#include "common.h" #include "llama.h" #include #include #include int main(int argc, char ** argv) { gpt_params params; params.seed = 42; params.n_threads = 4; params.repeat_last_n = 64; params.prompt = "The quick brown fox"; if (!gpt_params_parse(argc, argv, params)) { return 1; } print_build_info(); if (params.n_predict < 0) { params.n_predict = 16; } auto lparams = llama_context_default_params(); lparams.n_ctx = params.n_ctx; lparams.seed = params.seed; lparams.f16_kv = params.memory_f16; lparams.use_mmap = params.use_mmap; lparams.use_mlock = params.use_mlock; auto n_past = 0; auto last_n_tokens_data = std::vector(params.repeat_last_n, 0); // init auto * model = llama_load_model_from_file(params.model.c_str(), lparams); if (model == nullptr) { return 1; } auto * ctx = llama_new_context_with_model(model, lparams); if (ctx == nullptr) { llama_free_model(model); return 1; } auto tokens = llama_tokenize(ctx, params.prompt, true); auto n_prompt_tokens = tokens.size(); if (n_prompt_tokens < 1) { fprintf(stderr, "%s : failed to tokenize prompt\n", __func__); llama_free(ctx); llama_free_model(model); return 1; } // evaluate prompt llama_decode(ctx, llama_batch_get_one(tokens.data(), n_prompt_tokens, n_past, 0), params.n_threads); last_n_tokens_data.insert(last_n_tokens_data.end(), tokens.data(), tokens.data() + n_prompt_tokens); n_past += n_prompt_tokens; const size_t state_size = llama_get_state_size(ctx); uint8_t * state_mem = new uint8_t[state_size]; // Save state (rng, logits, embedding and kv_cache) to file { FILE *fp_write = fopen("dump_state.bin", "wb"); llama_copy_state_data(ctx, state_mem); // could also copy directly to memory mapped file fwrite(state_mem, 1, state_size, fp_write); fclose(fp_write); } // save state (last tokens) const auto last_n_tokens_data_saved = std::vector(last_n_tokens_data); const auto n_past_saved = n_past; // first run printf("\n%s", params.prompt.c_str()); for (auto i = 0; i < params.n_predict; i++) { auto * logits = llama_get_logits(ctx); auto n_vocab = llama_n_vocab(ctx); std::vector candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < n_vocab; token_id++) { candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); } llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; auto next_token = llama_sample_token(ctx, &candidates_p); auto next_token_str = llama_token_to_piece(ctx, next_token); last_n_tokens_data.push_back(next_token); printf("%s", next_token_str.c_str()); if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0), params.n_threads)) { fprintf(stderr, "\n%s : failed to evaluate\n", __func__); llama_free(ctx); llama_free_model(model); return 1; } n_past += 1; } printf("\n\n"); // free old context llama_free(ctx); // make new context auto * ctx2 = llama_new_context_with_model(model, lparams); // Load state (rng, logits, embedding and kv_cache) from file { FILE *fp_read = fopen("dump_state.bin", "rb"); if (state_size != llama_get_state_size(ctx2)) { fprintf(stderr, "\n%s : failed to validate state size\n", __func__); llama_free(ctx2); llama_free_model(model); return 1; } const size_t ret = fread(state_mem, 1, state_size, fp_read); if (ret != state_size) { fprintf(stderr, "\n%s : failed to read state\n", __func__); llama_free(ctx2); llama_free_model(model); return 1; } llama_set_state_data(ctx2, state_mem); // could also read directly from memory mapped file fclose(fp_read); } delete[] state_mem; // restore state (last tokens) last_n_tokens_data = last_n_tokens_data_saved; n_past = n_past_saved; // second run for (auto i = 0; i < params.n_predict; i++) { auto * logits = llama_get_logits(ctx2); auto n_vocab = llama_n_vocab(ctx2); std::vector candidates; candidates.reserve(n_vocab); for (llama_token token_id = 0; token_id < n_vocab; token_id++) { candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); } llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; auto next_token = llama_sample_token(ctx2, &candidates_p); auto next_token_str = llama_token_to_piece(ctx2, next_token); last_n_tokens_data.push_back(next_token); printf("%s", next_token_str.c_str()); if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0), params.n_threads)) { fprintf(stderr, "\n%s : failed to evaluate\n", __func__); llama_free(ctx2); llama_free_model(model); return 1; } n_past += 1; } printf("\n\n"); llama_free(ctx2); llama_free_model(model); return 0; }