM5, 16, 64); TC_CONFIG_TILE(TMM6, 16, 64); TC_CONFIG_TILE(TMM7, 16, 64); _tile_loadconfig(&tc); } is_first_time = false; } // we need an extra 16 * 4B (TILE_N * int32_t) for each NB/KB block for compensation. // See the notes `s8s8 igemm compensation in avx512-vnni` for detail. template int get_tile_size() { int tile_size = TILE_N * sizeof(TB); if (do_compensate::value) { tile_size += TILE_N * sizeof(int32_t); } if (std::is_same::value || std::is_same::value) { tile_size += TILE_N * 4; } if (std::is_same::value) { tile_size += TILE_N * 2; } return tile_size; } template int get_row_size(int K) { int KB = K / BLOCK_K; int row_size = KB * sizeof(TB); if (do_compensate::value) { row_size += KB * sizeof(int32_t); } if (std::is_same::value || std::is_same::value) { row_size += KB * 4; } if (std::is_same::value) { row_size += KB * 2; } return row_size; } // vectorized dtype conversion inline float FP16_TO_FP32(ggml_half val) { __m256i v = _mm256_setr_epi16( val, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); __m512 o = _mm512_cvtph_ps(v); return _mm512_cvtss_f32(o); } inline __m512 FP16_TO_FP32_VEC(ggml_half val) { __m256i v = _mm256_set1_epi16(val); return _mm512_cvtph_ps(v); } // horizontal reduce inline float _mm512_reduce_max_ps(const __m512 x) { __m512 v = x; __m512 v1 = _mm512_shuffle_f32x4(v, v, 0x4E); v = _mm512_max_ps(v, v1); v1 = _mm512_shuffle_f32x4(v, v, 0xB1); v = _mm512_max_ps(v, v1); v1 = _mm512_shuffle_ps(v, v, 0x4E); v = _mm512_max_ps(v, v1); v1 = _mm512_shuffle_ps(v, v, 0xB1); v = _mm512_max_ps(v, v1); return _mm512_cvtss_f32(v); } // transpose utils #define SHUFFLE_EPI32(a, b, mask) \ _mm256_castps_si256(_mm256_shuffle_ps(_mm256_castsi256_ps(a), _mm256_castsi256_ps(b), mask)) inline void transpose_8x8_32bit(__m256i * v, __m256i * v1) { // unpacking and 32-bit elements v1[0] = _mm256_unpacklo_epi32(v[0], v[1]); v1[1] = _mm256_unpackhi_epi32(v[0], v[1]); v1[2] = _mm256_unpacklo_epi32(v[2], v[3]); v1[3] = _mm256_unpackhi_epi32(v[2], v[3]); v1[4] = _mm256_unpacklo_epi32(v[4], v[5]); v1[5] = _mm256_unpackhi_epi32(v[4], v[5]); v1[6] = _mm256_unpacklo_epi32(v[6], v[7]); v1[7] = _mm256_unpackhi_epi32(v[6], v[7]); // shuffling the 32-bit elements v[0] = SHUFFLE_EPI32(v1[0], v1[2], 0x44); v[1] = SHUFFLE_EPI32(v1[0], v1[2], 0xee); v[2] = SHUFFLE_EPI32(v1[4], v1[6], 0x44); v[3] = SHUFFLE_EPI32(v1[4], v1[6], 0xee); v[4] = SHUFFLE_EPI32(v1[1], v1[3], 0x44); v[5] = SHUFFLE_EPI32(v1[1], v1[3], 0xee); v[6] = SHUFFLE_EPI32(v1[5], v1[7], 0x44); v[7] = SHUFFLE_EPI32(v1[5], v1[7], 0xee); // shuffling 128-bit elements v1[0] = _mm256_permute2f128_si256(v[2], v[0], 0x02); v1[1] = _mm256_permute2f128_si256(v[3], v[1], 0x02); v1[2] = _mm256_permute2f128_si256(v[6], v[4], 0x02); v1[3] = _mm256_permute2f128_si256(v[7], v[5], 0x02); v1[4] = _mm256_permute2f128_si256(v[2], v[0], 0x13); v1[5] = _mm256_permute2f128_si256(v[3], v[1], 0x13); v1[6] = _mm256_permute2f128_si256(v[6], v[4], 0x13); v1[7] = _mm256_permute2f128_si256(v[7], v[5], 0x13); } inline void transpose_16x4_32bit(__m512i * r, __m512i * d) { static const __m512i index1 = _mm512_set_epi32( 0x0f, 0x0b, 0x07, 0x03, 0x0e, 0x0a, 0x06, 0x02, 0x0d, 0x09, 0x05, 0x01, 0x0c, 0x08, 0x04, 0x00); d[0] = _mm512_permutexvar_epi32(index1, r[0]); d[1] = _mm512_permutexvar_epi32(index1, r[1]); d[2] = _mm512_permutexvar_epi32(index1, r[2]); d[3] = _mm512_permutexvar_epi32(index1, r[3]); r[0] = _mm512_shuffle_i32x4(d[0], d[1], 0x44); r[1] = _mm512_shuffle_i32x4(d[0], d[1], 0xee); r[2] = _mm512_shuffle_i32x4(d[2], d[3], 0x44); r[3] = _mm512_shuffle_i32x4(d[2], d[3], 0xee); d[0] = _mm512_shuffle_i32x4(r[0], r[2], 0x88); d[1] = _mm512_shuffle_i32x4(r[0], r[2], 0xdd); d[2] = _mm512_shuffle_i32x4(r[1], r[3], 0x88); d[3] = _mm512_shuffle_i32x4(r[1], r[3], 0xdd); } inline void transpose_16x16_32bit(__m512i * v) { __m512i v1[16]; v1[0] = _mm512_unpacklo_epi32(v[0], v[1]); v1[1] = _mm512_unpackhi_epi32(v[0], v[1]); v1[2] = _mm512_unpacklo_epi32(v[2], v[3]); v1[3] = _mm512_unpackhi_epi32(v[2], v[3]); v1[4] = _mm512_unpacklo_epi32(v[4], v[5]); v1[5] = _mm512_unpackhi_epi32(v[4], v[5]); v1[6] = _mm512_unpacklo_epi32(v[6], v[7]); v1[7] = _mm512_unpackhi_epi32(v[6], v[7]); v1[8] = _mm512_unpacklo_epi32(v[8], v[9]); v1[9] = _mm512_unpackhi_epi32(v[8], v[9]); v1[10] = _mm512_unpacklo_epi32(v[10], v[11]); v1[11] = _mm512_unpackhi_epi32(v[10], v[11]); v1[12] = _mm512_unpacklo_epi32(v[12], v[13]); v1[13] = _mm512_unpackhi_epi32(v[12], v[13]); v1[14] = _mm512_unpacklo_epi32(v[14], v[15]); v1[15] = _mm512_unpackhi_epi32(v[14], v[15]); v[0] = _mm512_unpacklo_epi64(v1[0], v1[2]); v[1] = _mm512_unpackhi_epi64(v1[0], v1[2]); v[2] = _mm512_unpacklo_epi64(v1[1], v1[3]); v[3] = _mm512_unpackhi_epi64(v1[1], v1[3]); v[4] = _mm512_unpacklo_epi64(v1[4], v1[6]); v[5] = _mm512_unpackhi_epi64(v1[4], v1[6]); v[6] = _mm512_unpacklo_epi64(v1[5], v1[7]); v[7] = _mm512_unpackhi_epi64(v1[5], v1[7]); v[8] = _mm512_unpacklo_epi64(v1[8], v1[10]); v[9] = _mm512_unpackhi_epi64(v1[8], v1[10]); v[10] = _mm512_unpacklo_epi64(v1[9], v1[11]); v[11] = _mm512_unpackhi_epi64(v1[9], v1[11]); v[12] = _mm512_unpacklo_epi64(v1[12], v1[14]); v[13] = _mm512_unpackhi_epi64(v1[12], v1[14]); v[14] = _mm512_unpacklo_epi64(v1[13], v1[15]); v[15] = _mm512_unpackhi_epi64(v1[13], v1[15]); v1[0] = _mm512_shuffle_i32x4(v[0], v[4], 0x88); v1[1] = _mm512_shuffle_i32x4(v[1], v[5], 0x88); v1[2] = _mm512_shuffle_i32x4(v[2], v[6], 0x88); v1[3] = _mm512_shuffle_i32x4(v[3], v[7], 0x88); v1[4] = _mm512_shuffle_i32x4(v[0], v[4], 0xdd); v1[5] = _mm512_shuffle_i32x4(v[1], v[5], 0xdd); v1[6] = _mm512_shuffle_i32x4(v[2], v[6], 0xdd); v1[7] = _mm512_shuffle_i32x4(v[3], v[7], 0xdd); v1[8] = _mm512_shuffle_i32x4(v[8], v[12], 0x88); v1[9] = _mm512_shuffle_i32x4(v[9], v[13], 0x88); v1[10] = _mm512_shuffle_i32x4(v[10], v[14], 0x88); v1[11] = _mm512_shuffle_i32x4(v[11], v[15], 0x88); v1[12] = _mm512_shuffle_i32x4(v[8], v[12], 0xdd); v1[13] = _mm512_shuffle_i32x4(v[9], v[13], 0xdd); v1[14] = _mm512_shuffle_i32x4(v[10], v[14], 0xdd); v1[15] = _mm512_shuffle_i32x4(v[11], v[15], 0xdd); v[0] = _mm512_shuffle_i32x4(v1[0], v1[8], 0x88); v[1] = _mm512_shuffle_i32x4(v1[1], v1[9], 0x88); v[2] = _mm512_shuffle_i32x4(v1[2], v1[10], 0x88); v[3] = _mm512_shuffle_i32x4(v1[3], v1[11], 0x88); v[4] = _mm512_shuffle_i32x4(v1[4], v1[12], 0x88); v[5] = _mm512_shuffle_i32x4(v1[5], v1[13], 0x88); v[6] = _mm512_shuffle_i32x4(v1[6], v1[14], 0x88); v[7] = _mm512_shuffle_i32x4(v1[7], v1[15], 0x88); v[8] = _mm512_shuffle_i32x4(v1[0], v1[8], 0xdd); v[9] = _mm512_shuffle_i32x4(v1[1], v1[9], 0xdd); v[10] = _mm512_shuffle_i32x4(v1[2], v1[10], 0xdd); v[11] = _mm512_shuffle_i32x4(v1[3], v1[11], 0xdd); v[12] = _mm512_shuffle_i32x4(v1[4], v1[12], 0xdd); v[13] = _mm512_shuffle_i32x4(v1[5], v1[13], 0xdd); v[14] = _mm512_shuffle_i32x4(v1[6], v1[14], 0xdd); v[15] = _mm512_shuffle_i32x4(v1[7], v1[15], 0xdd); } void quantize_row_q8_K_vnni(const float * RESTRICT x, void * RESTRICT vy, int64_t k) { assert(k % QK_K == 0); const int KB = k / QK_K; constexpr int kVecs = QK_K / 16; block_q8_K * y = reinterpret_cast(vy); // hold 16 float vecs from x __m512 v[kVecs]; // hold the quants vecs __m512i vq[kVecs / 4]; // hold the packed quants vecs __m512i vq_packed[kVecs / 4]; const __m512 signBit = _mm512_set1_ps(-0.f); for (int i = 0; i < KB; ++i) { // Compute max(abs(e)) for the block __m512 vamax = _mm512_set1_ps(0.f); for (int j = 0; j < kVecs; ++j) { v[j] = _mm512_loadu_ps(x); x += 16; vamax = _mm512_max_ps(vamax, _mm512_andnot_ps(signBit, v[j])); } const float amax = _mm512_reduce_max_ps(vamax); // Quantize these floats const float iscale = 127.f / amax; y[i].d = GGML_FP32_TO_FP16(1 / iscale); const float id = ( amax != 0.0f ) ? iscale : 0.f; const __m512 vscale = _mm512_set1_ps(id); // Apply multiplier and round to nearest integer for (int j = 0; j < kVecs; ++j) { v[j] = _mm512_mul_ps(v[j], vscale); v[j] = _mm512_roundscale_ps(v[j], (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC)); } // Pack to epi8 vecs for (int j = 0; j < kVecs / 4; ++j) { __m128i q8_0 = _mm512_cvtepi32_epi8(_mm512_cvtps_epi32(v[j * 4 + 0])); __m128i q8_1 = _mm512_cvtepi32_epi8(_mm512_cvtps_epi32(v[j * 4 + 1])); __m128i q8_2 = _mm512_cvtepi32_epi8(_mm512_cvtps_epi32(v[j * 4 + 2])); __m128i q8_3 = _mm512_cvtepi32_epi8(_mm512_cvtps_epi32(v[j * 4 + 3])); __m256i q8_01 = _mm256_insertf128_si256(_mm256_castsi128_si256(q8_0), (q8_1), 1); __m256i q8_23 = _mm256_insertf128_si256(_mm256_castsi128_si256(q8_2), (q8_3), 1); vq[j] = _mm512_inserti32x8(_mm512_castsi256_si512(q8_01), q8_23, 1); _mm512_storeu_si512((__m512i *)(y[i].qs + j * 64), vq[j]); } // Compute the bsums with vnni transpose_16x4_32bit(vq, vq_packed); const __m512i one = _mm512_set1_epi8(1); __m512i sum = _mm512_setzero_si512(); for (int k = 0; k < 4; ++k) { sum = _mm512_dpbusd_epi32(sum, one, vq_packed[k]); } _mm256_storeu_si256((__m256i *)(y[i].bsums), _mm512_cvtepi32_epi16(sum)); } } // quantize A from float to `vec_dot_type` template inline void from_float(const float * x, char * vy, int64_t k); template <> inline void from_float(const float * x, char * vy, int64_t k) { // FIXME: using unoptimized reference impl until moved to CPU backend quantize_row_q8_0_ref(x, (block_q8_0 *)vy, k); } template <> inline void from_float(const float * x, char * vy, int64_t k) { quantize_row_q8_1_ref(x, (block_q8_1 *)vy, k); } template <> inline void from_float(const float * x, char * vy, int64_t k) { #if 1 // TODO: this is reference impl! quantize_row_q8_K_ref(x, (block_q8_K *)vy, k); #else quantize_row_q8_K_vnni(x, vy, k); #endif } // load A from memory to array when nrows can not fill in whole tile void unpack_A(int8_t * RESTRICT tile, const block_q8_0 * RESTRICT A, int lda, int nr) { assert(nr != TILE_M); for (int m = 0; m < nr; ++m) { const __m256i v = _mm256_loadu_si256((const __m256i *)(A[m * lda].qs)); _mm256_storeu_si256((__m256i *)(tile + m * TILE_K), v); } } void unpack_A(int8_t * RESTRICT tile, const block_q8_1 * RESTRICT A, int lda, int nr) { assert(nr != TILE_M); for (int m = 0; m < nr; ++m) { const __m256i v = _mm256_loadu_si256((const __m256i *)(A[m * lda].qs)); _mm256_storeu_si256((__m256i *)(tile + m * TILE_K), v); } } template void unpack_A(int8_t * RESTRICT tile, const block_q8_K * RESTRICT A, int lda, int k, int nr) { assert(nr <= TILE_M); for (int m = 0; m < nr; ++m) { const __m256i v = _mm256_loadu_si256((const __m256i *)(A[m * lda].qs + k * 32)); _mm256_storeu_si256((__m256i *)(tile + m * TILE_K), v); } } template <> void unpack_A(int8_t * RESTRICT tile, const block_q8_K * RESTRICT A, int lda, int k, int nr) { assert(nr <= TILE_M); // zero padding k from 16 to 32, so that we don't have to re-config amx const __m128i zero = _mm_setzero_si128(); for (int m = 0; m < nr; ++m) { const __m128i v = _mm_loadu_si128((const __m128i *)(A[m * lda].qs + k * 16)); const __m256i r = _mm256_insertf128_si256(_mm256_castsi128_si256(v), zero, 1); _mm256_storeu_si256((__m256i *)(tile + m * TILE_K), r); } } #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1) inline __m256i bytes_from_nibbles_32(const uint8_t * rsi) { const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi); const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp); const __m256i lowMask = _mm256_set1_epi8(0xF); return _mm256_and_si256(lowMask, bytes); } // used for block_q4_K inline __m512i bytes_from_nibbles_64(const uint8_t * rsi) { const __m256i tmp = _mm256_loadu_si256((const __m256i *)rsi); const __m256i lowMask = _mm256_set1_epi8(0xF); const __m256i q4l = _mm256_and_si256(tmp, lowMask); const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(tmp, 4), lowMask); return _mm512_inserti32x8(_mm512_castsi256_si512(q4l), q4h, 1); } // used for block_q5_K inline __m512i bytes_from_nibbles_64(const uint8_t * qs, const uint8_t * qh, int k) { const __m256i lowMask = _mm256_set1_epi8(0xF); __m256i hmask = _mm256_set1_epi8(1); hmask = _mm256_slli_epi16(hmask, k); const __m256i q5bits = _mm256_loadu_si256((const __m256i *)qs); const __m256i hbits = _mm256_loadu_si256((const __m256i *)qh); const __m256i q5l_0 = _mm256_and_si256(q5bits, lowMask); const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), k + 0), 4); const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0); hmask = _mm256_slli_epi16(hmask, 1); const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), lowMask); const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), k + 1), 4); const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1); return _mm512_inserti32x8(_mm512_castsi256_si512(q5_0), q5_1, 1); } // used for block_q6_K inline void bytes_from_nibbles_128(__m512i& r0, __m512i& r1, const uint8_t * qs, const uint8_t * qh) { const __m256i m4 = _mm256_set1_epi8(0xF); const __m256i m2 = _mm256_set1_epi8(0x3); const __m256i q6bits1 = _mm256_loadu_si256((const __m256i *)qs); const __m256i q6bits2 = _mm256_loadu_si256((const __m256i *)(qs + 32)); const __m256i q6bitsH = _mm256_loadu_si256((const __m256i *)qh); const __m256i q6h_0 = _mm256_slli_epi16(_mm256_and_si256( q6bitsH, m2), 4); const __m256i q6h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q6bitsH, 2), m2), 4); const __m256i q6h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q6bitsH, 4), m2), 4); const __m256i q6h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q6bitsH, 6), m2), 4); const __m256i q6_0 = _mm256_or_si256(_mm256_and_si256(q6bits1, m4), q6h_0); const __m256i q6_1 = _mm256_or_si256(_mm256_and_si256(q6bits2, m4), q6h_1); const __m256i q6_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q6bits1, 4), m4), q6h_2); const __m256i q6_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q6bits2, 4), m4), q6h_3); r0 = _mm512_inserti32x8(_mm512_castsi256_si512(q6_0), q6_1, 1); r1 = _mm512_inserti32x8(_mm512_castsi256_si512(q6_2), q6_3, 1); } inline __m512i packNibbles(__m512i r0, __m512i r1) { return _mm512_or_si512(r0, _mm512_slli_epi16(r1, 4)); } template inline void pack_qs(void * RESTRICT packed_B, const TB * RESTRICT B, int KB) { int8_t tmp[8 * 64]; __m256i v[8], v2[8]; for (int n = 0; n < 8; ++n) { v[n] = bytes_from_nibbles_32(B[n * KB].qs); } transpose_8x8_32bit(v, v2); for (int n = 0; n < 8; ++n) { _mm256_storeu_si256((__m256i *)(tmp + n * 64), v2[n]); } for (int n = 0; n < 8; ++n) { v[n] = bytes_from_nibbles_32(B[(n + 8) * KB].qs); } transpose_8x8_32bit(v, v2); for (int n = 0; n < 8; ++n) { _mm256_storeu_si256((__m256i *)(tmp + n * 64 + 32), v2[n]); } // pack again with 128 to fully utilize vector length for (int n = 0; n < 8; n += 2) { __m512i r0 = _mm512_loadu_si512((const __m512i *)(tmp + n * 64)); __m512i r1 = _mm512_loadu_si512((const __m512i *)(tmp + n * 64 + 64)); __m512i r1r0 = packNibbles(r0, r1); _mm512_storeu_si512((__m512i *)((char *)packed_B + n * 32), r1r0); } } template <> inline void pack_qs(void * RESTRICT packed_B, const block_q8_0 * RESTRICT B, int KB) { __m256i v[8], v2[8]; for (int n = 0; n < 8; ++n) { v[n] = _mm256_loadu_si256((const __m256i *)(B[n * KB].qs)); } transpose_8x8_32bit(v, v2); for (int n = 0; n < 8; ++n) { _mm256_storeu_si256((__m256i *)((char *)packed_B + n * 64), v2[n]); } for (int n = 0; n < 8; ++n) { v[n] = _mm256_loadu_si256((const __m256i *)(B[(n + 8) * KB].qs)); } transpose_8x8_32bit(v, v2); for (int n = 0; n < 8; ++n) { _mm256_storeu_si256((__m256i *)((char *)packed_B + n * 64 + 32), v2[n]); } } template <> inline void pack_qs(void * RESTRICT packed_B, const block_q4_K * RESTRICT B, int KB) { __m512i v[16]; // QK_K 256 with 8 groups, handle 2 groups at a time char * pb = (char *)packed_B; for (int k = 0; k < QK_K / 64; ++k) { // pack 2 groups { n, g, k} to {g, k/4, 4n} // e.g. {16, 2, 32} to {2, 8, 64} for (int n = 0; n < TILE_N; ++n) { v[n] = bytes_from_nibbles_64(B[n * KB].qs + k * 32); } transpose_16x16_32bit(v); // pack again with 128 to fully utilize vector length for (int n = 0; n < TILE_N; n += 2) { _mm512_storeu_si512((__m512i *)pb, packNibbles(v[n], v[n + 1])); pb += 64; } } } template <> inline void pack_qs(void * RESTRICT packed_B, const block_q5_K * RESTRICT B, int KB) { __m512i v[16]; const __m512i lowMask = _mm512_set1_epi8(0xF); // QK_K 256 with 8 groups, handle 2 groups at a time char * pb = (char *)packed_B; char * ph = (char *)packed_B + (QK_K / 2) * TILE_N; for (int k = 0; k < QK_K / 64; ++k) { // pack 2 groups { n, g, k} to {g, k/4, 4n} // e.g. {16, 2, 32} to {2, 8, 64} for (int n = 0; n < TILE_N; ++n) { v[n] = bytes_from_nibbles_64(B[n * KB].qs + k * 32, B[n * KB].qh, /* group */2 * k); } transpose_16x16_32bit(v); // 1. pack lower 4bits with 2 groups for (int n = 0; n < TILE_N; n += 2) { // get lower 4 bits const __m512i r0 = _mm512_and_si512(v[n], lowMask); const __m512i r1 = _mm512_and_si512(v[n + 1], lowMask); _mm512_storeu_si512((__m512i *)pb, packNibbles(r0, r1)); pb += 64; } // 2. pack higher 1bit with 2 groups const __m512i hmask = _mm512_set1_epi8(0x10); for (int g = 0; g < 2; ++g) { __m512i hbits = _mm512_setzero_si512(); hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 8 + 0], hmask), 4)); hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 8 + 1], hmask), 3)); hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 8 + 2], hmask), 2)); hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 8 + 3], hmask), 1)); hbits = _mm512_add_epi8(hbits, _mm512_and_si512(v[g * 8 + 4], hmask) ); hbits = _mm512_add_epi8(hbits, _mm512_slli_epi16(_mm512_and_si512(v[g * 8 + 5], hmask), 1)); hbits = _mm512_add_epi8(hbits, _mm512_slli_epi16(_mm512_and_si512(v[g * 8 + 6], hmask), 2)); hbits = _mm512_add_epi8(hbits, _mm512_slli_epi16(_mm512_and_si512(v[g * 8 + 7], hmask), 3)); _mm512_storeu_si512((__m512i *)ph, hbits); ph += 64; } } } template <> inline void pack_qs(void * RESTRICT packed_B, const block_q6_K * RESTRICT B, int KB) { __m512i v[32]; const __m512i lowMask = _mm512_set1_epi8(0xF); // QK_K 256 with 8 groups, handle 4 groups at a time char * pb = (char *)packed_B; char * ph = (char *)packed_B + (QK_K / 2) * TILE_N; for (int k = 0; k < QK_K / 128; ++k) { for (int n = 0; n < TILE_N; ++n) { bytes_from_nibbles_128(v[n], v[n + 16], B[n * KB].ql + k * 64, B[n * KB].qh + k * 32); } // top half: group 0,1 or 4,5; bottom half: group 2,3 or 6,7 transpose_16x16_32bit(v); transpose_16x16_32bit(v + 16); // 1. pack lower 4bits with 4 groups for (int n = 0; n < 32; n += 2) { const __m512i r0 = _mm512_and_si512(v[n], lowMask); const __m512i r1 = _mm512_and_si512(v[n + 1], lowMask); _mm512_storeu_si512((__m512i *)pb, packNibbles(r0, r1)); pb += 64; } // 2. pack higher 2bit with 4 groups const __m512i hmask = _mm512_set1_epi8(0x30); for (int g = 0; g < 8; ++g) { __m512i hbits = _mm512_setzero_si512(); hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 4 + 0], hmask), 4)); hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 4 + 1], hmask), 2)); hbits = _mm512_add_epi8(hbits, _mm512_and_si512(v[g * 4 + 2], hmask) ); hbits = _mm512_add_epi8(hbits, _mm512_slli_epi16(_mm512_and_si512(v[g * 4 + 3], hmask), 2)); _mm512_storeu_si512((__m512i *)ph, hbits); ph += 64; } } } template <> inline void pack_qs(void * RESTRICT packed_B, const block_iq4_xs * RESTRICT B, int KB) { __m512i v[16]; char * pb = (char *)packed_B; for (int k = 0; k < QK_K / 64; ++k) { for (int n = 0; n < TILE_N; ++n) { __m256i r0 = bytes_from_nibbles_32(B[n * KB].qs + k * 32 + 0); __m256i r1 = bytes_from_nibbles_32(B[n * KB].qs + k * 32 + 16); v[n] = _mm512_inserti32x8(_mm512_castsi256_si512(r0), r1, 1); } transpose_16x16_32bit(v); // pack again with 128 to fully utilize vector length for (int n = 0; n < TILE_N; n += 2) { _mm512_storeu_si512((__m512i *)pb, packNibbles(v[n], v[n + 1])); pb += 64; } } } // pack B to vnni formats in 4bits or 8 bits void pack_B(void * RESTRICT packed_B, const block_q4_0 * RESTRICT B, int KB) { pack_qs(packed_B, B, KB); ggml_half * d0 = reinterpret_cast((char *)packed_B + TILE_N * TILE_K / 2); for (int n = 0; n < TILE_N; ++n) { d0[n] = B[n * KB].d; } } void pack_B(void * RESTRICT packed_B, const block_q4_1 * RESTRICT B, int KB) { pack_qs(packed_B, B, KB); ggml_half * d0 = reinterpret_cast((char *)packed_B + TILE_N * TILE_K / 2); ggml_half * m0 = d0 + TILE_N; for (int n = 0; n < TILE_N; ++n) { d0[n] = B[n * KB].d; m0[n] = B[n * KB].m; } } inline void s8s8_compensation(void * RESTRICT packed_B) { // packed_B layout: // quants {TILE_N, TILEK} int8_t // d0 {TILE_N} ggml_half // comp {TILE_N} int32_t const int offset = TILE_N * TILE_K + TILE_N * sizeof(ggml_half); __m512i vcomp = _mm512_setzero_si512(); const __m512i off = _mm512_set1_epi8(static_cast(0x80)); for (int k = 0; k < 8; ++k) { __m512i vb = _mm512_loadu_si512((const __m512i *)((const char *)packed_B + k * 64)); vcomp = _mm512_dpbusd_epi32(vcomp, off, vb); } _mm512_storeu_si512((__m512i *)((char *)(packed_B) + offset), vcomp); } void pack_B(void * RESTRICT packed_B, const block_q8_0 * RESTRICT B, int KB) { pack_qs(packed_B, B, KB); ggml_half * d0 = reinterpret_cast((char *)packed_B + TILE_N * TILE_K); for (int n = 0; n < TILE_N; ++n) { d0[n] = B[n * KB].d; } s8s8_compensation(packed_B); } // convert 8 * {min, scale} from int6 to int8 inline void unpack_mins_and_scales(const uint8_t * scales, uint32_t * utmp) { const uint32_t kmask1 = 0x3f3f3f3f; const uint32_t kmask2 = 0x0f0f0f0f; const uint32_t kmask3 = 0x03030303; memcpy(utmp, scales, 12); utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); const uint32_t uaux = utmp[1] & kmask1; utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); utmp[2] = uaux; utmp[0] &= kmask1; } // packed_B layout: // quants {8, TILE_N, 16} uint8 // scales {8, TILE_N} uint8 // mins {8, TILE_N} uint8 // d {TILE_N} ggml_half // dmin {TILE_N} ggml_half void pack_B(void * RESTRICT packed_B, const block_q4_K * RESTRICT B, int KB) { pack_qs(packed_B, B, KB); uint8_t * scales = reinterpret_cast((char *)packed_B + (QK_K / 2) * TILE_N); uint8_t * mins = scales + 8 * TILE_N; ggml_half * d = reinterpret_cast(mins + 8 * TILE_N); ggml_half * dmin = d + TILE_N; union { uint32_t u32[4]; uint8_t u8[16]; } s; for (int n = 0; n < TILE_N; ++n) { unpack_mins_and_scales(B[n * KB].scales, s.u32); for (int k = 0; k < 8; ++k) { scales[k * TILE_N + n] = s.u8[k]; mins[(k >> 1) * TILE_N * 2 + n * 2 + (k & 0x1)] = s.u8[k + 8]; } d[n] = B[n * KB].d; dmin[n] = B[n * KB].dmin; } } // packed_B layout: // quants {8, TILE_N, 16} uint8 // qh {8, TILE_N, 4} uint8 // scales {8, TILE_N} uint8 // mins {8, TILE_N} uint8 // d {TILE_N} ggml_half // dmin {TILE_N} ggml_half void pack_B(void * RESTRICT packed_B, const block_q5_K * RESTRICT B, int KB) { pack_qs(packed_B, B, KB); uint8_t * scales = reinterpret_cast((char *)packed_B + (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N); uint8_t * mins = scales + 8 * TILE_N; ggml_half * d = reinterpret_cast(mins + 8 * TILE_N); ggml_half * dmin = d + TILE_N; union { uint32_t u32[4]; uint8_t u8[16]; } s; for (int n = 0; n < TILE_N; ++n) { unpack_mins_and_scales(B[n * KB].scales, s.u32); for (int k = 0; k < 8; ++k) { scales[k * TILE_N + n] = s.u8[k]; mins[(k >> 1) * TILE_N * 2 + n * 2 + (k & 0x1)] = s.u8[k + 8]; } d[n] = B[n * KB].d; dmin[n] = B[n * KB].dmin; } } // packed_B layout: // quants {16, TILE_N, 8} uint8 // qh {16, TILE_N, 4} uint8 // scales {16, TILE_N} uint8 // d {TILE_N} ggml_half void pack_B(void * RESTRICT packed_B, const block_q6_K * RESTRICT B, int KB) { pack_qs(packed_B, B, KB); uint8_t * scales = reinterpret_cast((char *)packed_B + (QK_K / 2) * TILE_N + (QK_K / 4) * TILE_N); ggml_half * d = reinterpret_cast(scales + 16 * TILE_N); for (int n = 0; n < TILE_N; ++n) { const int8_t * ps = B[n * KB].scales; for (int k = 0; k < 16; ++k) { scales[k * TILE_N + n] = ps[k]; } d[n] = B[n * KB].d; } } // packed_B layout: // quants {8, TILE_N, 16} uint8 // scales {8, TILE_N} int8 // d {TILE_N} ggml_half void pack_B(void * RESTRICT packed_B, const block_iq4_xs * RESTRICT B, int KB) { pack_qs(packed_B, B, KB); int8_t * scales = reinterpret_cast((char *)packed_B + (QK_K / 2) * TILE_N); ggml_half * d = reinterpret_cast(scales + 8 * TILE_N); // pack the scales for (int n = 0; n < TILE_N; ++n) { uint16_t sh = B[n * KB].scales_h; for (int k = 0; k < 8; k += 2) { const int16_t ls1 = ((B[n * KB].scales_l[k / 2] & 0xf) | ((sh << 4) & 0x30)) - 32; const int16_t ls2 = ((B[n * KB].scales_l[k / 2] >> 4) | ((sh << 2) & 0x30)) - 32; scales[(k + 0) * TILE_N + n] = ls1; scales[(k + 1) * TILE_N + n] = ls2; sh >>= 4; } d[n] = B[n * KB].d; } } template> void unpack_B(packed_B_t * RESTRICT tile, const void * RESTRICT packed_B) { GGML_UNUSED(tile); GGML_UNUSED(packed_B); }; template <> void unpack_B(int8_t * RESTRICT tile, const void * RESTRICT packed_B) { const __m512i off = _mm512_set1_epi8(8); const __m512i lowMask = _mm512_set1_epi8(0xF); for (int n = 0; n < 8; n += 2) { __m512i bytes = _mm512_loadu_si512((const __m512i *)((const char *)packed_B + n * 32)); const __m512i r0 = _mm512_sub_epi8(_mm512_and_si512(bytes, lowMask), off); const __m512i r1 = _mm512_sub_epi8(_mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask), off); _mm512_storeu_si512((__m512i *)(tile + n * 64 + 0), r0); _mm512_storeu_si512((__m512i *)(tile + n * 64 + 64), r1); } } template <> void unpack_B(uint8_t * RESTRICT tile, const void * RESTRICT packed_B) { const __m512i lowMask = _mm512_set1_epi8(0xF); for (int n = 0; n < 8; n += 2) { __m512i bytes = _mm512_loadu_si512((const __m512i *)((const char *)packed_B + n * 32)); const __m512i r0 = _mm512_and_si512(bytes, lowMask); const __m512i r1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); _mm512_storeu_si512((__m512i *)(tile + n * 64 + 0), r0); _mm512_storeu_si512((__m512i *)(tile + n * 64 + 64), r1); } } // packed_B_t for QKK is int8_t template void unpack_B(int8_t * RESTRICT tile, const void * RESTRICT packed_B, int k) { const int packed_B_group_size = QK_K / 2 * TILE_N / 8; const char * packed_B_group = (const char *)packed_B + k * packed_B_group_size; const __m512i lowMask = _mm512_set1_epi8(0xF); for (int n = 0; n < 8; n += 2) { __m512i bytes = _mm512_loadu_si512(packed_B_group + n * 32); const __m512i r0 = _mm512_and_si512(bytes, lowMask); const __m512i r1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); _mm512_storeu_si512((__m512i *)(tile + n * 64 + 0), r0); _mm512_storeu_si512((__m512i *)(tile + n * 64 + 64), r1); } } template <> void unpack_B(int8_t * RESTRICT tile, const void * RESTRICT packed_B, int k) { // lower 4bits, stride 256 bytes const int packed_l4_group_size = QK_K / 2 * TILE_N / 8; const char * pb = (const char *)packed_B + k * packed_l4_group_size; // higher 1bit, stride 64 bytes const int packed_h1_group_size = QK_K / 8 * TILE_N / 8; const char * ph = (const char *)packed_B + (QK_K / 2) * TILE_N + k * packed_h1_group_size; const __m512i hbits = _mm512_loadu_si512(ph); const __m512i lowMask = _mm512_set1_epi8(0xF); __m512i hmask0 = _mm512_set1_epi8(0x1); __m512i hmask1 = _mm512_set1_epi8(0x2); for (int n = 0; n < 8; n += 2) { __m512i bytes = _mm512_loadu_si512(pb + n * 32); __m512i r0 = _mm512_and_si512(bytes, lowMask); __m512i r1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); __m512i h0 = _mm512_slli_epi16(_mm512_srli_epi16(_mm512_and_si512(hbits, hmask0), n), 4); __m512i h1 = _mm512_slli_epi16(_mm512_srli_epi16(_mm512_and_si512(hbits, hmask1), n + 1), 4); hmask0 = _mm512_slli_epi16(hmask0, 2); hmask1 = _mm512_slli_epi16(hmask1, 2); r0 = _mm512_add_epi8(r0, h0); r1 = _mm512_add_epi8(r1, h1); _mm512_storeu_si512((__m512i *)(tile + n * 64 + 0), r0); _mm512_storeu_si512((__m512i *)(tile + n * 64 + 64), r1); } } template <> void unpack_B(int8_t * RESTRICT tile, const void * RESTRICT packed_B, int k) { // lower 4bits, stride 128 bytes const int packed_l4_group_size = QK_K / 2 * TILE_N / 16; const char * pb = (const char *)packed_B + k * packed_l4_group_size; // higher 2bits, stride 64 bytes const int packed_h2_group_size = QK_K / 4 * TILE_N / 16; const char * ph = (const char *)packed_B + (QK_K / 2) * TILE_N + k * packed_h2_group_size; const __m512i hbits = _mm512_loadu_si512(ph); const __m512i off = _mm512_set1_epi8(32); const __m512i lowMask = _mm512_set1_epi8(0xF); __m512i hmask0 = _mm512_set1_epi8(0x3); // 0011 __m512i hmask1 = _mm512_set1_epi8(0xC); // 1100 // notes: skip zero padding from row4 to row7 as we have done so in `unpack_A` __m512i bytes = _mm512_loadu_si512(pb); __m512i r0 = _mm512_and_si512(bytes, lowMask); __m512i r1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); __m512i h0 = _mm512_slli_epi16(_mm512_and_si512(hbits, hmask0), 4); __m512i h1 = _mm512_slli_epi16(_mm512_and_si512(hbits, hmask1), 2); _mm512_storeu_si512((__m512i *)(tile + 0), _mm512_sub_epi8(_mm512_add_epi8(r0, h0), off)); _mm512_storeu_si512((__m512i *)(tile + 64), _mm512_sub_epi8(_mm512_add_epi8(r1, h1), off)); hmask0 = _mm512_slli_epi16(hmask0, 4); hmask1 = _mm512_slli_epi16(hmask1, 4); bytes = _mm512_loadu_si512(pb + 64); r0 = _mm512_and_si512(bytes, lowMask); r1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); h0 = _mm512_and_si512(hbits, hmask0); h1 = _mm512_srli_epi16(_mm512_and_si512(hbits, hmask1), 2); _mm512_storeu_si512((__m512i *)(tile + 128), _mm512_sub_epi8(_mm512_add_epi8(r0, h0), off)); _mm512_storeu_si512((__m512i *)(tile + 192), _mm512_sub_epi8(_mm512_add_epi8(r1, h1), off)); } template <> void unpack_B(int8_t * RESTRICT tile, const void * RESTRICT packed_B, int k) { static const __m512i values128 = _mm512_set_epi8( 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127, 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127, 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127, 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127 ); const int packed_B_group_size = QK_K / 2 * TILE_N / 8; const char * pb = (const char *)packed_B + k * packed_B_group_size; const __m512i lowMask = _mm512_set1_epi8(0xF); for (int n = 0; n < 8; n += 2) { __m512i bytes = _mm512_loadu_si512(pb + n * 32); const __m512i r0 = _mm512_shuffle_epi8(values128, _mm512_and_si512(bytes, lowMask)); const __m512i r1 = _mm512_shuffle_epi8(values128, _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask)); _mm512_storeu_si512((__m512i *)(tile + n * 64 + 0), r0); _mm512_storeu_si512((__m512i *)(tile + n * 64 + 64), r1); } } template struct acc_C {}; template struct acc_C { static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_0 * A, int lda, const void * packed_B, int nr) { const int offset = TILE_N * TILE_K / 2; const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)((const char *)packed_B + offset))); for (int m = 0; m < nr; ++m) { const __m512 vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].d)); const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N)); __m512 vsum; if (is_acc) { vsum = _mm512_loadu_ps(C + m * ldc); } else { vsum = _mm512_set1_ps(0.f); } vsum = _mm512_fmadd_ps(vtile, _mm512_mul_ps(vd0, vd1), vsum); _mm512_storeu_ps(C + m * ldc, vsum); } } }; template struct acc_C { static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_1 * A, int lda, const void * packed_B, int nr) { const int offset = TILE_N * TILE_K / 2; const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)((const char *)packed_B + offset))); const __m512 vm0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)((const char *)packed_B + offset + TILE_N * sizeof(ggml_half)))); for (int m = 0; m < nr; ++m) { const __m512 vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].d)); const __m512 vs1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].s)); const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N)); __m512 vsum; if (is_acc) { vsum = _mm512_loadu_ps(C + m * ldc); } else { vsum = _mm512_set1_ps(0.f); } vsum = _mm512_fmadd_ps(vtile, _mm512_mul_ps(vd0, vd1), vsum); vsum = _mm512_fmadd_ps(vm0, vs1, vsum); _mm512_storeu_ps(C + m * ldc, vsum); } } }; template struct acc_C { static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_0 * A, int lda, const void * packed_B, int nr) { const int offset = TILE_N * TILE_K; const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)((const char *)packed_B + offset))); for (int m = 0; m < nr; ++m) { const __m512 vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].d)); const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N)); __m512 vsum; if (is_acc) { vsum = _mm512_loadu_ps(C + m * ldc); } else { vsum = _mm512_set1_ps(0.f); } vsum = _mm512_fmadd_ps(vtile, _mm512_mul_ps(vd0, vd1), vsum); _mm512_storeu_ps(C + m * ldc, vsum); } } }; template struct acc_C { static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_K * A, int lda, const void * packed_B, int nr) { const uint8_t * scales = reinterpret_cast((const char *)packed_B + (QK_K / 2) * TILE_N); const uint8_t * mins = scales + 8 * TILE_N; const ggml_half * d0 = reinterpret_cast(mins + 8 * TILE_N); const ggml_half * dmin = d0 + TILE_N; const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)d0)); const __m512 vdmin = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)dmin)); for (int m = 0; m < nr; ++m) { const float d1 = A[m * lda].d; const __m512 vd = _mm512_mul_ps(_mm512_set1_ps(d1), vd0); const __m512 vdm = _mm512_mul_ps(_mm512_set1_ps(-d1), vdmin); const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N)); __m512 vsum; if (is_acc) { vsum = _mm512_loadu_ps(C + m * ldc); } else { vsum = _mm512_set1_ps(0.f); } const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[m * lda].bsums); const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1)); __m512i acc_m = _mm512_setzero_si512(); for (int k = 0; k < 4; ++k) { __m512i vmask = _mm512_set1_epi32(k); __m512i va = _mm512_permutexvar_epi32(vmask, _mm512_castsi128_si512(q8s)); __m512i vb = _mm512_cvtepi8_epi16(_mm256_loadu_si256((const __m256i *)(mins + k * 32))); acc_m = _mm512_dpwssds_epi32(acc_m, va, vb); } vsum = _mm512_fmadd_ps(vtile, vd, vsum); vsum = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc_m), vdm, vsum); _mm512_storeu_ps(C + m * ldc, vsum); } } }; template struct acc_C { static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_K * A, int lda, const void * packed_B, int nr) { const uint8_t * scales = reinterpret_cast((const char *)packed_B + (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N); const uint8_t * mins = scales + 8 * TILE_N; const ggml_half * d0 = reinterpret_cast(mins + 8 * TILE_N); const ggml_half * dmin = d0 + TILE_N; const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)d0)); const __m512 vdmin = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)dmin)); for (int m = 0; m < nr; ++m) { const float d1 = A[m * lda].d; const __m512 vd = _mm512_mul_ps(_mm512_set1_ps(d1), vd0); const __m512 vdm = _mm512_mul_ps(_mm512_set1_ps(-d1), vdmin); const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N)); __m512 vsum; if (is_acc) { vsum = _mm512_loadu_ps(C + m * ldc); } else { vsum = _mm512_set1_ps(0.f); } const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[m * lda].bsums); const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1)); __m512i acc_m = _mm512_setzero_si512(); for (int k = 0; k < 4; ++k) { __m512i vmask = _mm512_set1_epi32(k); __m512i va = _mm512_permutexvar_epi32(vmask, _mm512_castsi128_si512(q8s)); __m512i vb = _mm512_cvtepi8_epi16(_mm256_loadu_si256((const __m256i *)(mins + k * 32))); acc_m = _mm512_dpwssds_epi32(acc_m, va, vb); } vsum = _mm512_fmadd_ps(vtile, vd, vsum); vsum = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc_m), vdm, vsum); _mm512_storeu_ps(C + m * ldc, vsum); } } }; template struct acc_C { static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_K * A, int lda, const void * packed_B, int nr) { const uint8_t * scales = reinterpret_cast((const char *)packed_B + (QK_K / 2) * TILE_N + (QK_K / 4) * TILE_N); const ggml_half * d0 = reinterpret_cast(scales + 16 * TILE_N); const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)d0)); for (int m = 0; m < nr; ++m) { const float d1 = A[m * lda].d; const __m512 vd = _mm512_mul_ps(_mm512_set1_ps(d1), vd0); const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N)); __m512 vsum; if (is_acc) { vsum = _mm512_loadu_ps(C + m * ldc); } else { vsum = _mm512_set1_ps(0.f); } vsum = _mm512_fmadd_ps(vtile, vd, vsum); _mm512_storeu_ps(C + m * ldc, vsum); } } }; template struct acc_C { static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_K * A, int lda, const void * packed_B, int nr) { const int8_t * scales = reinterpret_cast((const char *)packed_B + (QK_K / 2) * TILE_N); const ggml_half * d0 = reinterpret_cast(scales + 8 * TILE_N); const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)d0)); for (int m = 0; m < nr; ++m) { const float d1 = A[m * lda].d; const __m512 vd = _mm512_mul_ps(_mm512_set1_ps(d1), vd0); const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N)); __m512 vsum; if (is_acc) { vsum = _mm512_loadu_ps(C + m * ldc); } else { vsum = _mm512_set1_ps(0.f); } vsum = _mm512_fmadd_ps(vtile, vd, vsum); _mm512_storeu_ps(C + m * ldc, vsum); } } }; template constexpr int get_quants_size(); template <> constexpr int get_quants_size() { return (QK_K / 2) * TILE_N; } template <> constexpr int get_quants_size() { return (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N; } template <> constexpr int get_quants_size() { return (QK_K / 2) * TILE_N + (QK_K / 4) * TILE_N; } template <> constexpr int get_quants_size() { return (QK_K / 2) * TILE_N; } // used for QKK format template ::value, int>::type = 0> inline void scale_C(const int32_t * RESTRICT tile, int32_t * RESTRICT sumi, const void * packed_B, int k, int nr) { const uint8_t * scales = reinterpret_cast((const char *)packed_B + get_quants_size()); const __m512i vscale = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)(scales + k * TILE_N))); for (int m = 0; m < nr; ++m) { __m512i vsumi; if (is_acc) { vsumi = _mm512_loadu_si512(sumi + m * TILE_N); } else { vsumi = _mm512_setzero_si512(); } __m512i vtile = _mm512_loadu_si512(tile + m * TILE_N); vsumi = _mm512_add_epi32(vsumi, _mm512_mullo_epi32(vtile, vscale)); _mm512_storeu_si512((__m512i *)(sumi + m * TILE_N), vsumi); } } template struct tinygemm_kernel_avx { static void apply(int K, const TA * RESTRICT A, const TB * RESTRICT B, TC * RESTRICT C, int ldc) { GGML_UNUSED(K); GGML_UNUSED(A); GGML_UNUSED(B); GGML_UNUSED(C); GGML_UNUSED(ldc); } }; template struct tinygemm_kernel_avx { static void apply(int K, const float * RESTRICT A, const ggml_fp16_t * RESTRICT B, float * RESTRICT C, int ldc) { constexpr int ROWS = BLOCK_M; constexpr int COLS = BLOCK_N; assert(BLOCK_K == 16); __m512 va; __m512 vb[COLS]; __m512 vc[ROWS * COLS]; auto loadc = [&](int idx) { vc[idx] = _mm512_setzero_ps(); }; Unroll{}(loadc); auto compute = [&](int idx, int k) { // TODO: use `constexpr` here to get rid of interger div // when upgraded to C++17 const int row = idx / COLS; const int col = idx % COLS; if (col == 0) { va = _mm512_loadu_ps(A + row * K + k); } if (row == 0) { vb[col] = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(B + col * K + k))); } vc[idx] = _mm512_fmadd_ps(va, vb[col], vc[idx]); }; for (int k = 0; k < K; k += 16) { Unroll{}(compute, k); } auto storec = [&](int idx) { const int row = idx / COLS; const int col = idx % COLS; C[row * ldc + col] = _mm512_reduce_add_ps(vc[idx]); }; Unroll{}(storec); } }; #define LAUNCH_TINYGEMM_KERNEL_AVX(MB_SIZE, NB_SIZE) \ tinygemm_kernel_avx::apply( \ K, (const float *)src1->data + mb_start * K, \ (const type *)src0->data + nb_start * K, \ (float *)dst->data + mb_start * ldc + nb_start, ldc); // re-organize in the format {NB, KB, TILE_SIZE}: #define PACKED_INDEX(n, k, KB, tile_size) (n * KB + k) * tile_size template void convert_B_packed_format(void * RESTRICT packed_B, const TB * RESTRICT B, int N, int K, int n_threads) { const int NB = N / TILE_N; const int KB = K / BLOCK_K; const int TILE_SIZE = get_tile_size(); // parallel on NB should be enough parallel_for(n_threads, NB, [&](int begin, int end) { for (int n = begin; n < end; ++n) { for (int k = 0; k < KB; ++k) { int n0 = n * TILE_N; pack_B((char *)packed_B + PACKED_INDEX(n, k, KB, TILE_SIZE), &B[n0 * KB + k], KB); } } }); } template struct tinygemm_kernel_vnni {}; template struct tinygemm_kernel_vnni { static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) { constexpr int COLS = BLOCK_N / 16; const int TILE_SIZE = TILE_N * sizeof(block_q4_0); const block_q8_0 * RESTRICT A = static_cast(_A); const char * RESTRICT B = static_cast(_B); __m512i va[8]; __m512 vc[COLS]; __m512 vd1; // sum of offsets, shared across COLS // // avx512-vnni does not have `_mm512_dpbssd_epi32`, // need to transfrom ss to us: // a * (b - 8) is equavilent to b * a - 8 * a // s u u u s u s // __m512i vcomp; const __m512i off = _mm512_set1_epi8(8); const __m512i lowMask = _mm512_set1_epi8(0xF); auto loadc = [&](int col) { vc[col] = _mm512_setzero_ps(); }; Unroll{}(loadc); auto compute = [&](int col, int i) { // load a and compute compensation if (col == 0) { const int32_t * a_ptr = reinterpret_cast(A[0 * KB + i].qs); vcomp = _mm512_setzero_si512(); for (int k = 0; k < 8; ++k) { va[k] = _mm512_set1_epi32(a_ptr[k]); vcomp = _mm512_dpbusd_epi32(vcomp, off, va[k]); } vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].d)); } // load b __m512i vsum = _mm512_setzero_si512(); const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE); for (int k = 0; k < 8; k += 2) { __m512i bytes = _mm512_loadu_si512((const __m512i *)(b_ptr + k * 32)); __m512i vb0 = _mm512_and_si512(bytes, lowMask); vsum = _mm512_dpbusd_epi32(vsum, vb0, va[k + 0]); __m512i vb1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); vsum = _mm512_dpbusd_epi32(vsum, vb1, va[k + 1]); } const int offset = TILE_N * TILE_K / 2; const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset))); vsum = _mm512_sub_epi32(vsum, vcomp); vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(vsum), _mm512_mul_ps(vd0, vd1), vc[col]); }; for (int i = 0; i < KB; ++i) { Unroll{}(compute, i); } //store to C auto storec = [&](int col) { _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]); }; Unroll{}(storec); } }; template struct tinygemm_kernel_vnni { static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) { constexpr int COLS = BLOCK_N / 16; const int TILE_SIZE = TILE_N * sizeof(block_q4_1); const block_q8_1 * RESTRICT A = static_cast(_A); const char * RESTRICT B = static_cast(_B); __m512i va[8]; __m512i vb[8]; __m512 vc[COLS]; __m512 vd1, vs1; const __m512i lowMask = _mm512_set1_epi8(0xF); auto loadc = [&](int col) { vc[col] = _mm512_setzero_ps(); }; Unroll{}(loadc); auto compute = [&](int col, int i) { // load a if (col == 0) { const int32_t * a_ptr = reinterpret_cast(A[0 * KB + i].qs); for (int k = 0; k < 8; ++k) { va[k] = _mm512_set1_epi32(a_ptr[k]); } vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].d)); vs1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].s)); } // load b const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE); for (int k = 0; k < 8; k += 2) { __m512i bytes = _mm512_loadu_si512((const __m512i *)(b_ptr + k * 32)); vb[k + 0] = _mm512_and_si512(bytes, lowMask); vb[k + 1] = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); } const int offset = TILE_N * TILE_K / 2; const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset))); const __m512 vm0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset + TILE_N * sizeof(ggml_half)))); __m512i vsum = _mm512_setzero_si512(); for (int k = 0; k < 8; ++k) { vsum = _mm512_dpbusd_epi32(vsum, vb[k], va[k]); } vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(vsum), _mm512_mul_ps(vd0, vd1), vc[col]); vc[col] = _mm512_fmadd_ps(vm0, vs1, vc[col]); }; for (int i = 0; i < KB; ++i) { Unroll{}(compute, i); } //store to C auto storec = [&](int col) { _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]); }; Unroll{}(storec); } }; template struct tinygemm_kernel_vnni { static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) { constexpr int COLS = BLOCK_N / 16; const int TILE_SIZE = TILE_N * sizeof(block_q8_0) + TILE_N * sizeof(int32_t); const block_q8_0 * RESTRICT A = static_cast(_A); const char * RESTRICT B = static_cast(_B); __m512i va[8]; __m512i vb[8]; __m512 vc[COLS]; __m512 vd1; // Notes: s8s8 igemm compensation in avx512-vnni // change s8s8 to u8s8 with compensate // a * b = (a + 128) * b - 128 * b // s s u s u s // // (128 * b is pre-computed when packing B to vnni formats) // const __m512i off = _mm512_set1_epi8(static_cast(0x80)); auto loadc = [&](int col) { vc[col] = _mm512_setzero_ps(); }; Unroll{}(loadc); auto compute = [&](int col, int i) { // load a and add offset 128 if (col == 0) { const int32_t * a_ptr = reinterpret_cast(A[0 * KB + i].qs); for (int k = 0; k < 8; ++k) { va[k] = _mm512_set1_epi32(a_ptr[k]); va[k] = _mm512_add_epi8(va[k], off); } vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].d)); } // load b const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE); for (int k = 0; k < 8; ++k) { vb[k] = _mm512_loadu_si512((const __m512i *)(b_ptr + k * 64)); } const int offset = TILE_N * TILE_K; const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset))); const int offset2 = TILE_N * TILE_K + TILE_N * sizeof(ggml_half); const __m512i vcomp = _mm512_loadu_si512((const __m512i *)(b_ptr + offset2)); __m512i vsum = _mm512_setzero_si512(); for (int k = 0; k < 8; ++k) { vsum = _mm512_dpbusd_epi32(vsum, va[k], vb[k]); } vsum = _mm512_sub_epi32(vsum, vcomp); vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(vsum), _mm512_mul_ps(vd0, vd1), vc[col]); }; for (int i = 0; i < KB; ++i) { Unroll{}(compute, i); } //store to C auto storec = [&](int col) { _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]); }; Unroll{}(storec); } }; template struct tinygemm_kernel_vnni { static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) { constexpr int COLS = BLOCK_N / 16; const int TILE_SIZE = TILE_N * sizeof(block_q4_K) + TILE_N * 4; const block_q8_K * RESTRICT A = static_cast(_A); const char * RESTRICT B = static_cast(_B); // a.qs: 8 groups, 32 bytes each group (m256i) __m512i va[8]; // a.bsum: 8 groups, 2 bytes each group (m128i) __m512i va_bsum; __m512 vc[COLS]; __m512 vd1; // packed_B: const int offset_scales = (QK_K / 2) * TILE_N; const int offset_mins = (QK_K / 2) * TILE_N + 8 * TILE_N; const int offset_d0 = (QK_K / 2) * TILE_N + 16 * TILE_N; const int offset_dmin = (QK_K / 2) * TILE_N + 16 * TILE_N + TILE_N * sizeof(ggml_half); const __m512i lowMask = _mm512_set1_epi8(0xF); auto loadc = [&](int col) { vc[col] = _mm512_setzero_ps(); }; Unroll{}(loadc); // Notes: vnni formats in QK_K // a) quants vnni format // int8 {k/4, n, 4}, viewed as 2d {k/4, 4n}, k = 32 // from {16, 32} to {8, 64} // // b) min vnni format // int16 {k/2, n, 2}, viewed as 2d {k/2, 2n}, k = 8 // from {16, 8} to {4, 32} // auto compute = [&](int col, int i) { // load a if (col == 0) { for (int k_group = 0; k_group < QK_K / 32; ++k_group) { va[k_group] = _mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)(A[0 * KB + i].qs + k_group * 32))); } const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[0 * KB + i].bsums); const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1)); va_bsum = _mm512_castsi128_si512(q8s); vd1 = _mm512_set1_ps(A[0 * KB + i].d); } // step 1: accumultate the quants __m512i acc = _mm512_setzero_si512(); const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE); const char * b_qs = b_ptr; for (int k_group = 0; k_group < QK_K / 32; ++k_group) { __m512i vsum = _mm512_setzero_si512(); for (int k = 0; k < 8; k += 2) { __m512i va0 = _mm512_permutexvar_epi32(_mm512_set1_epi32(k + 0), va[k_group]); __m512i va1 = _mm512_permutexvar_epi32(_mm512_set1_epi32(k + 1), va[k_group]); __m512i bytes = _mm512_loadu_si512((const __m512i *)b_qs); __m512i vb0 = _mm512_and_si512(bytes, lowMask); vsum = _mm512_dpbusd_epi32(vsum, vb0, va0); __m512i vb1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); vsum = _mm512_dpbusd_epi32(vsum, vb1, va1); b_qs += 64; } // vacc += scale * (q8 @ q4) const __m512i vscale = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)(b_ptr + offset_scales + k_group * TILE_N))); acc = _mm512_add_epi32(acc, _mm512_mullo_epi32(vsum, vscale)); } const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_d0))); vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc), _mm512_mul_ps(vd0, vd1), vc[col]); // step 2: accumulate the mins __m512i acc_m = _mm512_setzero_si512(); for (int k = 0; k < 4; ++k) { __m512i vmask = _mm512_set1_epi32(k); __m512i va = _mm512_permutexvar_epi32(vmask, va_bsum); __m512i vb = _mm512_cvtepi8_epi16(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_mins + k * 32))); acc_m = _mm512_dpwssds_epi32(acc_m, va, vb); } const __m512 vdmin = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_dmin))); vc[col] = _mm512_fnmadd_ps(_mm512_cvtepi32_ps(acc_m), _mm512_mul_ps(vdmin, vd1), vc[col]); }; for (int i = 0; i < KB; ++i) { Unroll{}(compute, i); } //store to C auto storec = [&](int col) { _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]); }; Unroll{}(storec); } }; template struct tinygemm_kernel_vnni { static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) { constexpr int COLS = BLOCK_N / 16; const int TILE_SIZE = TILE_N * sizeof(block_q5_K) + TILE_N * 4; const block_q8_K * RESTRICT A = static_cast(_A); const char * RESTRICT B = static_cast(_B); // a.qs: 8 groups, 32 bytes each group (m256i) __m512i va[8]; // a.bsum: 8 groups, 2 bytes each group (m128i) __m512i va_bsum; __m512 vc[COLS]; __m512 vd1; // packed_B: const int offset_qh = (QK_K / 2) * TILE_N; const int offset_scales = (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N; const int offset_mins = (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N + 8 * TILE_N; const int offset_d0 = (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N + 16 * TILE_N; const int offset_dmin = (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N + 16 * TILE_N + TILE_N * sizeof(ggml_half); const __m512i lowMask = _mm512_set1_epi8(0xF); auto loadc = [&](int col) { vc[col] = _mm512_setzero_ps(); }; Unroll{}(loadc); // Q5_K and Q4_K shares the same vnni formats, refer to notes above. auto compute = [&](int col, int i) { // load a if (col == 0) { for (int k_group = 0; k_group < QK_K / 32; ++k_group) { va[k_group] = _mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)(A[0 * KB + i].qs + k_group * 32))); } const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[0 * KB + i].bsums); const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1)); va_bsum = _mm512_castsi128_si512(q8s); vd1 = _mm512_set1_ps(A[0 * KB + i].d); } // step 1: accumultate the quants __m512i acc = _mm512_setzero_si512(); const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE); const char * b_qs = b_ptr; const char * b_qh = b_ptr + offset_qh; for (int k_group = 0; k_group < QK_K / 32; ++k_group) { __m512i vsum = _mm512_setzero_si512(); __m512i hmask0 = _mm512_set1_epi8(0x1); __m512i hmask1 = _mm512_set1_epi8(0x2); __m512i hbits = _mm512_loadu_si512((const __m512i *)(b_qh + k_group * 64)); for (int k = 0; k < 8; k += 2) { __m512i va0 = _mm512_permutexvar_epi32(_mm512_set1_epi32(k + 0), va[k_group]); __m512i va1 = _mm512_permutexvar_epi32(_mm512_set1_epi32(k + 1), va[k_group]); __m512i bytes = _mm512_loadu_si512((const __m512i *)b_qs); __m512i vb0 = _mm512_and_si512(bytes, lowMask); __m512i vb1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); __m512i vh0 = _mm512_slli_epi16(_mm512_srli_epi16(_mm512_and_si512(hbits, hmask0), k), 4); __m512i vh1 = _mm512_slli_epi16(_mm512_srli_epi16(_mm512_and_si512(hbits, hmask1), k + 1), 4); hmask0 = _mm512_slli_epi16(hmask0, 2); hmask1 = _mm512_slli_epi16(hmask1, 2); vb0 = _mm512_add_epi8(vb0, vh0); vb1 = _mm512_add_epi8(vb1, vh1); vsum = _mm512_dpbusd_epi32(vsum, vb0, va0); vsum = _mm512_dpbusd_epi32(vsum, vb1, va1); b_qs += 64; } // vacc += scale * (q8 @ q5) const __m512i vscale = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)(b_ptr + offset_scales + k_group * TILE_N))); acc = _mm512_add_epi32(acc, _mm512_mullo_epi32(vsum, vscale)); } const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_d0))); vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc), _mm512_mul_ps(vd0, vd1), vc[col]); // step 2: accumulate the mins __m512i acc_m = _mm512_setzero_si512(); for (int k = 0; k < 4; ++k) { __m512i vmask = _mm512_set1_epi32(k); __m512i va = _mm512_permutexvar_epi32(vmask, va_bsum); __m512i vb = _mm512_cvtepi8_epi16(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_mins + k * 32))); acc_m = _mm512_dpwssds_epi32(acc_m, va, vb); } const __m512 vdmin = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_dmin))); vc[col] = _mm512_fnmadd_ps(_mm512_cvtepi32_ps(acc_m), _mm512_mul_ps(vdmin, vd1), vc[col]); }; for (int i = 0; i < KB; ++i) { Unroll{}(compute, i); } //store to C auto storec = [&](int col) { _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]); }; Unroll{}(storec); } }; template struct tinygemm_kernel_vnni { static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) { constexpr int COLS = BLOCK_N / 16; const int TILE_SIZE = TILE_N * sizeof(block_q6_K); const block_q8_K * RESTRICT A = static_cast(_A); const char * RESTRICT B = static_cast(_B); // load the 256 bytes from A to 4 avx512 vectors __m512i va[4]; __m512 vc[COLS]; __m512 vd1; // packed_B: const int offset_qh = (QK_K / 2) * TILE_N; const int offset_scales = (QK_K / 2) * TILE_N + (QK_K / 4) * TILE_N; const int offset_d0 = (QK_K / 2) * TILE_N + (QK_K / 4) * TILE_N + 16 * TILE_N; // compensation __m512i vcomp; const __m512i m32s = _mm512_set1_epi32(32); const __m512i lowMask = _mm512_set1_epi8(0xF); auto loadc = [&](int col) { vc[col] = _mm512_setzero_ps(); }; Unroll{}(loadc); auto compute = [&](int col, int i) { if (col == 0) { // load a va[0] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 0)); va[1] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 64)); va[2] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 128)); va[3] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 192)); const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[0 * KB + i].bsums); vcomp = _mm512_mullo_epi32(_mm512_cvtepi16_epi32(q8sums), m32s); vd1 = _mm512_set1_ps(A[0 * KB + i].d); } // accmulate the quants __m512i acc = _mm512_setzero_si512(); const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE); const char * b_qs = b_ptr; const char * b_qh = b_ptr + offset_qh; int mask = 0; for (int k_group = 0; k_group < QK_K / 16; ++k_group) { int r = k_group >> 2; __m512i va0 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]); __m512i va1 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]); __m512i vsum = _mm512_setzero_si512(); __m512i hmask = _mm512_set1_epi8(0x3); __m512i bytes = _mm512_loadu_si512(b_qs); __m512i hbits = _mm512_loadu_si512(b_qh); __m512i vb0 = _mm512_and_si512(bytes, lowMask); __m512i vb1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); __m512i vh0 = _mm512_slli_epi16(_mm512_and_si512(hbits, hmask), 4); __m512i vh1 = _mm512_slli_epi16(_mm512_and_si512(hbits, _mm512_slli_epi16(hmask, 2)), 2); vb0 = _mm512_add_epi8(vb0, vh0); vb1 = _mm512_add_epi8(vb1, vh1); vsum = _mm512_dpbusd_epi32(vsum, vb0, va0); vsum = _mm512_dpbusd_epi32(vsum, vb1, va1); b_qs += 64; va0 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]); va1 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]); bytes = _mm512_loadu_si512(b_qs); vb0 = _mm512_and_si512(bytes, lowMask); vb1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); vh0 = _mm512_and_si512(hbits, _mm512_slli_epi16(hmask, 4)); vh1 = _mm512_srli_epi16(_mm512_and_si512(hbits, _mm512_slli_epi16(hmask, 6)), 2); vb0 = _mm512_add_epi8(vb0, vh0); vb1 = _mm512_add_epi8(vb1, vh1); vsum = _mm512_dpbusd_epi32(vsum, vb0, va0); vsum = _mm512_dpbusd_epi32(vsum, vb1, va1); b_qs += 64; b_qh += 64; // B * A - 32 * A __m512i vmask = _mm512_set1_epi32(k_group); vsum = _mm512_sub_epi32(vsum, _mm512_permutexvar_epi32(vmask, vcomp)); // vacc += scale * (q8 @ q6) const __m512i vscale = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)(b_ptr + offset_scales + k_group * TILE_N))); acc = _mm512_add_epi32(acc, _mm512_mullo_epi32(vsum, vscale)); } const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_d0))); vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc), _mm512_mul_ps(vd0, vd1), vc[col]); }; for (int i = 0; i < KB; ++i) { Unroll{}(compute, i); } //store to C auto storec = [&](int col) { _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]); }; Unroll{}(storec); } }; template struct tinygemm_kernel_vnni { static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) { constexpr int COLS = BLOCK_N / 16; const int TILE_SIZE = TILE_N * sizeof(block_iq4_xs) + TILE_N * 2; const block_q8_K * RESTRICT A = static_cast(_A); const char * RESTRICT B = static_cast(_B); // load the 256 bytes from A to 4 avx512 vectors __m512i va[4]; __m512 vc[COLS]; __m512 vd1; // packed_B: const int offset_scales = (QK_K / 2) * TILE_N ; const int offset_d0 = (QK_K / 2) * TILE_N + 8 * TILE_N; // compensation __m512i vcomp; const __m256i m128s = _mm256_set1_epi16(128); const __m512i lowMask = _mm512_set1_epi8(0xF); const __m512i values128 = _mm512_set_epi8( 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127, 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127, 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127, 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127 ); const __m512i off = _mm512_set1_epi8(static_cast(0x80)); const __m512i values256 = _mm512_add_epi8(values128, off); auto loadc = [&](int col) { vc[col] = _mm512_setzero_ps(); }; Unroll{}(loadc); auto compute = [&](int col, int i) { if (col == 0) { // load a va[0] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 0)); va[1] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 64)); va[2] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 128)); va[3] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 192)); // compensation: 128 * A const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[0 * KB + i].bsums); vcomp = _mm512_castsi256_si512(_mm256_madd_epi16(q8sums, m128s)); vd1 = _mm512_set1_ps(A[0 * KB + i].d); } // accmulate the quants __m512i acc = _mm512_setzero_si512(); const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE); const char * b_qs = b_ptr; int mask = 0; for (int k_group = 0; k_group < QK_K / 32; ++k_group) { int r = k_group >> 1; __m512i vmask = _mm512_set1_epi32(k_group); __m512i vsum = _mm512_setzero_si512(); for (int k = 0; k < 8; k += 2) { __m512i va0 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]); __m512i va1 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]); __m512i bytes = _mm512_loadu_si512(b_qs); __m512i vb0 = _mm512_shuffle_epi8(values256, _mm512_and_si512(bytes, lowMask)); __m512i vb1 = _mm512_shuffle_epi8(values256, _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask)); vsum = _mm512_dpbusd_epi32(vsum, vb0, va0); vsum = _mm512_dpbusd_epi32(vsum, vb1, va1); b_qs += 64; } // (B + 128) * A - 128 * A vsum = _mm512_sub_epi32(vsum, _mm512_permutexvar_epi32(vmask, vcomp)); // vacc += scale * (q8 @ q4) const __m512i vscale = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)(b_ptr + offset_scales + k_group * TILE_N))); acc = _mm512_add_epi32(acc, _mm512_mullo_epi32(vsum, vscale)); } const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_d0))); vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc), _mm512_mul_ps(vd0, vd1), vc[col]); }; for (int i = 0; i < KB; ++i) { Unroll{}(compute, i); } //store to C auto storec = [&](int col) { _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]); }; Unroll{}(storec); } }; #define LAUNCH_TINYGEMM_KERNEL_VNNI(NB_SIZE) \ tinygemm_kernel_vnni::apply( \ KB, (const char *)wdata + 0 * row_size_A, \ (const char *)src0->data + PACKED_INDEX(nb * kTilesN, 0, KB, TILE_SIZE), \ (float *) dst->data + 0 * N + nb_start, ldc) template ::value, int>::type = 0> void tinygemm_kernel_amx(int M, int N, int KB, const void * RESTRICT _A, const void * RESTRICT _B, TC * RESTRICT C, int ldc) { using packed_B_t = packed_B_type; const int TILE_SIZE = get_tile_size(); const bool need_unpack = do_unpack::value; GGML_ASSERT(M <= 2 * TILE_M && N == 2 * TILE_N); const TA * RESTRICT A = static_cast(_A); const char * RESTRICT B = static_cast(_B); const int m0 = std::min(M, TILE_M); const int m1 = std::max(M - TILE_M, 0); const int lda = KB * sizeof(TA); //const int ldb = KB * sizeof(TB); static thread_local packed_B_t Tile0[TILE_N * TILE_K]; static thread_local packed_B_t Tile1[TILE_N * TILE_K]; static thread_local int8_t Tile23[TILE_M * TILE_K]; static thread_local int32_t TileC0[TILE_M * TILE_N * 4]; static thread_local int32_t TileC1[TILE_M * TILE_N * 4]; // double buffering C to interleave avx512 and amx int32_t * C_cur = TileC0; int32_t * C_pre = TileC1; auto Tile4 = [&](int32_t * base) { return base; }; auto Tile5 = [&](int32_t * base) { return base + TILE_M * TILE_N; }; auto Tile6 = [&](int32_t * base) { return base + 2 * TILE_M * TILE_N; }; auto Tile7 = [&](int32_t * base) { return base + 3 * TILE_M * TILE_N; }; if (M == 2 * TILE_M) { // i = 0 const char * B_blk0 = B + PACKED_INDEX(0, 0, KB, TILE_SIZE); const char * B_blk1 = B + PACKED_INDEX(1, 0, KB, TILE_SIZE); if (need_unpack) { unpack_B(Tile0, B_blk0); _tile_loadd(TMM0, Tile0, TILE_N * VNNI_BLK); } else { _tile_loadd(TMM0, B_blk0, TILE_N * VNNI_BLK); } _tile_zero(TMM4); _tile_loadd(TMM2, A[0].qs, lda); _tile_dpbssd(TMM4, TMM2, TMM0); _tile_stored(TMM4, Tile4(C_pre), TILE_N * sizeof(int32_t)); _tile_zero(TMM5); _tile_loadd(TMM3, A[TILE_M * KB + 0].qs, lda); _tile_dpbssd(TMM5, TMM3, TMM0); _tile_stored(TMM5, Tile5(C_pre), TILE_N * sizeof(int32_t)); if (need_unpack) { unpack_B(Tile1, B_blk0); _tile_loadd(TMM1, Tile1, TILE_N * VNNI_BLK); } else { _tile_loadd(TMM1, B_blk1, TILE_N * VNNI_BLK); } _tile_zero(TMM6); _tile_dpbssd(TMM6, TMM2, TMM1); _tile_stored(TMM6, Tile6(C_pre), TILE_N * sizeof(int32_t)); _tile_zero(TMM7); _tile_dpbssd(TMM7, TMM3, TMM1); _tile_stored(TMM7, Tile7(C_pre), TILE_N * sizeof(int32_t)); for (int i = 1; i < KB; ++i) { // index of previous iter const int ii = i - 1; const char * B_blk0 = B + PACKED_INDEX(0, i, KB, TILE_SIZE); const char * B_blk1 = B + PACKED_INDEX(1, i, KB, TILE_SIZE); GGML_DISPATCH_BOOL(ii > 0, is_acc, [&] { if (need_unpack) { unpack_B(Tile0, B_blk0); _tile_loadd(TMM0, Tile0, TILE_N * VNNI_BLK); } else { _tile_loadd(TMM0, B_blk0, TILE_N * VNNI_BLK); } _tile_zero(TMM4); _tile_loadd(TMM2, A[i].qs, lda); acc_C::apply(C, ldc, Tile4(C_pre), &A[ii], KB, B + PACKED_INDEX(0, ii, KB, TILE_SIZE), TILE_M); _tile_dpbssd(TMM4, TMM2, TMM0); _tile_stored(TMM4, Tile4(C_cur), TILE_N * sizeof(int32_t)); _tile_zero(TMM5); _tile_loadd(TMM3, A[TILE_M * KB + i].qs, lda); acc_C::apply(C + TILE_M * ldc, ldc, Tile5(C_pre), &A[TILE_M * KB + ii], KB, B + PACKED_INDEX(0, ii, KB, TILE_SIZE), TILE_M); _tile_dpbssd(TMM5, TMM3, TMM0); _tile_stored(TMM5, Tile5(C_cur), TILE_N * sizeof(int32_t)); if (need_unpack) { unpack_B(Tile1, B_blk1); _tile_loadd(TMM1, Tile1, TILE_N * VNNI_BLK); } else { _tile_loadd(TMM1, B_blk1, TILE_N * VNNI_BLK); } _tile_zero(TMM6); acc_C::apply(C + TILE_N, ldc, Tile6(C_pre), &A[ii], KB, B + PACKED_INDEX(1, ii, KB, TILE_SIZE), TILE_M); _tile_dpbssd(TMM6, TMM2, TMM1); _tile_stored(TMM6, Tile6(C_cur), TILE_N * sizeof(int32_t)); _tile_zero(TMM7); acc_C::apply(C + TILE_M * ldc + TILE_N, ldc, Tile7(C_pre), &A[TILE_M * KB + ii], KB, B + PACKED_INDEX(1, ii, KB, TILE_SIZE), TILE_M); _tile_dpbssd(TMM7, TMM3, TMM1); _tile_stored(TMM7, Tile7(C_cur), TILE_N * sizeof(int32_t)); std::swap(C_cur, C_pre); }); } // final accumulation { int ii = KB - 1; acc_C::apply(C, ldc, Tile4(C_pre), &A[ii], KB, B + PACKED_INDEX(0, ii, KB, TILE_SIZE), TILE_M); acc_C::apply(C + TILE_M * ldc, ldc, Tile5(C_pre), &A[TILE_M * KB + ii], KB, B + PACKED_INDEX(0, ii, KB, TILE_SIZE), TILE_M); acc_C::apply(C + TILE_N, ldc, Tile6(C_pre), &A[ii], KB, B + PACKED_INDEX(1, ii, KB, TILE_SIZE), TILE_M); acc_C::apply(C + TILE_M * ldc + TILE_N, ldc, Tile7(C_pre), &A[TILE_M * KB + ii], KB, B + PACKED_INDEX(1, ii, KB, TILE_SIZE), TILE_M); } } else { for (int i = 0; i < KB; ++i) { _tile_zero(TMM4); _tile_zero(TMM6); if (m1 != 0) { _tile_zero(TMM5); _tile_zero(TMM7); } const char * B_blk0 = B + PACKED_INDEX(0, i, KB, TILE_SIZE); const char * B_blk1 = B + PACKED_INDEX(1, i, KB, TILE_SIZE); if (need_unpack) { unpack_B(Tile0, B_blk0); _tile_loadd(TMM0, Tile0, TILE_N * VNNI_BLK); } else { _tile_loadd(TMM0, B_blk0, TILE_N * VNNI_BLK); } if (need_unpack) { unpack_B(Tile1, B_blk1); _tile_loadd(TMM1, Tile1, TILE_N * VNNI_BLK); } else { _tile_loadd(TMM1, B_blk1, TILE_N * VNNI_BLK); } if (m0 == TILE_M) { _tile_loadd(TMM2, A[i].qs, lda); } else { unpack_A(Tile23, &A[i], KB, m0); _tile_loadd(TMM2, Tile23, TILE_K); } _tile_dpbssd(TMM4, TMM2, TMM0); _tile_dpbssd(TMM6, TMM2, TMM1); _tile_stored(TMM4, Tile4(C_cur), TILE_N * sizeof(int32_t)); _tile_stored(TMM6, Tile6(C_cur), TILE_N * sizeof(int32_t)); GGML_DISPATCH_BOOL(i > 0, is_acc, [&] { acc_C::apply(C, ldc, Tile4(C_cur), &A[i], KB, B + PACKED_INDEX(0, i, KB, TILE_SIZE), m0); acc_C::apply(C + TILE_N, ldc, Tile6(C_cur), &A[i], KB, B + PACKED_INDEX(1, i, KB, TILE_SIZE), m0); }); if (m1 != 0) { unpack_A(Tile23, &A[TILE_M * KB + i], KB, m1); _tile_loadd(TMM3, Tile23, TILE_K); _tile_dpbssd(TMM5, TMM3, TMM0); _tile_dpbssd(TMM7, TMM3, TMM1); _tile_stored(TMM5, Tile5(C_cur), TILE_N * sizeof(int32_t)); _tile_stored(TMM7, Tile7(C_cur), TILE_N * sizeof(int32_t)); GGML_DISPATCH_BOOL(i > 0, is_acc, [&] { acc_C::apply(C + TILE_M * ldc, ldc, Tile5(C_cur), &A[TILE_M * KB + i], KB, B + PACKED_INDEX(0, i, KB, TILE_SIZE), m1); acc_C::apply(C + TILE_M * ldc + TILE_N, ldc, Tile7(C_cur), &A[TILE_M * KB + i], KB, B + PACKED_INDEX(1, i, KB, TILE_SIZE), m1); }); } } } return; } template ::value, int>::type = 0> void tinygemm_kernel_amx(int M, int N, int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) { static_assert(std::is_same::value); const int TILE_SIZE = get_tile_size(); GGML_ASSERT(M <= 2 * TILE_M && N == 2 * TILE_N); const TA * RESTRICT A = static_cast(_A); const char * RESTRICT B = static_cast(_B); const int m0 = std::min(M, TILE_M); const int m1 = std::max(M - TILE_M, 0); //const int lda = KB * sizeof(TA); static thread_local int8_t Tile0[TILE_N * TILE_K]; static thread_local int8_t Tile1[TILE_N * TILE_K]; static thread_local int8_t Tile23[TILE_M * TILE_K]; // mat mul result for each group static thread_local int32_t Tile4[TILE_M * TILE_N]; static thread_local int32_t Tile5[TILE_M * TILE_N]; static thread_local int32_t Tile6[TILE_M * TILE_N]; static thread_local int32_t Tile7[TILE_M * TILE_N]; // sum of each QK_K block, contains 8 groups, int32 static thread_local int32_t Sumi4[TILE_M * TILE_N]; static thread_local int32_t Sumi5[TILE_M * TILE_N]; static thread_local int32_t Sumi6[TILE_M * TILE_N]; static thread_local int32_t Sumi7[TILE_M * TILE_N]; const int k_group_size = std::is_same::value ? 16 : 32; for (int i = 0; i < KB; ++i) { // step 1: accumulate the quants across 8 groups, each group with 32 for (int k = 0; k < QK_K / k_group_size; ++k) { GGML_DISPATCH_BOOL(k > 0, is_acc, [&] { _tile_zero(TMM4); _tile_zero(TMM6); unpack_B(Tile0, B + PACKED_INDEX(0, i, KB, TILE_SIZE), k); _tile_loadd(TMM0, Tile0, TILE_N * VNNI_BLK); unpack_B(Tile1, B + PACKED_INDEX(1, i, KB, TILE_SIZE), k); _tile_loadd(TMM1, Tile1, TILE_N * VNNI_BLK); unpack_A(Tile23, &A[i], KB, k, m0); _tile_loadd(TMM2, Tile23, TILE_K); _tile_dpbssd(TMM4, TMM2, TMM0); _tile_dpbssd(TMM6, TMM2, TMM1); _tile_stored(TMM4, Tile4, TILE_N * sizeof(int32_t)); _tile_stored(TMM6, Tile6, TILE_N * sizeof(int32_t)); scale_C(Tile4, Sumi4, B + PACKED_INDEX(0, i, KB, TILE_SIZE), k, m0); scale_C(Tile6, Sumi6, B + PACKED_INDEX(1, i, KB, TILE_SIZE), k, m0); if (m1 != 0) { _tile_zero(TMM5); _tile_zero(TMM7); unpack_A(Tile23, &A[TILE_M * KB + i], KB, k, m1); _tile_loadd(TMM3, Tile23, TILE_K); _tile_dpbssd(TMM5, TMM3, TMM0); _tile_dpbssd(TMM7, TMM3, TMM1); _tile_stored(TMM5, Tile5, TILE_N * sizeof(int32_t)); _tile_stored(TMM7, Tile7, TILE_N * sizeof(int32_t)); scale_C(Tile5, Sumi5, B + PACKED_INDEX(0, i, KB, TILE_SIZE), k, m1); scale_C(Tile7, Sumi7, B + PACKED_INDEX(1, i, KB, TILE_SIZE), k, m1); } }); } // step 2: accmulate the mins GGML_DISPATCH_BOOL(i > 0, is_acc, [&] { acc_C::apply(C, ldc, Sumi4, &A[i], KB, B + PACKED_INDEX(0, i, KB, TILE_SIZE), m0); acc_C::apply(C + TILE_N, ldc, Sumi6, &A[i], KB, B + PACKED_INDEX(1, i, KB, TILE_SIZE), m0); if (m1 != 0) { acc_C::apply(C + TILE_M * ldc, ldc, Sumi5, &A[TILE_M * KB + i], KB, B + PACKED_INDEX(0, i, KB, TILE_SIZE), m1); acc_C::apply(C + TILE_M * ldc + TILE_N, ldc, Sumi7, &A[TILE_M * KB + i], KB, B + PACKED_INDEX(1, i, KB, TILE_SIZE), m1); } }); } return; } } // anonymous namespace // get the packed tensor size for quantized weights size_t ggml_backend_amx_get_alloc_size(const struct ggml_tensor * tensor) { const enum ggml_type TYPE = tensor->type; const int K = tensor->ne[0]; // ne0: in_features const int N = tensor->ne[1]; // ne1: out_features auto get_tensor_size = [&] { size_t row_size_B{0}; GGML_DISPATCH_QTYPES(TYPE, [&] { row_size_B = get_row_size(K); }); return N * row_size_B; }; if (qtype_has_amx_kernels(TYPE)) { return get_tensor_size(); } else { // for f16, bf16 we don't do packing return ggml_nbytes(tensor); } } // pack weight to vnni format void ggml_backend_amx_convert_weight(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { size_t alloc_size = ggml_backend_amx_get_alloc_size(tensor); GGML_ASSERT(alloc_size == size); const enum ggml_type TYPE = tensor->type; const int K = tensor->ne[0]; // ne0: in_features const int N = tensor->ne[1]; // ne1: out_features #if defined(_OPENMP) // the buffer ctx is not initialized when .set_tensor is called int n_threads = omp_get_num_threads(); #else int n_threads = 1; #endif GGML_DISPATCH_QTYPES(TYPE, [&] { convert_B_packed_format((void *)((char *)tensor->data + offset), (const type *)data, N, K, n_threads); }); } // NB: mixed dtype gemm with Advanced Matrix Extensions (Intel AMX) // // src0: weight in shape of {N, K}, quantized // src1: input in shape of {M, K}, float32 // dst: output in shape of {M, N}, float32 // // the function performs: dst = src1 @ src0.T // void ggml_backend_amx_mul_mat(ggml_backend_amx_context * ctx, struct ggml_tensor * dst) { struct ggml_tensor * src0 = dst->src[0]; struct ggml_tensor * src1 = dst->src[1]; const enum ggml_type TYPE = src0->type; const int n_threads = ctx->n_threads; // f16 only has avx512 kernels for now, // amx kernels will be added once 6th gen xeon is released. const bool is_floating_type = TYPE == GGML_TYPE_F16; const int M = dst->ne[1]; const int N = dst->ne[0]; const int K = src0->ne[0]; const int ldc = dst->nb[1] / dst->nb[0]; if (is_floating_type) { constexpr int BLOCK_M = 4; constexpr int BLOCK_N = 6; const int MB = div_up(M, BLOCK_M); const int NB = div_up(N, BLOCK_N); parallel_for(n_threads, MB * NB, [&](int begin, int end) { GGML_DISPATCH_FLOATING_TYPES(TYPE, [&] { for (int i = begin; i < end; ++i) { int mb = i / NB; int nb = i % NB; int mb_start = mb * BLOCK_M; int mb_size = std::min(BLOCK_M, M - mb_start); int nb_start = nb * BLOCK_N; int nb_size = std::min(BLOCK_N, N - nb_start); switch (mb_size << 4 | nb_size) { case 0x12: LAUNCH_TINYGEMM_KERNEL_AVX(1, 2); break; case 0x14: LAUNCH_TINYGEMM_KERNEL_AVX(1, 4); break; case 0x16: LAUNCH_TINYGEMM_KERNEL_AVX(1, 6); break; case 0x22: LAUNCH_TINYGEMM_KERNEL_AVX(2, 2); break; case 0x24: LAUNCH_TINYGEMM_KERNEL_AVX(2, 4); break; case 0x26: LAUNCH_TINYGEMM_KERNEL_AVX(2, 6); break; case 0x32: LAUNCH_TINYGEMM_KERNEL_AVX(3, 2); break; case 0x34: LAUNCH_TINYGEMM_KERNEL_AVX(3, 4); break; case 0x36: LAUNCH_TINYGEMM_KERNEL_AVX(3, 6); break; case 0x42: LAUNCH_TINYGEMM_KERNEL_AVX(4, 2); break; case 0x44: LAUNCH_TINYGEMM_KERNEL_AVX(4, 4); break; case 0x46: LAUNCH_TINYGEMM_KERNEL_AVX(4, 6); break; default: fprintf(stderr, "Unexpected block size!\n"); } } }); }); return; } // pointer to work space, used convert A from float to quantized type void * wdata = nullptr; //TODO: performance improvement: merge quant A GGML_DISPATCH_QTYPES(TYPE, [&] { const size_t row_size_A = K / blck_size * sizeof(vec_dot_type); const size_t desired_wsize = M * row_size_A; if (ctx->work_size < desired_wsize) { ctx->work_data.reset(new char[desired_wsize]); ctx->work_size = desired_wsize; } wdata = ctx->work_data.get(); // Q4_0, Q4_1, Q8_0 handles 1 TILE_K per blck_size // Q4_K, Q5_K, Q6_K, IQ4_XS handles 8 TILE_K per blck_size GGML_ASSERT(TILE_K == blck_size || TILE_K * 8 == blck_size); const float * A_data = static_cast(src1->data); for (int m = 0; m < M; ++m) { from_float(A_data + m * K, (char *)wdata + m * row_size_A, K); } }); if (M == 1) { // MB = 1 and handle 8 tiles in each block constexpr int kTilesN = 4; constexpr int BLOCK_N = TILE_N * kTilesN; const int NB = div_up(N, BLOCK_N); parallel_for(n_threads, NB, [&](int begin, int end) { GGML_DISPATCH_QTYPES(TYPE, [&] { const int KB = K / blck_size; const int TILE_SIZE = get_tile_size(); const int row_size_A = KB * sizeof(vec_dot_type); for (int i = begin; i < end; ++i) { int nb = i; int nb_start = nb * BLOCK_N; int nb_size = std::min(BLOCK_N, N - nb_start); // 32, 64, 96 switch (nb_size) { //case 160: LAUNCH_TINYGEMM_KERNEL_VNNI(160); break; case 128: LAUNCH_TINYGEMM_KERNEL_VNNI(128); break; case 96: LAUNCH_TINYGEMM_KERNEL_VNNI(96); break; case 64: LAUNCH_TINYGEMM_KERNEL_VNNI(64); break; case 32: LAUNCH_TINYGEMM_KERNEL_VNNI(32); break; default: fprintf(stderr, "Unexpected n block size!\n"); } } }); }); return; } // handle 4 tiles at a tile constexpr int BLOCK_M = TILE_M * 2; constexpr int BLOCK_N = TILE_N * 2; const int MB = div_up(M, BLOCK_M); const int NB = div_up(N, BLOCK_N); parallel_for(n_threads, MB * NB, [&](int begin, int end) { // init tile config for each thread ggml_tile_config_init(); GGML_DISPATCH_QTYPES(TYPE, [&] { const int KB = K / blck_size; const int TILE_SIZE = get_tile_size(); const int row_size_A = KB * sizeof(vec_dot_type); for (int i = begin; i < end; ++i) { int mb = i / NB; int nb = i % NB; int mb_start = mb * BLOCK_M; int mb_size = std::min(BLOCK_M, M - mb_start); int nb_start = nb * BLOCK_N; int nb_size = BLOCK_N; tinygemm_kernel_amx( mb_size, nb_size, KB, (const char *)wdata + mb_start * row_size_A, (const char *)src0->data + PACKED_INDEX(nb * 2, 0, KB, TILE_SIZE), (float *) dst->data + mb_start * N + nb_start, ldc); } }); }); } #else // if defined(__AMX_INT8__) void ggml_backend_amx_mul_mat(ggml_backend_amx_context * ctx, struct ggml_tensor * dst) { fprintf(stderr, "GGML is not compiled with AMX support!\n"); GGML_UNUSED(ctx); GGML_UNUSED(dst); } #endif // if defined(__AMX_INT8__)