from __future__ import annotations from abc import ABC, abstractmethod from typing import Any, Callable, Sequence from numpy.typing import DTypeLike from .constants import GGML_QUANT_SIZES, GGMLQuantizationType, QK_K from .lazy import LazyNumpyTensor import numpy as np def quant_shape_to_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType) -> tuple[int, ...]: block_size, type_size = GGML_QUANT_SIZES[quant_type] if shape[-1] % block_size != 0: raise ValueError(f"Quantized tensor row size ({shape[-1]}) is not a multiple of {quant_type.name} block size ({block_size})") return (*shape[:-1], shape[-1] // block_size * type_size) def quant_shape_from_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType) -> tuple[int, ...]: block_size, type_size = GGML_QUANT_SIZES[quant_type] if shape[-1] % type_size != 0: raise ValueError(f"Quantized tensor bytes per row ({shape[-1]}) is not a multiple of {quant_type.name} type size ({type_size})") return (*shape[:-1], shape[-1] // type_size * block_size) # This is faster than np.vectorize and np.apply_along_axis because it works on more than one row at a time def _apply_over_grouped_rows(func: Callable[[np.ndarray], np.ndarray], arr: np.ndarray, otype: DTypeLike, oshape: tuple[int, ...]) -> np.ndarray: rows = arr.reshape((-1, arr.shape[-1])) osize = 1 for dim in oshape: osize *= dim out = np.empty(shape=osize, dtype=otype) # compute over groups of 16 rows (arbitrary, but seems good for performance) n_groups = (rows.shape[0] // 16) or 1 np.concatenate([func(group).ravel() for group in np.array_split(rows, n_groups)], axis=0, out=out) return out.reshape(oshape) # round away from zero # ref: https://stackoverflow.com/a/59143326/22827863 def np_roundf(n: np.ndarray) -> np.ndarray: a = abs(n) floored = np.floor(a) b = floored + np.floor(2 * (a - floored)) return np.sign(n) * b class QuantError(Exception): ... _type_traits: dict[GGMLQuantizationType, type[__Quant]] = {} def quantize(data: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray: if qtype == GGMLQuantizationType.F32: return data.astype(np.float32, copy=False) elif qtype == GGMLQuantizationType.F16: return data.astype(np.float16, copy=False) elif (q := _type_traits.get(qtype)) is not None: return q.quantize(data) else: raise NotImplementedError(f"Quantization for {qtype.name} is not yet implemented") def dequantize(data: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray: if qtype == GGMLQuantizationType.F32: return data.view(np.float32) elif qtype == GGMLQuantizationType.F16: return data.view(np.float16).astype(np.float32) elif (q := _type_traits.get(qtype)) is not None: return q.dequantize(data) else: raise NotImplementedError(f"Dequantization for {qtype.name} is not yet implemented") class __Quant(ABC): qtype: GGMLQuantizationType block_size: int type_size: int def __init__(self): return TypeError("Quant conversion classes can't have instances") def __init_subclass__(cls, qtype: GGMLQuantizationType) -> None: cls.qtype = qtype cls.block_size, cls.type_size = GGML_QUANT_SIZES[qtype] cls.__quantize_lazy = LazyNumpyTensor._wrap_fn( cls.__quantize_array, meta_noop=(np.uint8, cls.__shape_to_bytes) ) cls.__dequantize_lazy = LazyNumpyTensor._wrap_fn( cls.__dequantize_array, meta_noop=(np.float32, cls.__shape_from_bytes) ) assert qtype not in _type_traits _type_traits[qtype] = cls @classmethod @abstractmethod def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: raise NotImplementedError @classmethod @abstractmethod def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: raise NotImplementedError @classmethod def quantize_rows(cls, rows: np.ndarray) -> np.ndarray: rows = rows.astype(np.float32, copy=False) shape = rows.shape n_blocks = rows.size // cls.block_size blocks = rows.reshape((n_blocks, cls.block_size)) blocks = cls.quantize_blocks(blocks) assert blocks.dtype == np.uint8 assert blocks.shape[-1] == cls.type_size return blocks.reshape(cls.__shape_to_bytes(shape)) @classmethod def dequantize_rows(cls, rows: np.ndarray) -> np.ndarray: rows = rows.view(np.uint8) shape = rows.shape n_blocks = rows.size // cls.type_size blocks = rows.reshape((n_blocks, cls.type_size)) blocks = cls.dequantize_blocks(blocks) assert blocks.dtype == np.float32 assert blocks.shape[-1] == cls.block_size return blocks.reshape(cls.__shape_from_bytes(shape)) @classmethod def __shape_to_bytes(cls, shape: Sequence[int]): return quant_shape_to_byte_shape(shape, cls.qtype) @classmethod def __shape_from_bytes(cls, shape: Sequence[int]): return quant_shape_from_byte_shape(shape, cls.qtype) @classmethod def __quantize_array(cls, array: np.ndarray) -> np.ndarray: return _apply_over_grouped_rows(cls.quantize_rows, arr=array, otype=np.uint8, oshape=cls.__shape_to_bytes(array.shape)) @classmethod def __dequantize_array(cls, array: np.ndarray) -> np.ndarray: return _apply_over_grouped_rows(cls.dequantize_rows, arr=array, otype=np.float32, oshape=cls.__shape_from_bytes(array.shape)) @classmethod def __quantize_lazy(cls, lazy_tensor: LazyNumpyTensor, /) -> Any: pass @classmethod def __dequantize_lazy(cls, lazy_tensor: LazyNumpyTensor, /) -> Any: pass @classmethod def can_quantize(cls, tensor: np.ndarray | LazyNumpyTensor) -> bool: return tensor.shape[-1] % cls.block_size == 0 @classmethod def quantize(cls, tensor: np.ndarray | LazyNumpyTensor) -> np.ndarray: if not cls.can_quantize(tensor): raise QuantError(f"Can't quantize tensor with shape {tensor.shape} to {cls.qtype.name}") if isinstance(tensor, LazyNumpyTensor): return cls.__quantize_lazy(tensor) else: return cls.__quantize_array(tensor) @classmethod def dequantize(cls, tensor: np.ndarray | LazyNumpyTensor) -> np.ndarray: if isinstance(tensor, LazyNumpyTensor): return cls.__dequantize_lazy(tensor) else: return cls.__dequantize_array(tensor) class BF16(__Quant, qtype=GGMLQuantizationType.BF16): @classmethod # same as ggml_compute_fp32_to_bf16 in ggml-impl.h def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: n = blocks.view(np.uint32) # force nan to quiet n = np.where((n & 0x7fffffff) > 0x7f800000, (n & np.uint32(0xffff0000)) | np.uint32(64 << 16), n) # round to nearest even n = (np.uint64(n) + (0x7fff + ((n >> 16) & 1))) >> 16 return n.astype(np.uint16).view(np.uint8) @classmethod def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: return (blocks.view(np.int16).astype(np.int32) << 16).view(np.float32) class Q4_0(__Quant, qtype=GGMLQuantizationType.Q4_0): @classmethod def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: n_blocks = blocks.shape[0] imax = abs(blocks).argmax(axis=-1, keepdims=True) max = np.take_along_axis(blocks, imax, axis=-1) d = max / -8 with np.errstate(divide="ignore"): id = np.where(d == 0, 0, 1 / d) # FIXME: Q4_0's reference rounding is cursed and depends on FMA qs = np.trunc((np.float64(blocks) * np.float64(id)) + np.float64(8.5), dtype=np.float32).astype(np.uint8).clip(0, 15) qs = qs.reshape((n_blocks, 2, cls.block_size // 2)) qs = qs[..., 0, :] | (qs[..., 1, :] << np.uint8(4)) d = d.astype(np.float16).view(np.uint8) return np.concatenate([d, qs], axis=-1) @classmethod def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: n_blocks = blocks.shape[0] d, qs = np.hsplit(blocks, [2]) d = d.view(np.float16).astype(np.float32) qs = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1)).astype(np.int8) - np.int8(8) return (d * qs.astype(np.float32)) class Q4_1(__Quant, qtype=GGMLQuantizationType.Q4_1): @classmethod def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: n_blocks = blocks.shape[0] max = blocks.max(axis=-1, keepdims=True) min = blocks.min(axis=-1, keepdims=True) d = (max - min) / 15 with np.errstate(divide="ignore"): id = np.where(d == 0, 0, 1 / d) qs = np.trunc((blocks - min) * id + np.float32(0.5), dtype=np.float32).astype(np.uint8).clip(0, 15) qs = qs.reshape((n_blocks, 2, cls.block_size // 2)) qs = qs[..., 0, :] | (qs[..., 1, :] << np.uint8(4)) d = d.astype(np.float16).view(np.uint8) m = min.astype(np.float16).view(np.uint8) return np.concatenate([d, m, qs], axis=-1) @classmethod def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: n_blocks = blocks.shape[0] d, rest = np.hsplit(blocks, [2]) m, qs = np.hsplit(rest, [2]) d = d.view(np.float16).astype(np.float32) m = m.view(np.float16).astype(np.float32) qs = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1)).astype(np.float32) return (d * qs) + m class Q5_0(__Quant, qtype=GGMLQuantizationType.Q5_0): @classmethod def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: n_blocks = blocks.shape[0] imax = abs(blocks).argmax(axis=-1, keepdims=True) max = np.take_along_axis(blocks, imax, axis=-1) d = max / -16 with np.errstate(divide="ignore"): id = np.where(d == 0, 0, 1 / d) # FIXME: Q5_0's reference rounding is cursed and depends on FMA q = np.trunc((np.float64(blocks) * np.float64(id)) + np.float64(16.5), dtype=np.float32).astype(np.uint8).clip(0, 31) qs = q.reshape((n_blocks, 2, cls.block_size // 2)) qs = (qs[..., 0, :] & np.uint8(0x0F)) | (qs[..., 1, :] << np.uint8(4)) qh = np.packbits(q.reshape((n_blocks, 1, 32)) >> np.uint8(4), axis=-1, bitorder="little").reshape(n_blocks, 4) d = d.astype(np.float16).view(np.uint8) return np.concatenate([d, qh, qs], axis=-1) @classmethod def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: n_blocks = blocks.shape[0] d, rest = np.hsplit(blocks, [2]) qh, qs = np.hsplit(rest, [4]) d = d.view(np.float16).astype(np.float32) qh = qh.view(np.uint32) qh = qh.reshape((n_blocks, 1)) >> np.array([i for i in range(32)], dtype=np.uint32).reshape((1, 32)) ql = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) qh = (qh & np.uint32(0x01)).astype(np.uint8) ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1)) qs = (ql | (qh << np.uint8(4))).astype(np.int8) - np.int8(16) return (d * qs.astype(np.float32)) class Q5_1(__Quant, qtype=GGMLQuantizationType.Q5_1): @classmethod def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: n_blocks = blocks.shape[0] max = blocks.max(axis=-1, keepdims=True) min = blocks.min(axis=-1, keepdims=True) d = (max - min) / 31 with np.errstate(divide="ignore"): id = np.where(d == 0, 0, 1 / d) q = np.trunc((blocks - min) * id + np.float32(0.5), dtype=np.float32).astype(np.uint8).clip(0, 31) qs = q.reshape((n_blocks, 2, cls.block_size // 2)) qs = (qs[..., 0, :] & np.uint8(0x0F)) | (qs[..., 1, :] << np.uint8(4)) qh = np.packbits(q.reshape((n_blocks, 1, 32)) >> np.uint8(4), axis=-1, bitorder="little").reshape(n_blocks, 4) d = d.astype(np.float16).view(np.uint8) m = min.astype(np.float16).view(np.uint8) return np.concatenate([d, m, qh, qs], axis=-1) @classmethod def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: n_blocks = blocks.shape[0] d, rest = np.hsplit(blocks, [2]) m, rest = np.hsplit(rest, [2]) qh, qs = np.hsplit(rest, [4]) d = d.view(np.float16).astype(np.float32) m = m.view(np.float16).astype(np.float32) qh = qh.view(np.uint32) qh = qh.reshape((n_blocks, 1)) >> np.array([i for i in range(32)], dtype=np.uint32).reshape((1, 32)) ql = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) qh = (qh & np.uint32(0x01)).astype(np.uint8) ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1)) qs = (ql | (qh << np.uint8(4))).astype(np.float32) return (d * qs) + m class Q8_0(__Quant, qtype=GGMLQuantizationType.Q8_0): @classmethod # Implementation of Q8_0 with bit-exact same results as reference implementation in ggml-quants.c def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: d = abs(blocks).max(axis=1, keepdims=True) / 127 with np.errstate(divide="ignore"): id = np.where(d == 0, 0, 1 / d) qs = np_roundf(blocks * id) # (n_blocks, 2) d = d.astype(np.float16).view(np.uint8) # (n_blocks, block_size) qs = qs.astype(np.int8).view(np.uint8) return np.concatenate([d, qs], axis=1) @classmethod def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: d, x = np.split(blocks, [2], axis=1) d = d.view(np.float16).astype(np.float32) x = x.view(np.int8).astype(np.float32) return (x * d) class Q2_K(__Quant, qtype=GGMLQuantizationType.Q2_K): @classmethod def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: n_blocks = blocks.shape[0] scales, rest = np.hsplit(blocks, [QK_K // 16]) qs, rest = np.hsplit(rest, [QK_K // 4]) d, dmin = np.hsplit(rest, [2]) d = d.view(np.float16).astype(np.float32) dmin = dmin.view(np.float16).astype(np.float32) # (n_blocks, 16, 1) dl = (d * (scales & 0xF).astype(np.float32)).reshape((n_blocks, QK_K // 16, 1)) ml = (dmin * (scales >> 4).astype(np.float32)).reshape((n_blocks, QK_K // 16, 1)) shift = np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1)) qs = (qs.reshape((n_blocks, -1, 1, 32)) >> shift) & np.uint8(3) qs = qs.reshape((n_blocks, QK_K // 16, 16)).astype(np.float32) qs = dl * qs - ml return qs.reshape((n_blocks, -1)) class Q3_K(__Quant, qtype=GGMLQuantizationType.Q3_K): @classmethod def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: n_blocks = blocks.shape[0] hmask, rest = np.hsplit(blocks, [QK_K // 8]) qs, rest = np.hsplit(rest, [QK_K // 4]) scales, d = np.hsplit(rest, [12]) d = d.view(np.float16).astype(np.float32) # The scales are packed at 6-bit each in this pattern: # 0: IIIIAAAA # 1: JJJJBBBB # 2: KKKKCCCC # 3: LLLLDDDD # 4: MMMMEEEE # 5: NNNNFFFF # 6: OOOOGGGG # 7: PPPPHHHH # 8: MMIIEEAA # 9: NNJJFFBB # 10: OOKKGGCC # 11: PPLLHHDD lscales, hscales = np.hsplit(scales, [8]) lscales = lscales.reshape((n_blocks, 1, 8)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 2, 1)) lscales = lscales.reshape((n_blocks, 16)) hscales = hscales.reshape((n_blocks, 1, 4)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 4, 1)) hscales = hscales.reshape((n_blocks, 16)) scales = (lscales & np.uint8(0x0F)) | ((hscales & np.uint8(0x03)) << np.uint8(4)) scales = (scales.astype(np.int8) - np.int8(32)).astype(np.float32) dl = (d * scales).reshape((n_blocks, 16, 1)) ql = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1)) qh = hmask.reshape(n_blocks, -1, 1, 32) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8, 1)) ql = ql.reshape((n_blocks, 16, QK_K // 16)) & np.uint8(3) qh = (qh.reshape((n_blocks, 16, QK_K // 16)) & np.uint8(1)) qh = qh ^ np.uint8(1) # strangely, the offset is zero when the bitmask is 1 q = (ql.astype(np.int8) - (qh << np.uint8(2)).astype(np.int8)).astype(np.float32) return (dl * q).reshape((n_blocks, QK_K)) class Q4_K(__Quant, qtype=GGMLQuantizationType.Q4_K): K_SCALE_SIZE = 12 @staticmethod def get_scale_min(scales: np.ndarray) -> tuple[np.ndarray, np.ndarray]: n_blocks = scales.shape[0] scales = scales.view(np.uint8) ### Unpacking the following: ### # 0 EEAAAAAA # 1 FFBBBBBB # 2 GGCCCCCC # 3 HHDDDDDD # 4 eeaaaaaa # 5 ffbbbbbb # 6 ggcccccc # 7 hhdddddd # 8 eeeeEEEE # 9 ffffFFFF # 10 ggggGGGG # 11 hhhhHHHH scales = scales.reshape((n_blocks, 3, 4)) d, m, m_d = np.split(scales, 3, axis=-2) sc = np.concatenate([d & 0x3F, (m_d & 0x0F) | ((d >> 2) & 0x30)], axis=-1) min = np.concatenate([m & 0x3F, (m_d >> 4) | ((m >> 2) & 0x30)], axis=-1) return (sc.reshape((n_blocks, 8)), min.reshape((n_blocks, 8))) @classmethod def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: n_blocks = blocks.shape[0] d, rest = np.hsplit(blocks, [2]) dmin, rest = np.hsplit(rest, [2]) scales, qs = np.hsplit(rest, [cls.K_SCALE_SIZE]) d = d.view(np.float16).astype(np.float32) dmin = dmin.view(np.float16).astype(np.float32) sc, m = Q4_K.get_scale_min(scales) d = (d * sc.astype(np.float32)).reshape((n_blocks, -1, 1)) dm = (dmin * m.astype(np.float32)).reshape((n_blocks, -1, 1)) qs = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1, 32)).astype(np.float32) return (d * qs - dm).reshape((n_blocks, QK_K)) class Q5_K(__Quant, qtype=GGMLQuantizationType.Q5_K): @classmethod def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: n_blocks = blocks.shape[0] d, rest = np.hsplit(blocks, [2]) dmin, rest = np.hsplit(rest, [2]) scales, rest = np.hsplit(rest, [Q4_K.K_SCALE_SIZE]) qh, qs = np.hsplit(rest, [QK_K // 8]) d = d.view(np.float16).astype(np.float32) dmin = dmin.view(np.float16).astype(np.float32) sc, m = Q4_K.get_scale_min(scales) d = (d * sc.astype(np.float32)).reshape((n_blocks, -1, 1)) dm = (dmin * m.astype(np.float32)).reshape((n_blocks, -1, 1)) ql = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) qh = qh.reshape((n_blocks, -1, 1, 32)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8, 1)) ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1, 32)) qh = (qh & np.uint8(0x01)).reshape((n_blocks, -1, 32)) q = (ql | (qh << np.uint8(4))).astype(np.float32) return (d * q - dm).reshape((n_blocks, QK_K)) class Q6_K(__Quant, qtype=GGMLQuantizationType.Q6_K): @classmethod def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: n_blocks = blocks.shape[0] ql, rest = np.hsplit(blocks, [QK_K // 2]) qh, rest = np.hsplit(rest, [QK_K // 4]) scales, d = np.hsplit(rest, [QK_K // 16]) scales = scales.view(np.int8).astype(np.float32) d = d.view(np.float16).astype(np.float32) d = (d * scales).reshape((n_blocks, QK_K // 16, 1)) ql = ql.reshape((n_blocks, -1, 1, 64)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1, 32)) qh = qh.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1)) qh = (qh & np.uint8(0x03)).reshape((n_blocks, -1, 32)) q = (ql | (qh << np.uint8(4))).astype(np.int8) - np.int8(32) q = q.reshape((n_blocks, QK_K // 16, -1)).astype(np.float32) return (d * q).reshape((n_blocks, QK_K)) class IQ4_NL(__Quant, qtype=GGMLQuantizationType.IQ4_NL): QK4_NL = 32 kvalues = (-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113) @classmethod def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: n_blocks = blocks.shape[0] d, qs = np.hsplit(blocks, [2]) d = d.view(np.float16).astype(np.float32) qs = qs.reshape((n_blocks, -1, 1, cls.QK4_NL // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1, 1)) kvalues = np.array(cls.kvalues, dtype=np.int8).reshape(1, 1, 16) qs = np.take_along_axis(kvalues, qs, axis=-1).astype(np.float32).reshape((n_blocks, -1)) return (d * qs) class IQ4_XS(__Quant, qtype=GGMLQuantizationType.IQ4_XS): @classmethod def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray: n_blocks = blocks.shape[0] d, rest = np.hsplit(blocks, [2]) scales_h, rest = np.hsplit(rest, [2]) scales_l, qs = np.hsplit(rest, [QK_K // 64]) d = d.view(np.float16).astype(np.float32) scales_h = scales_h.view(np.uint16) scales_l = scales_l.reshape((n_blocks, -1, 1)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2)) scales_h = scales_h.reshape((n_blocks, 1, -1)) >> np.array([2 * i for i in range(QK_K // 32)], dtype=np.uint16).reshape((1, -1, 1)) scales_l = scales_l.reshape((n_blocks, -1)) & np.uint8(0x0F) scales_h = scales_h.reshape((n_blocks, -1)).astype(np.uint8) & np.uint8(0x03) scales = (scales_l | (scales_h << np.uint8(4))).astype(np.int8) - np.int8(32) dl = (d * scales.astype(np.float32)).reshape((n_blocks, -1, 1)) qs = qs.reshape((n_blocks, -1, 1, 16)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1)) qs = qs.reshape((n_blocks, -1, 32, 1)) & np.uint8(0x0F) kvalues = np.array(IQ4_NL.kvalues, dtype=np.int8).reshape((1, 1, 1, -1)) qs = np.take_along_axis(kvalues, qs, axis=-1).astype(np.float32).reshape((n_blocks, -1, 32)) return (dl * qs).reshape((n_blocks, -1))