// Defines fileno on msys: #ifndef _GNU_SOURCE #define _GNU_SOURCE #include #include #include #endif #include "gguf-util.h" #include "gguf-llama.h" #include "ggml.h" #ifdef GGML_USE_CUBLAS #include "ggml-cuda.h" #elif defined(GGML_USE_CLBLAST) #include "ggml-opencl.h" #endif #ifdef GGML_USE_METAL #include "ggml-metal.h" #endif #ifdef GGML_USE_MPI #include "ggml-mpi.h" #endif #ifdef GGML_USE_K_QUANTS #ifndef QK_K #ifdef GGML_QKK_64 #define QK_K 64 #else #define QK_K 256 #endif #endif #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif #define LLAMA_USE_SCRATCH #define LLAMA_MAX_SCRATCH_BUFFERS 16 // available llama models enum e_model { MODEL_UNKNOWN, MODEL_3B, MODEL_7B, MODEL_13B, MODEL_30B, MODEL_65B, MODEL_70B, }; static const size_t kB = 1024; static const size_t MB = 1024*1024; // computed for n_ctx == 2048 // TODO: dynamically determine these sizes // needs modifications in ggml typedef void (*offload_func_t)(struct ggml_tensor * tensor); void llama_nop(struct ggml_tensor * tensor) { // don't offload by default (void) tensor; } // // ggml helpers // static void ggml_graph_compute_helper(std::vector & buf, ggml_cgraph * graph, int n_threads) { struct ggml_cplan plan = ggml_graph_plan(graph, n_threads); if (plan.work_size > 0) { buf.resize(plan.work_size); plan.work_data = buf.data(); } ggml_graph_compute(graph, &plan); } // // memory sizes (calculated for n_batch == 512) // static const std::map & MEM_REQ_SCRATCH0(int n_ctx) { static std::map k_sizes = { { MODEL_3B, ((size_t) n_ctx / 16ull + 92ull) * MB }, { MODEL_7B, ((size_t) n_ctx / 16ull + 100ull) * MB }, { MODEL_13B, ((size_t) n_ctx / 12ull + 120ull) * MB }, { MODEL_30B, ((size_t) n_ctx / 9ull + 160ull) * MB }, { MODEL_65B, ((size_t) n_ctx / 6ull + 256ull) * MB }, // guess { MODEL_70B, ((size_t) n_ctx / 7ull + 164ull) * MB }, }; return k_sizes; } static const std::map & MEM_REQ_SCRATCH1() { static std::map k_sizes = { { MODEL_3B, 128ull * MB }, { MODEL_7B, 160ull * MB }, { MODEL_13B, 192ull * MB }, { MODEL_30B, 256ull * MB }, { MODEL_65B, 384ull * MB }, // guess { MODEL_70B, 304ull * MB }, }; return k_sizes; } // used to store the compute graph tensors + non-scratch data static const std::map & MEM_REQ_EVAL() { static std::map k_sizes = { { MODEL_3B, 8ull * MB }, { MODEL_7B, 10ull * MB }, { MODEL_13B, 12ull * MB }, { MODEL_30B, 16ull * MB }, { MODEL_65B, 24ull * MB }, // guess { MODEL_70B, 24ull * MB }, }; return k_sizes; } // amount of VRAM needed per batch size to hold temporary results // the values for 3b and 65b are not derived from testing but instead chosen conservatively static const std::map & VRAM_REQ_SCRATCH_BASE() { static std::map k_sizes = { { MODEL_3B, 512ull * kB }, { MODEL_7B, 512ull * kB }, { MODEL_13B, 640ull * kB }, { MODEL_30B, 768ull * kB }, { MODEL_65B, 1536ull * kB }, { MODEL_70B, 1536ull * kB }, // TODO (likely can be reduced) }; return k_sizes; } // amount of VRAM needed per batch size and context to hold temporary results // the values for 3b and 65b are not derived from testing but instead chosen conservatively static const std::map & VRAM_REQ_SCRATCH_PER_CONTEXT() { static std::map k_sizes = { { MODEL_3B, 128ull }, { MODEL_7B, 128ull }, { MODEL_13B, 160ull }, { MODEL_30B, 208ull }, { MODEL_65B, 416ull }, { MODEL_70B, 416ull }, // TODO (likely can be reduced) }; return k_sizes; } // default hparams (LLaMA 7B) struct llama_hparams { uint32_t n_vocab = 32000; uint32_t n_ctx = 512; // this is provided as user input? uint32_t n_embd = 4096; uint32_t n_mult = 256; uint32_t n_head = 32; uint32_t n_head_kv = 32; uint32_t n_layer = 32; uint32_t n_rot = 64; // LLaMAv2 // TODO: load from model data hparams float f_ffn_mult = 1.0f; float f_rms_norm_eps = LLAMA_DEFAULT_RMS_EPS; float rope_freq_base = 10000.0f; float rope_freq_scale = 1.0f; enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16; bool operator!=(const llama_hparams & other) const { return static_cast(memcmp(this, &other, sizeof(llama_hparams))); // NOLINT } uint32_t n_gqa() const { return n_head/n_head_kv; } uint32_t n_embd_head() const { return n_embd/n_head; } uint32_t n_embd_gqa() const { return n_embd/n_gqa(); } size_t kv_size() const { size_t result = 2ull; result *= (size_t) n_embd_gqa(); result *= (size_t) n_ctx; result *= (size_t) n_layer; result *= sizeof(ggml_fp16_t); return result; } }; struct llama_layer { // normalization struct ggml_tensor * attention_norm; // attention struct ggml_tensor * wq; struct ggml_tensor * wk; struct ggml_tensor * wv; struct ggml_tensor * wo; // normalization struct ggml_tensor * ffn_norm; // ff struct ggml_tensor * w1; struct ggml_tensor * w2; struct ggml_tensor * w3; }; struct llama_kv_cache { struct ggml_tensor * k = NULL; struct ggml_tensor * v = NULL; struct ggml_context * ctx = NULL; gguf_ctx_buffer buf; int n; // number of tokens currently in the cache ~llama_kv_cache() { if (ctx) { ggml_free(ctx); } #ifdef GGML_USE_CUBLAS ggml_cuda_free_data(k); ggml_cuda_free_data(v); #endif // GGML_USE_CUBLAS } }; struct llama_vocab { using id = int32_t; using token = std::string; struct token_score { token tok; float score; }; std::unordered_map token_to_id; std::vector id_to_token; }; struct llama_model { e_model type = MODEL_UNKNOWN; llama_hparams hparams; struct ggml_tensor * tok_embeddings; struct ggml_tensor * norm; struct ggml_tensor * output; std::vector layers; int n_gpu_layers; // context struct ggml_context * ctx = NULL; // the model memory buffer gguf_ctx_buffer buf; // model memory mapped file std::unique_ptr mapping; // objects representing data potentially being locked in memory gguf_mlock mlock_buf; gguf_mlock mlock_mmap; // for quantize-stats only std::vector> tensors_by_name; int64_t t_load_us = 0; int64_t t_start_us = 0; llama_vocab vocab; ~llama_model() { if (ctx) { ggml_free(ctx); } #ifdef GGML_USE_CUBLAS for (size_t i = 0; i < tensors_by_name.size(); ++i) { ggml_cuda_free_data(tensors_by_name[i].second); } ggml_cuda_free_scratch(); #elif defined(GGML_USE_CLBLAST) for (size_t i = 0; i < tensors_by_name.size(); ++i) { ggml_cl_free_data(tensors_by_name[i].second); } #endif } }; struct llama_context { llama_context(const llama_model & model) : model(model), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {} #ifdef GGML_USE_METAL ~llama_context() { if (ctx_metal) { ggml_metal_free(ctx_metal); } } #endif std::mt19937 rng; bool has_evaluated_once = false; int64_t t_sample_us = 0; int64_t t_eval_us = 0; int64_t t_p_eval_us = 0; int32_t n_sample = 0; // number of tokens sampled int32_t n_eval = 0; // number of eval calls int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1) const llama_model & model; bool model_owner = false; int64_t t_load_us; int64_t t_start_us; // key + value cache for the self attention struct llama_kv_cache kv_self; size_t mem_per_token = 0; // decode output (2-dimensional array: [n_tokens][n_vocab]) std::vector logits; bool logits_all = false; // input embedding (1-dimensional array: [n_embd]) std::vector embedding; // reusable buffer for `struct ggml_graph_plan.work_data` std::vector work_buffer; // memory buffers used to evaluate the model // TODO: move in llama_state gguf_ctx_buffer buf_compute; gguf_ctx_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS]; #ifdef GGML_USE_METAL ggml_metal_context * ctx_metal = NULL; #endif #ifdef GGML_USE_MPI ggml_mpi_context * ctx_mpi = NULL; #endif int buf_last = 0; size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 }; void use_buf(struct ggml_context * ctx, int i) { #if defined(LLAMA_USE_SCRATCH) size_t last_size = 0; if (i == -1) { last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, }); } else { auto & buf = buf_scratch[i]; last_size = ggml_set_scratch(ctx, { 0, buf.size, buf.addr, }); } if (buf_last >= 0) { buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size); } buf_last = i; #else (void) i; (void) ctx; #endif } size_t get_buf_max_mem(int i) const { #if defined(LLAMA_USE_SCRATCH) return buf_max_size[i]; #else (void) i; return 0; #endif } }; template static T checked_mul(T a, T b) { T ret = a * b; if (a != 0 && ret / a != b) { throw std::runtime_error(format("overflow multiplying %llu * %llu", (unsigned long long) a, (unsigned long long) b)); } return ret; } static size_t checked_div(size_t a, size_t b) { if (b == 0 || a % b != 0) { throw std::runtime_error(format("error dividing %zu / %zu", a, b)); } return a / b; } static std::string llama_format_tensor_shape(const std::vector & ne) { char buf[256]; snprintf(buf, sizeof(buf), "%5u", ne.at(0)); for (size_t i = 1; i < ne.size(); i++) { snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i)); } return buf; } static size_t llama_calc_tensor_size(const std::vector & ne, enum ggml_type type) { size_t size = ggml_type_size(type); for (uint32_t dim : ne) { size = checked_mul(size, dim); } return size / ggml_blck_size(type); } struct llama_load_tensor { std::string name; enum ggml_type type = GGML_TYPE_F32; std::vector ne; size_t file_off; size_t size; struct ggml_tensor * ggml_tensor = NULL; uint8_t * data; }; struct llama_load_tensors_map { // tensors is kept in a separate vector to preserve file order std::vector tensors; std::unordered_map name_to_idx; }; enum gguf_file_version { GGUF_FILE_VERSION_V1 }; struct gguf_file_loader { gguf_file file; gguf_context * gguf_ctx; gguf_file_version file_version; llama_hparams hparams; llama_vocab vocab; struct ggml_context * ctx_data = NULL; gguf_file_loader(const char * fname, llama_load_tensors_map & tensors_map) : file(fname, "rb") { fprintf(stderr, "llama.cpp: loading model from %s\n", fname); struct gguf_init_params params = { /*.no_alloc = */ true, /*.ctx = */ &ctx_data, }; gguf_ctx = gguf_init_from_file(fname, params); read_hparams(); read_vocab(); read_tensor_metadata(tensors_map); } uint32_t read_u32(const char * key) { int i = gguf_find_key(gguf_ctx, key); if (i == -1) { throw std::runtime_error(format("cannot find param with key %s\n", key)); } return gguf_get_val_u32(gguf_ctx, i); } int read_n_vocab() { int i = gguf_find_key(gguf_ctx, "tokenizer.ggml.tokens"); if (i == -1) { throw std::runtime_error("cannot find token list in GGUF file\n"); } return gguf_get_arr_n(gguf_ctx, i); } int find_n_mult(const int n_ff, const int n_embd) { int n_mults[3] = {8192, 1, -1}; for (int i = 0; i < 3; ++i) { int calc_ff = (((8 * n_embd) / 3 + n_mults[i] - 1) / n_mults[i]) * n_mults[i]; if (calc_ff == n_ff) { return n_mults[i]; } } throw std::runtime_error(format("failed to find n_mult for n_ff = %d and n_embd = %d\n", n_ff, n_embd)); } void read_hparams() { // TODO make keysconstants in header // TODO: read all hparams from file hparams.n_vocab = read_n_vocab(); hparams.n_ctx = read_u32("llama.context_length"); hparams.n_embd = read_u32("llama.embedding_length"); uint32_t n_ff = read_u32("llama.feed_forward_length"); GGML_UNUSED(n_ff); //hparams.n_mult = find_n_mult(n_ff, hparams.n_embd); hparams.n_head = read_u32("llama.attention.head_count"); hparams.n_layer = read_u32("llama.layer_count"); hparams.n_rot = hparams.n_embd / hparams.n_head; //hparams.ftype = (enum llama_ftype) file.read_u32(); // LLaMAv2 // hparams.n_head_kv = read_u32("llama.attention.head_count_kv"); } void read_vocab() { vocab.id_to_token.resize(hparams.n_vocab); int token_idx = gguf_find_key(gguf_ctx, "tokenizer.ggml.tokens"); if (token_idx == -1) { throw std::runtime_error("cannot find token list in GGUF file\n"); } int score_idx = gguf_find_key(gguf_ctx, "tokenizer.ggml.scores"); if (score_idx == -1) { throw std::runtime_error("cannot find token scores list in GGUF file\n"); } for (uint32_t i = 0; i < hparams.n_vocab; i++) { std::string word = gguf_get_arr_str(gguf_ctx, token_idx, i); vocab.token_to_id[word] = i; auto & tok_score = vocab.id_to_token[i]; tok_score.tok = std::move(word); tok_score.score = gguf_get_arr_f32(gguf_ctx, score_idx, i); } } void read_tensor_metadata(llama_load_tensors_map & tensors_map) { const int n_tensors = gguf_get_n_tensors(gguf_ctx); for (int i = 0; i < n_tensors; ++i) { llama_load_tensor tensor; const char * name = gguf_get_tensor_name(gguf_ctx, i); struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name); uint32_t n_dims = cur->n_dims; tensor.type = cur->type; tensor.ne.resize(n_dims); for (uint32_t j = 0; j < n_dims; ++j) { tensor.ne[j] = cur->ne[j]; } if (n_dims < 1 || n_dims > 2) { throw std::runtime_error(format("llama.cpp: tensor '%s' should not be %u-dimensional", name, n_dims)); } switch (tensor.type) { case GGML_TYPE_F32: case GGML_TYPE_F16: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: break; default: { throw std::runtime_error(format("unrecognized tensor type %u\n", tensor.type)); } } tensor.file_off = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, i); tensor.name = name; tensor.size = llama_calc_tensor_size(tensor.ne, tensor.type); tensors_map.tensors.push_back(tensor); tensors_map.name_to_idx[name] = tensors_map.tensors.size() - 1; } } }; struct gguf_file_saver { gguf_file file; gguf_file_loader * any_file_loader; gguf_file_saver(const char * fname, gguf_file_loader * any_file_loader, enum llama_ftype new_ftype) : file(fname, "wb"), any_file_loader(any_file_loader) { fprintf(stderr, "llama.cpp: saving model to %s\n", fname); write_header(); write_hparams(new_ftype); write_vocab(); } // TODO: probably it's better to move these to gguf_file void write_header() { const int32_t magic = GGUF_MAGIC; file.write_i32(magic); const int32_t version = GGUF_VERSION; file.write_i32(version); const int32_t n_tensors = gguf_get_n_tensors(any_file_loader->gguf_ctx); file.write_i32(n_tensors); const int32_t n_kv = gguf_get_n_kv(any_file_loader->gguf_ctx); file.write_i32(n_kv); } void write_hparam_arr_str(const std::string & key, enum gguf_type type, int i, int n_arr) { std::vector data(n_arr); for (int j = 0; j < n_arr; ++j) { std::string val = gguf_get_arr_str(any_file_loader->gguf_ctx, i, j); data[j] = val; } file.write_arr(key, type, data); } void write_hparam_arr_f32(const std::string & key, enum gguf_type type, int i, int n_arr) { std::vector data(n_arr); for (int j = 0; j < n_arr; ++j) { float val = gguf_get_arr_f32(any_file_loader->gguf_ctx, i, j); data[j] = val; } file.write_arr(key, type, data); } void write_hparams(enum llama_ftype new_ftype) { const int32_t n_kv = gguf_get_n_kv(any_file_loader->gguf_ctx); for (int i = 0; i < n_kv; ++i) { const char * key = gguf_get_key(any_file_loader->gguf_ctx, i); if (strcmp(key, "general.quantization_version") == 0) { file.write_val("general.quantization_version", GGUF_TYPE_UINT32, new_ftype); } else { const gguf_type vtype = gguf_get_kv_type(any_file_loader->gguf_ctx, i); bool bool_val; float f32_val; int16_t i16_val; int32_t i32_val; int8_t i8_val; std::string str_val; uint16_t u16_val; uint32_t u32_val; uint8_t u8_val; gguf_type arr_type; int n_arr; switch(vtype) { case GGUF_TYPE_BOOL: bool_val = gguf_get_val_bool(any_file_loader->gguf_ctx, i); file.write_val(key, GGUF_TYPE_BOOL, bool_val); break; case GGUF_TYPE_FLOAT32: f32_val = gguf_get_val_f32(any_file_loader->gguf_ctx, i); file.write_val(key, GGUF_TYPE_FLOAT32, f32_val); break; case GGUF_TYPE_INT16: i16_val = gguf_get_val_i16(any_file_loader->gguf_ctx, i); file.write_val(key, GGUF_TYPE_INT16, i16_val); break; case GGUF_TYPE_INT32: i32_val = gguf_get_val_i32(any_file_loader->gguf_ctx, i); file.write_val(key, GGUF_TYPE_INT32, i32_val); break; case GGUF_TYPE_INT8: i8_val = gguf_get_val_i8(any_file_loader->gguf_ctx, i); file.write_val(key, GGUF_TYPE_INT8, i8_val); break; case GGUF_TYPE_STRING: str_val = gguf_get_val_str(any_file_loader->gguf_ctx, i); file.write_val(key, GGUF_TYPE_STRING, str_val); break; case GGUF_TYPE_UINT16: u16_val = gguf_get_val_u16(any_file_loader->gguf_ctx, i); file.write_val(key, GGUF_TYPE_UINT16, u16_val); break; case GGUF_TYPE_UINT32: u32_val = gguf_get_val_u32(any_file_loader->gguf_ctx, i); file.write_val(key, GGUF_TYPE_UINT32, u32_val); break; case GGUF_TYPE_UINT8: u8_val = gguf_get_val_u8(any_file_loader->gguf_ctx, i); file.write_val(key, GGUF_TYPE_UINT8, u8_val); break; case GGUF_TYPE_ARRAY: arr_type = gguf_get_arr_type(any_file_loader->gguf_ctx, i); n_arr = gguf_get_arr_n(any_file_loader->gguf_ctx, i); if (arr_type == GGUF_TYPE_FLOAT32) { write_hparam_arr_f32(key, arr_type, i, n_arr); } else if (arr_type == GGUF_TYPE_STRING) { write_hparam_arr_str(key, GGUF_TYPE_STRING, i, n_arr); } else { throw std::runtime_error("not implemented"); } break; default: throw std::runtime_error(format("cannot recognize value type for key %s\n", key)); } } } } void write_vocab() { uint32_t n_vocab = any_file_loader->hparams.n_vocab; GGML_UNUSED(n_vocab); } void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) { GGML_UNUSED(tensor); GGML_UNUSED(new_data); GGML_UNUSED(new_size); switch (new_type) { case GGML_TYPE_F32: case GGML_TYPE_F16: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: break; default: GGML_ASSERT(false); } } }; struct llama_model_loader { std::unique_ptr file_loader; llama_load_tensors_map tensors_map; bool use_mmap; size_t num_ggml_tensors_created = 0; struct ggml_context * ggml_ctx = NULL; std::unique_ptr mapping; llama_model_loader(const std::string & fname_base, bool use_mmap) { file_loader = std::unique_ptr(new gguf_file_loader(fname_base.c_str(), tensors_map)); if (!gguf_mmap::SUPPORTED) { use_mmap = false; } this->use_mmap = use_mmap; } void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const { *ctx_size_p = *mmapped_size_p = 0; for (const llama_load_tensor & lt : tensors_map.tensors) { *ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE; *(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size + 16; } } struct ggml_tensor * get_tensor(const std::string & name, const std::vector & ne, ggml_backend backend) { auto it = tensors_map.name_to_idx.find(name); if (it == tensors_map.name_to_idx.end()) { throw std::runtime_error(std::runtime_error(format("llama.cpp: tensor '%s' is missing from model", name.c_str()))); } llama_load_tensor & lt = tensors_map.tensors.at(it->second); if (lt.ne != ne) { throw std::runtime_error(format("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s", name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str())); } return get_tensor_for(lt, backend); } struct ggml_tensor * get_tensor_for(llama_load_tensor & lt, ggml_backend backend) { struct ggml_tensor * tensor; if (backend != GGML_BACKEND_CPU) { ggml_set_no_alloc(ggml_ctx, true); } if (lt.ne.size() == 2) { tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1)); } else { GGML_ASSERT(lt.ne.size() == 1); tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0)); } ggml_set_name(tensor, lt.name.c_str()); GGML_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor if (backend != GGML_BACKEND_CPU) { ggml_set_no_alloc(ggml_ctx, use_mmap); } tensor->backend = backend; lt.ggml_tensor = tensor; num_ggml_tensors_created++; return tensor; } void done_getting_tensors() const { if (num_ggml_tensors_created != tensors_map.tensors.size()) { throw std::runtime_error(std::string("llama.cpp: file contained more tensors than expected")); } } void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, gguf_mlock * lmlock) { size_t data_size = 0; size_t prefetch_size = 0; size_t lock_size = 0; for (const llama_load_tensor & lt : tensors_map.tensors) { data_size += lt.size; if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) { prefetch_size += lt.size; } } if (use_mmap) { mapping.reset(new gguf_mmap(&file_loader->file, prefetch_size, ggml_is_numa())); if (lmlock) { lmlock->init(mapping->addr); } } size_t done_size = 0; for (llama_load_tensor & lt : tensors_map.tensors) { if (progress_callback) { progress_callback((float) done_size / data_size, progress_callback_user_data); } GGML_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already lt.data = (uint8_t *) lt.ggml_tensor->data; // allocate temp buffer if not using mmap if (!use_mmap && lt.data == NULL) { GGML_ASSERT(lt.ggml_tensor->backend != GGML_BACKEND_CPU); lt.data = (uint8_t*)malloc(ggml_nbytes(lt.ggml_tensor)); } load_data_for(lt); switch(lt.ggml_tensor->backend) { case GGML_BACKEND_CPU: lt.ggml_tensor->data = lt.data; if (use_mmap && lmlock) { lock_size += lt.size; lmlock->grow_to(lock_size); } break; #if defined(GGML_USE_CUBLAS) case GGML_BACKEND_GPU: case GGML_BACKEND_GPU_SPLIT: ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor); if (!use_mmap) { free(lt.data); } break; #elif defined(GGML_USE_CLBLAST) case GGML_BACKEND_GPU: ggml_cl_transform_tensor(lt.data, lt.ggml_tensor); if (!use_mmap) { free(lt.data); } break; #endif default: continue; } done_size += lt.size; } } void load_data_for(llama_load_tensor & lt) { if (use_mmap) { lt.data = (uint8_t *) mapping->addr + lt.file_off; } else { gguf_file & file = file_loader->file; file.seek(lt.file_off, SEEK_SET); // TODO //file.read_raw(lt.data, lt.size); } if (0) { print_checksum(lt); } } static void print_checksum(llama_load_tensor & lt) { uint32_t sum = 0; for (size_t i = 0; i < lt.size; i++) { uint8_t byte = lt.data[i]; sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash } fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum, llama_format_tensor_shape(lt.ne).c_str(), lt.size); } }; // // kv cache // static bool kv_cache_init( const struct llama_hparams & hparams, struct llama_kv_cache & cache, ggml_type wtype, int n_ctx, int n_gpu_layers) { const int n_embd = hparams.n_embd_gqa(); const int n_layer = hparams.n_layer; const int64_t n_mem = n_layer*n_ctx; const int64_t n_elements = n_embd*n_mem; cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB); cache.n = 0; struct ggml_init_params params; params.mem_size = cache.buf.size; params.mem_buffer = cache.buf.addr; params.no_alloc = false; cache.ctx = ggml_init(params); if (!cache.ctx) { fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__); return false; } cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); ggml_set_name(cache.k, "cache_k"); ggml_set_name(cache.v, "cache_v"); (void) n_gpu_layers; #ifdef GGML_USE_CUBLAS if (n_gpu_layers > n_layer + 1) { ggml_cuda_assign_buffers_no_scratch(cache.v); } if (n_gpu_layers > n_layer + 2) { ggml_cuda_assign_buffers_no_scratch(cache.k); } #endif // GGML_USE_CUBLAS return true; } struct llama_context_params llama_context_default_params() { struct llama_context_params result = { /*.seed =*/ LLAMA_DEFAULT_SEED, /*.n_ctx =*/ 512, /*.n_batch =*/ 512, /*.n_gqa =*/ 1, /*.rms_norm_eps =*/ LLAMA_DEFAULT_RMS_EPS, /*.gpu_layers =*/ 0, /*.main_gpu =*/ 0, /*.tensor_split =*/ nullptr, /*.rope_freq_base =*/ 10000.0f, /*.rope_freq_scale =*/ 1.0f, /*.progress_callback =*/ nullptr, /*.progress_callback_user_data =*/ nullptr, /*.low_vram =*/ false, /*.f16_kv =*/ true, /*.logits_all =*/ false, /*.vocab_only =*/ false, /*.use_mmap =*/ true, /*.use_mlock =*/ false, /*.embedding =*/ false, }; return result; } struct llama_model_quantize_params llama_model_quantize_default_params() { struct llama_model_quantize_params result = { /*.nthread =*/ 0, /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1, /*.allow_requantize =*/ false, /*.quantize_output_tensor =*/ true, }; return result; } int llama_max_devices() { return LLAMA_MAX_DEVICES; } bool llama_mmap_supported() { return gguf_mmap::SUPPORTED; } bool llama_mlock_supported() { return gguf_mlock::SUPPORTED; } void llama_backend_init(bool numa) { ggml_time_init(); // needed to initialize f16 tables { struct ggml_init_params params = { 0, NULL, false }; struct ggml_context * ctx = ggml_init(params); ggml_free(ctx); } if (numa) { ggml_numa_init(); } #ifdef GGML_USE_MPI ggml_mpi_backend_init(); #endif } void llama_backend_free() { #ifdef GGML_USE_MPI ggml_mpi_backend_free(); #endif } int64_t llama_time_us() { return ggml_time_us(); } // // model loading // static const char *gguf_file_version_name(gguf_file_version version) { switch (version) { case GGUF_FILE_VERSION_V1: return "GGUF V1 (latest)"; } return "unknown"; } static const char *llama_ftype_name(enum llama_ftype ftype) { switch (ftype) { case LLAMA_FTYPE_ALL_F32: return "all F32"; case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16"; case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0"; case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1"; case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16: return "mostly Q4_1, some F16"; case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0"; case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1"; case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0"; // K-quants case LLAMA_FTYPE_MOSTLY_Q2_K: return "mostly Q2_K"; case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "mostly Q3_K - Small"; case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "mostly Q3_K - Medium"; case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "mostly Q3_K - Large"; case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "mostly Q4_K - Small"; case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "mostly Q4_K - Medium"; case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "mostly Q5_K - Small"; case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "mostly Q5_K - Medium"; case LLAMA_FTYPE_MOSTLY_Q6_K: return "mostly Q6_K"; default: return "unknown, may not work"; } } static const char *llama_model_type_name(e_model type) { switch (type) { case MODEL_3B: return "3B"; case MODEL_7B: return "7B"; case MODEL_13B: return "13B"; case MODEL_30B: return "30B"; case MODEL_65B: return "65B"; case MODEL_70B: return "70B"; default: GGML_ASSERT(false); } } static void llama_model_load_internal( const std::string & fname, llama_model & model, llama_vocab & vocab, int n_ctx, int n_batch, int n_gqa, float rms_norm_eps, int n_gpu_layers, int main_gpu, const float * tensor_split, float rope_freq_base, float rope_freq_scale, bool low_vram, ggml_type memory_type, bool use_mmap, bool use_mlock, bool vocab_only, llama_progress_callback progress_callback, void * progress_callback_user_data) { model.t_start_us = ggml_time_us(); std::unique_ptr ml(new llama_model_loader(fname, use_mmap)); vocab = std::move(ml->file_loader->vocab); model.hparams = ml->file_loader->hparams; model.n_gpu_layers = n_gpu_layers; gguf_file_version file_version = ml->file_loader->file_version; auto & hparams = model.hparams; // TODO: read from file hparams.f_rms_norm_eps = rms_norm_eps; { switch (hparams.n_layer) { case 26: model.type = e_model::MODEL_3B; break; case 32: model.type = e_model::MODEL_7B; break; case 40: model.type = e_model::MODEL_13B; break; case 60: model.type = e_model::MODEL_30B; break; case 80: model.type = e_model::MODEL_65B; break; default: { if (hparams.n_layer < 32) { model.type = e_model::MODEL_7B; } } break; } hparams.n_ctx = n_ctx; // LLaMAv2 hparams.n_head_kv = hparams.n_head / n_gqa; if (model.type == e_model::MODEL_65B && n_gqa == 8) { fprintf(stderr, "%s: warning: assuming 70B model based on GQA == %d\n", __func__, n_gqa); model.type = e_model::MODEL_70B; hparams.f_ffn_mult = 1.3f; // from the params.json of the 70B model } hparams.rope_freq_base = rope_freq_base; hparams.rope_freq_scale = rope_freq_scale; } // ref: https://github.com/facebookresearch/llama/blob/6c7fe276574e78057f917549435a2554000a876d/llama/model.py#L194-L199 const uint32_t n_ff_raw = 2*(4*hparams.n_embd)/3; const uint32_t n_ff_mult = hparams.f_ffn_mult*n_ff_raw; const uint32_t n_ff = ((n_ff_mult + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult; //const uint32_t n_ff = 28672; { fprintf(stderr, "%s: format = %s\n", __func__, gguf_file_version_name(file_version)); fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab); fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx); fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd); fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult); fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head); fprintf(stderr, "%s: n_head_kv = %u\n", __func__, hparams.n_head_kv); fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer); fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim fprintf(stderr, "%s: n_gqa = %u\n", __func__, hparams.n_gqa()); fprintf(stderr, "%s: rnorm_eps = %.1e\n", __func__, hparams.f_rms_norm_eps); fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff); fprintf(stderr, "%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base); fprintf(stderr, "%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale); fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype)); fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type)); } if (hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_1 || hparams.ftype == LLAMA_FTYPE_MOSTLY_Q8_0) { throw std::runtime_error(format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1508)")); } if (vocab_only) { return; } auto & ctx = model.ctx; size_t ctx_size; size_t mmapped_size; ml->calc_sizes(&ctx_size, &mmapped_size); fprintf(stderr, "%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0); // create the ggml context { model.buf.resize(ctx_size); if (use_mlock) { model.mlock_buf.init (model.buf.addr); model.mlock_buf.grow_to(model.buf.size); } struct ggml_init_params params = { /*.mem_size =*/ model.buf.size, /*.mem_buffer =*/ model.buf.addr, /*.no_alloc =*/ ml->use_mmap, }; model.ctx = ggml_init(params); if (!model.ctx) { throw std::runtime_error(format("ggml_init() failed")); } } (void) main_gpu; #if defined(GGML_USE_CUBLAS) fprintf(stderr, "%s: using CUDA for GPU acceleration\n", __func__); ggml_cuda_set_main_device(main_gpu); #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT #elif defined(GGML_USE_CLBLAST) fprintf(stderr, "%s: using OpenCL for GPU acceleration\n", __func__); #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU #else #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU #endif // prepare memory for the weights size_t vram_weights = 0; size_t vram_scratch = 0; { const uint32_t n_embd = hparams.n_embd; const uint32_t n_embd_gqa = hparams.n_embd_gqa(); const uint32_t n_layer = hparams.n_layer; const uint32_t n_vocab = hparams.n_vocab; ml->ggml_ctx = ctx; model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}, GGML_BACKEND_CPU); // "output" tensor { ggml_backend backend_norm; ggml_backend backend_output; if (n_gpu_layers > int(n_layer)) { // NOLINT // norm is not performance relevant on its own but keeping it in VRAM reduces data copying // on Windows however this is detrimental unless everything is on the GPU #ifndef _WIN32 backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; #else backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; #endif // _WIN32 backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; } else { backend_norm = GGML_BACKEND_CPU; backend_output = GGML_BACKEND_CPU; } model.norm = ml->get_tensor("norm.weight", {n_embd}, backend_norm); model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}, backend_output); if (backend_norm == GGML_BACKEND_GPU) { vram_weights += ggml_nbytes(model.norm); } if (backend_output == GGML_BACKEND_GPU_SPLIT) { vram_weights += ggml_nbytes(model.output); } } const int i_gpu_start = n_layer - n_gpu_layers; model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT auto & layer = model.layers[i]; std::string layers_i = "layers." + std::to_string(i); layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}, backend); layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}, backend_split); layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd_gqa}, backend_split); layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd_gqa}, backend_split); layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}, backend_split); layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, backend); layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}, backend_split); layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}, backend_split); layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}, backend_split); if (backend == GGML_BACKEND_GPU) { vram_weights += ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) + ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3); } } } ml->done_getting_tensors(); // print memory requirements { const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1; // this is the total memory required to run the inference const size_t mem_required = ctx_size + mmapped_size - vram_weights + // weights in VRAM not in memory MEM_REQ_SCRATCH0(hparams.n_ctx).at(model.type) + MEM_REQ_SCRATCH1().at(model.type) + MEM_REQ_EVAL().at(model.type); // this is the memory required by one llama_state const size_t mem_required_state = scale*hparams.kv_size(); fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__, mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0); (void) vram_scratch; (void) n_batch; #ifdef GGML_USE_CUBLAS if (low_vram) { fprintf(stderr, "%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__); ggml_cuda_set_scratch_size(0); // disable scratch } else { const size_t vram_scratch_base = VRAM_REQ_SCRATCH_BASE().at(model.type); const size_t vram_scratch_per_context = VRAM_REQ_SCRATCH_PER_CONTEXT().at(model.type); vram_scratch = n_batch * (vram_scratch_base + n_ctx * vram_scratch_per_context); ggml_cuda_set_scratch_size(vram_scratch); if (n_gpu_layers > 0) { fprintf(stderr, "%s: allocating batch_size x (%zd kB + n_ctx x %zd B) = %zd MB VRAM for the scratch buffer\n", __func__, vram_scratch_base / kB, vram_scratch_per_context, (vram_scratch + MB - 1) / MB); // round up } } #endif // GGML_USE_CUBLAS #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); fprintf(stderr, "%s: offloading %d repeating layers to GPU\n", __func__, n_gpu); if (n_gpu_layers > (int) hparams.n_layer) { fprintf(stderr, "%s: offloading non-repeating layers to GPU\n", __func__); } size_t vram_kv_cache = 0; #ifdef GGML_USE_CUBLAS const int max_backend_supported_layers = hparams.n_layer + 3; const int max_offloadable_layers = low_vram ? hparams.n_layer + 1 : hparams.n_layer + 3; if (n_gpu_layers > (int) hparams.n_layer + 1) { if (low_vram) { fprintf(stderr, "%s: cannot offload v cache to GPU due to low VRAM option\n", __func__); } else { fprintf(stderr, "%s: offloading v cache to GPU\n", __func__); vram_kv_cache += hparams.kv_size() / 2; } } if (n_gpu_layers > (int) hparams.n_layer + 2) { if (low_vram) { fprintf(stderr, "%s: cannot offload k cache to GPU due to low VRAM option\n", __func__); } else { fprintf(stderr, "%s: offloading k cache to GPU\n", __func__); vram_kv_cache += hparams.kv_size() / 2; } } #elif defined(GGML_USE_CLBLAST) const int max_backend_supported_layers = hparams.n_layer + 1; const int max_offloadable_layers = hparams.n_layer + 1; #endif // GGML_USE_CUBLAS fprintf(stderr, "%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers); fprintf(stderr, "%s: total VRAM used: %zu MB\n", __func__, (vram_weights + vram_scratch + vram_kv_cache + MB - 1) / MB); // round up #else (void) n_gpu_layers; #endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) } // populate `tensors_by_name` for (llama_load_tensor & lt : ml->tensors_map.tensors) { model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor); } (void) tensor_split; #if defined(GGML_USE_CUBLAS) { ggml_cuda_set_tensor_split(tensor_split); } #endif ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &model.mlock_mmap : NULL); if (progress_callback) { progress_callback(1.0f, progress_callback_user_data); } model.mapping = std::move(ml->mapping); // loading time will be recalculate after the first eval, so // we take page faults deferred by mmap() into consideration model.t_load_us = ggml_time_us() - model.t_start_us; } static bool llama_model_load( const std::string & fname, llama_model & model, llama_vocab & vocab, int n_ctx, int n_batch, int n_gqa, float rms_norm_eps, int n_gpu_layers, int main_gpu, const float * tensor_split, float rope_freq_base, float rope_freq_scale, bool low_vram, ggml_type memory_type, bool use_mmap, bool use_mlock, bool vocab_only, llama_progress_callback progress_callback, void *progress_callback_user_data) { try { llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gqa, rms_norm_eps, n_gpu_layers, main_gpu, tensor_split, rope_freq_base, rope_freq_scale, low_vram, memory_type, use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data); return true; } catch (const std::exception & err) { fprintf(stderr, "error loading model: %s\n", err.what()); return false; } } // evaluate the transformer // // - lctx: llama context // - tokens: new batch of tokens to process // - embd embeddings input // - n_tokens number of tokens // - n_past: the context size so far // - n_threads: number of threads to use // static bool llama_eval_internal( llama_context & lctx, const llama_token * tokens, const float * embd, int n_tokens, int n_past, int n_threads, const char * cgraph_fname) { GGML_ASSERT((!tokens && embd) || (tokens && !embd)); #ifdef GGML_USE_MPI ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads); #endif const int64_t t_start_us = ggml_time_us(); const int N = n_tokens; const auto & model = lctx.model; const auto & hparams = model.hparams; const auto & kv_self = lctx.kv_self; GGML_ASSERT(!!kv_self.ctx); const int64_t n_embd = hparams.n_embd; const int64_t n_layer = hparams.n_layer; const int64_t n_ctx = hparams.n_ctx; const int64_t n_head = hparams.n_head; const int64_t n_head_kv = hparams.n_head_kv; const int64_t n_embd_head = hparams.n_embd_head(); const int64_t n_vocab = hparams.n_vocab; const int64_t n_embd_gqa = hparams.n_embd_gqa(); GGML_ASSERT(n_embd_head == hparams.n_rot); const float freq_base = hparams.rope_freq_base; const float freq_scale = hparams.rope_freq_scale; const float rms_norm_eps = hparams.f_rms_norm_eps; const int n_gpu_layers = model.n_gpu_layers; auto & mem_per_token = lctx.mem_per_token; auto & buf_compute = lctx.buf_compute; struct ggml_init_params params = { /*.mem_size =*/ buf_compute.size, /*.mem_buffer =*/ buf_compute.addr, /*.no_alloc =*/ false, }; struct ggml_context * ctx0 = ggml_init(params); ggml_cgraph * gf = ggml_new_graph(ctx0); // for big prompts, if BLAS is enabled, it is better to use only one thread // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads; struct ggml_tensor * cur; struct ggml_tensor * inpL; if (tokens) { struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens)); ggml_set_name(inp_tokens, "inp_tokens"); inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens); } else { #ifdef GGML_USE_MPI GGML_ASSERT(false && "not implemented"); #endif inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N); memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL)); } const int i_gpu_start = n_layer - n_gpu_layers; (void) i_gpu_start; // offload functions set the tensor output backend to GPU // tensors are GPU-accelerated if any input or the output has been offloaded // // with the low VRAM option VRAM scratch is disabled in llama_load_model_internal // in that case ggml_cuda_assign_buffers has no effect offload_func_t offload_func_nr = llama_nop; // nr = non-repeating offload_func_t offload_func_kq = llama_nop; offload_func_t offload_func_v = llama_nop; #ifdef GGML_USE_CUBLAS if (n_gpu_layers > n_layer) { offload_func_nr = ggml_cuda_assign_buffers; } if (n_gpu_layers > n_layer + 1) { offload_func_v = ggml_cuda_assign_buffers; } if (n_gpu_layers > n_layer + 2) { offload_func_kq = ggml_cuda_assign_buffers; } #endif // GGML_USE_CUBLAS for (int il = 0; il < n_layer; ++il) { ggml_format_name(inpL, "layer_inp_%d", il); offload_func_t offload_func = llama_nop; #ifdef GGML_USE_CUBLAS if (il >= i_gpu_start) { offload_func = ggml_cuda_assign_buffers; } #endif // GGML_USE_CUBLAS struct ggml_tensor * inpSA = inpL; lctx.use_buf(ctx0, 0); // norm { cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps); offload_func(cur); ggml_set_name(cur, "rms_norm_0"); // cur = cur*attention_norm(broadcasted) cur = ggml_mul(ctx0, cur, model.layers[il].attention_norm); offload_func(cur); ggml_set_name(cur, "attention_norm_0"); } // self-attention { // compute Q and K and RoPE them struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur); offload_func_kq(tmpk); ggml_set_name(tmpk, "tmpk"); struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur); offload_func_kq(tmpq); ggml_set_name(tmpq, "tmpq"); struct ggml_tensor * Kcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale); offload_func_kq(Kcur); ggml_set_name(Kcur, "Kcur"); struct ggml_tensor * Qcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale); offload_func_kq(Qcur); ggml_set_name(Qcur, "Qcur"); // store key and value to memory { // compute the transposed [N, n_embd] V matrix struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur); offload_func_v(tmpv); ggml_set_name(tmpv, "tmpv"); struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, N)); offload_func_v(Vcur); ggml_set_name(Vcur, "Vcur"); struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + n_past)); offload_func_kq(k); ggml_set_name(k, "k"); struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd_gqa, ( n_ctx)*ggml_element_size(kv_self.v), (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + n_past*ggml_element_size(kv_self.v)); offload_func_v(v); ggml_set_name(v, "v"); // important: storing RoPE-ed version of K in the KV cache! ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); } struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); offload_func_kq(Q); ggml_set_name(Q, "Q"); struct ggml_tensor * K = ggml_permute(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd_gqa, il*n_ctx*ggml_element_size(kv_self.k)*n_embd_gqa), n_embd_head, n_head_kv, n_past + N), 0, 2, 1, 3); offload_func_kq(K); ggml_set_name(K, "K"); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); offload_func_kq(KQ); ggml_set_name(KQ, "KQ"); // KQ_scaled = KQ / sqrt(n_embd_head) struct ggml_tensor * KQ_scale = ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)); ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)"); // KQ_scaled shape [n_past + N, N, n_head, 1] struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale); offload_func_kq(KQ_scaled); ggml_set_name(KQ_scaled, "KQ_scaled"); // KQ_masked = mask_past(KQ_scaled) struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); offload_func_kq(KQ_masked); ggml_set_name(KQ_masked, "KQ_masked"); // KQ = soft_max(KQ_masked) struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); offload_func_v(KQ_soft_max); ggml_set_name(KQ_soft_max, "KQ_soft_max"); // split cached V into n_head heads struct ggml_tensor * V = ggml_view_3d(ctx0, kv_self.v, n_past + N, n_embd_head, n_head_kv, n_ctx*ggml_element_size(kv_self.v), n_ctx*ggml_element_size(kv_self.v)*n_embd_head, n_ctx*ggml_element_size(kv_self.v)*n_embd_gqa*il); offload_func_v(V); ggml_set_name(V, "V"); #if 1 struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); offload_func_v(KQV); ggml_set_name(KQV, "KQV"); #else // make V contiguous in memory to speed up the matmul, however we waste time on the copy // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation // is there a better way? struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd_head, n_head)); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max); #endif // KQV_merged = KQV.permute(0, 2, 1, 3) struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); offload_func_v(KQV_merged); ggml_set_name(KQV_merged, "KQV_merged"); // cur = KQV_merged.contiguous().view(n_embd, N) cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); offload_func_v(cur); ggml_set_name(cur, "KQV_merged_contiguous"); // projection (no bias) cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur); offload_func(cur); ggml_set_name(cur, "result_wo"); } lctx.use_buf(ctx0, 1); struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA); offload_func(inpFF); ggml_set_name(inpFF, "inpFF"); // feed-forward network { // norm { cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps); offload_func(cur); ggml_set_name(cur, "rms_norm_1"); // cur = cur*ffn_norm(broadcasted) cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm); offload_func(cur); ggml_set_name(cur, "ffn_norm"); } struct ggml_tensor * tmp = ggml_mul_mat(ctx0, model.layers[il].w3, cur); offload_func(tmp); ggml_set_name(tmp, "result_w3"); cur = ggml_mul_mat(ctx0, model.layers[il].w1, cur); offload_func(cur); ggml_set_name(cur, "result_w1"); // SILU activation cur = ggml_silu(ctx0, cur); offload_func(cur); ggml_set_name(cur, "silu"); cur = ggml_mul(ctx0, cur, tmp); offload_func(cur); ggml_set_name(cur, "silu_x_result_w3"); cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur); offload_func(cur); ggml_set_name(cur, "result_w2"); } cur = ggml_add(ctx0, cur, inpFF); offload_func(cur); ggml_set_name(cur, "inpFF_+_result_w2"); // input for next layer inpL = cur; } lctx.use_buf(ctx0, 0); // used at the end to optionally extract the embeddings struct ggml_tensor * embeddings = NULL; // norm { cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps); offload_func_nr(cur); ggml_set_name(cur, "rms_norm_2"); // cur = cur*norm(broadcasted) cur = ggml_mul(ctx0, cur, model.norm); // offload_func_nr(cur); // TODO CPU + GPU mirrored backend ggml_set_name(cur, "result_norm"); embeddings = cur; } // lm_head cur = ggml_mul_mat(ctx0, model.output, cur); ggml_set_name(cur, "result_output"); lctx.use_buf(ctx0, -1); // logits -> probs //cur = ggml_soft_max_inplace(ctx0, cur); // run the computation ggml_build_forward_expand(gf, cur); // fprintf(stderr, "graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf.n_nodes, gf.n_leafs); #if GGML_USE_MPI ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer); #endif #ifdef GGML_USE_METAL if (lctx.ctx_metal && N == 1) { if (!ggml_metal_if_optimized(lctx.ctx_metal)) { ggml_metal_graph_find_concurrency(lctx.ctx_metal, gf); } ggml_metal_set_n_cb (lctx.ctx_metal, n_threads); ggml_metal_graph_compute(lctx.ctx_metal, gf); ggml_metal_get_tensor (lctx.ctx_metal, cur); } else { // IMPORTANT: // Since we don't have efficient Matrix x Matrix Metal multiplication yet, we fallback to vanilla // ggml_graph_compute(). It uses Apple's Accelerate CBLAS API which takes advantage of the ANE or the AMX // coprocessor. // // When we implement Matrix x Matrix Metal multiplication, we can avoid this branch. // But for now, we have focused only on Matrix x Vector Metal multiplication. // // TODO: avoid these syncs via shared memory (ref #1696) // if (lctx.ctx_metal) { // We need to sync the GPU KV cache with the CPU KV cache ggml_metal_get_tensor(lctx.ctx_metal, kv_self.k); ggml_metal_get_tensor(lctx.ctx_metal, kv_self.v); } ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads); } #else ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads); #endif #if GGML_USE_MPI ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer); #endif // update kv token count lctx.kv_self.n = n_past + N; struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1]; if (cgraph_fname) { ggml_graph_export(gf, cgraph_fname); } #ifdef GGML_PERF // print timing information per ggml operation (for debugging purposes) // requires GGML_PERF to be defined ggml_graph_print(gf); #endif // plot the computation graph in dot format (for debugging purposes) //if (n_past%100 == 0) { // ggml_graph_dump_dot(gf, NULL, "llama.dot"); //} // extract logits { auto & logits_out = lctx.logits; if (lctx.logits_all) { logits_out.resize(n_vocab * N); memcpy(logits_out.data(), (float *) ggml_get_data(res), sizeof(float)*n_vocab*N); } else { // return result for just the last token logits_out.resize(n_vocab); memcpy(logits_out.data(), (float *) ggml_get_data(res) + (n_vocab*(N-1)), sizeof(float)*n_vocab); } } // extract embeddings if (!lctx.embedding.empty()) { auto & embedding_out = lctx.embedding; embedding_out.resize(n_embd); memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd); } if (mem_per_token == 0) { mem_per_token = ggml_used_mem(ctx0)/N; } #if 0 printf("\n%s: used_mem: eval ctx %.3f MB, scratch %.3f MB %.3f MB, work buf %.3f MB, n_past = %d, N = %d\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, lctx.get_buf_max_mem(0)/1024.0/1024.0, lctx.get_buf_max_mem(1)/1024.0/1024.0, lctx.work_buffer.size()/1024.0/1024.0, n_past, N); #endif ggml_free(ctx0); // measure the performance only for the single-token evals if (N == 1) { lctx.t_eval_us += ggml_time_us() - t_start_us; lctx.n_eval++; } else if (N > 1) { lctx.t_p_eval_us += ggml_time_us() - t_start_us; lctx.n_p_eval += N; } return true; } // // tokenizer // static size_t utf8_len(char src) { const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 }; uint8_t highbits = static_cast(src) >> 4; return lookup[highbits]; } struct llama_sp_symbol { using index = int; index prev; index next; const char * text; size_t n; }; static_assert(std::is_trivially_copyable::value, "llama_sp_symbol is not trivially copyable"); struct llama_sp_bigram { struct comparator { bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) { return (l.score < r.score) || (l.score == r.score && l.left > r.left); } }; using queue_storage = std::vector; using queue = std::priority_queue; llama_sp_symbol::index left; llama_sp_symbol::index right; float score; size_t size; }; // original implementation: // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4 struct llama_tokenizer { llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {} void tokenize(const std::string & text, std::vector & output) { // split string into utf8 chars int index = 0; size_t offs = 0; while (offs < text.size()) { llama_sp_symbol sym; size_t char_len = std::min(text.size() - offs, utf8_len(text[offs])); sym.text = text.c_str() + offs; sym.n = char_len; offs += char_len; sym.prev = index - 1; sym.next = offs == text.size() ? -1 : index + 1; index++; symbols_.emplace_back(sym); } // seed the work queue with all possible 2-character tokens. for (size_t i = 1; i < symbols_.size(); ++i) { try_add_bigram(i - 1, i); } // keep substituting the highest frequency pairs for as long as we can. while (!work_queue_.empty()) { auto bigram = work_queue_.top(); work_queue_.pop(); auto & left_sym = symbols_[bigram.left]; auto & right_sym = symbols_[bigram.right]; // if one of the symbols already got merged, skip it. if (left_sym.n == 0 || right_sym.n == 0 || left_sym.n + right_sym.n != bigram.size) { continue; } // merge the right sym into the left one left_sym.n += right_sym.n; right_sym.n = 0; //printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size); // remove the right sym from the chain left_sym.next = right_sym.next; if (right_sym.next >= 0) { symbols_[right_sym.next].prev = bigram.left; } // find more substitutions try_add_bigram(left_sym.prev, bigram.left); try_add_bigram(bigram.left, left_sym.next); } for (int i = 0; i != -1; i = symbols_[i].next) { auto & symbol = symbols_[i]; auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n)); if (token == vocab_.token_to_id.end()) { // output any symbols that did not form tokens as bytes. for (int j = 0; j < (int) symbol.n; ++j) { llama_vocab::id token_id = static_cast(symbol.text[j]) + 3; output.push_back(token_id); } } else { output.push_back((*token).second); } } } private: void try_add_bigram(int left, int right) { if (left == -1 || right == -1) { return; } const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n); auto token = vocab_.token_to_id.find(text); if (token == vocab_.token_to_id.end()) { return; } if (static_cast((*token).second) >= vocab_.id_to_token.size()) { return; } const auto &tok_score = vocab_.id_to_token[(*token).second]; llama_sp_bigram bigram; bigram.left = left; bigram.right = right; bigram.score = tok_score.score; bigram.size = text.size(); work_queue_.push(bigram); } const llama_vocab & vocab_; std::vector symbols_; llama_sp_bigram::queue work_queue_; }; static std::vector llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) { llama_tokenizer tokenizer(vocab); std::vector output; if (text.empty()) { return output; } if (bos) { output.push_back(llama_token_bos()); } tokenizer.tokenize(text, output); return output; } // // grammar - internal // struct llama_grammar { const std::vector> rules; std::vector> stacks; }; struct llama_grammar_candidate { size_t index; const uint32_t * code_points; }; // NOTE: assumes valid utf8 (but checks for overrun) // adds a terminating 0 for use as pointer std::vector decode_utf8(const char * src) { static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 }; const char * pos = src; std::vector code_points; while (*pos != 0) { uint8_t first_byte = static_cast(*pos); uint8_t highbits = first_byte >> 4; int len = lookup[highbits]; uint8_t mask = (1 << (8 - len)) - 1; uint32_t value = first_byte & mask; const char * end = pos + len; // may overrun! ++pos; for ( ; pos < end && *pos != 0; ++pos) { value = (value << 6) + (static_cast(*pos) & 0x3F); } code_points.push_back(value); } code_points.push_back(0); return code_points; } // returns true iff pos points to the end of one of the definitions of a rule static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) { switch (pos->type) { case LLAMA_GRETYPE_END: return true; case LLAMA_GRETYPE_ALT: return true; default: return false; } } // returns true iff chr satisfies the char range at pos (regular or inverse range) // asserts that pos is pointing to a char range element static std::pair llama_grammar_match_char( const llama_grammar_element * pos, const uint32_t chr) { bool found = false; bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR; GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); do { if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) { // inclusive range, e.g. [a-z] found = found || (pos->value <= chr && chr <= pos[1].value); pos += 2; } else { // exact char match, e.g. [a] or "a" found = found || pos->value == chr; pos += 1; } } while (pos->type == LLAMA_GRETYPE_CHAR_ALT); return std::make_pair(found == is_positive_char, pos); } // transforms a grammar pushdown stack into N possible stacks, all ending // at a character range (terminal element) static void llama_grammar_advance_stack( const std::vector> & rules, const std::vector & stack, std::vector> & new_stacks) { if (stack.empty()) { new_stacks.push_back(stack); return; } const llama_grammar_element * pos = stack.back(); switch (pos->type) { case LLAMA_GRETYPE_RULE_REF: { const size_t rule_id = static_cast(pos->value); const llama_grammar_element * subpos = rules[rule_id].data(); do { // init new stack without the top (pos) std::vector new_stack(stack.begin(), stack.end() - 1); if (!llama_grammar_is_end_of_sequence(pos + 1)) { // if this rule ref is followed by another element, add that to stack new_stack.push_back(pos + 1); } if (!llama_grammar_is_end_of_sequence(subpos)) { // if alternate is nonempty, add to stack new_stack.push_back(subpos); } llama_grammar_advance_stack(rules, new_stack, new_stacks); while (!llama_grammar_is_end_of_sequence(subpos)) { // scan to end of alternate def subpos++; } if (subpos->type == LLAMA_GRETYPE_ALT) { // there's another alternate def of this rule to process subpos++; } else { break; } } while (true); break; } case LLAMA_GRETYPE_CHAR: case LLAMA_GRETYPE_CHAR_NOT: new_stacks.push_back(stack); break; default: // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on // those GGML_ASSERT(false); } } // takes a set of possible pushdown stacks on a grammar, which are required to // be positioned at a character range (see `llama_grammar_advance_stack`), and // produces the N possible stacks if the given char is accepted at those // positions static std::vector> llama_grammar_accept( const std::vector> & rules, const std::vector> & stacks, const uint32_t chr) { std::vector> new_stacks; for (const auto & stack : stacks) { if (stack.empty()) { continue; } auto match = llama_grammar_match_char(stack.back(), chr); if (match.first) { const llama_grammar_element * pos = match.second; // update top of stack to next element, if any std::vector new_stack(stack.begin(), stack.end() - 1); if (!llama_grammar_is_end_of_sequence(pos)) { new_stack.push_back(pos); } llama_grammar_advance_stack(rules, new_stack, new_stacks); } } return new_stacks; } static std::vector llama_grammar_reject_candidates( const std::vector> & rules, const std::vector> & stacks, const std::vector & candidates); static std::vector llama_grammar_reject_candidates_for_stack( const std::vector> & rules, const std::vector & stack, const std::vector & candidates) { std::vector rejects; if (stack.empty()) { // accept nothing; EOS is handled elsewhere rejects.insert(rejects.end(), candidates.begin(), candidates.end()); return rejects; } const llama_grammar_element * stack_pos = stack.back(); std::vector next_candidates; for (auto tok : candidates) { if (llama_grammar_match_char(stack_pos, tok.code_points[0]).first) { if (tok.code_points[1] != 0) { next_candidates.push_back({ tok.index, tok.code_points + 1 }); } } else { rejects.push_back(tok); } } auto stack_pos_after = llama_grammar_match_char(stack_pos, 0).second; // update top of stack to next element, if any std::vector stack_after(stack.begin(), stack.end() - 1); if (!llama_grammar_is_end_of_sequence(stack_pos_after)) { stack_after.push_back(stack_pos_after); } std::vector> next_stacks; llama_grammar_advance_stack(rules, stack_after, next_stacks); auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates); for (auto tok : next_rejects) { rejects.push_back({ tok.index, tok.code_points - 1 }); } return rejects; } static std::vector llama_grammar_reject_candidates( const std::vector> & rules, const std::vector> & stacks, const std::vector & candidates) { GGML_ASSERT(!stacks.empty()); // REVIEW if (candidates.empty()) { return std::vector(); } auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates); for (size_t i = 1, size = stacks.size(); i < size; ++i) { rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects); } return rejects; } // // grammar - external // struct llama_grammar * llama_grammar_init( const llama_grammar_element ** rules, size_t n_rules, size_t start_rule_index) { const llama_grammar_element * pos; // copy rule definitions into vectors std::vector> vec_rules(n_rules); for (size_t i = 0; i < n_rules; i++) { for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) { vec_rules[i].push_back(*pos); } vec_rules[i].push_back({LLAMA_GRETYPE_END, 0}); } // loop over alternates of start rule to build initial stacks std::vector> stacks; pos = rules[start_rule_index]; do { std::vector stack; if (!llama_grammar_is_end_of_sequence(pos)) { // if alternate is nonempty, add to stack stack.push_back(pos); } llama_grammar_advance_stack(vec_rules, stack, stacks); while (!llama_grammar_is_end_of_sequence(pos)) { // scan to end of alternate def pos++; } if (pos->type == LLAMA_GRETYPE_ALT) { // there's another alternate def of this rule to process pos++; } else { break; } } while (true); return new llama_grammar{ std::move(vec_rules), std::move(stacks) }; } void llama_grammar_free(struct llama_grammar * grammar) { delete grammar; } // // sampling // void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) { assert(candidates->size > 0); const int64_t t_start_sample_us = ggml_time_us(); // Sort the logits in descending order if (!candidates->sorted) { std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }); candidates->sorted = true; } float max_l = candidates->data[0].logit; float cum_sum = 0.0f; for (size_t i = 0; i < candidates->size; ++i) { float p = expf(candidates->data[i].logit - max_l); candidates->data[i].p = p; cum_sum += p; } for (size_t i = 0; i < candidates->size; ++i) { candidates->data[i].p /= cum_sum; } if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) { const int64_t t_start_sample_us = ggml_time_us(); k = std::max(k, (int) min_keep); k = std::min(k, (int) candidates->size); // Sort scores in descending order if (!candidates->sorted) { auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }; if (k == (int) candidates->size) { std::sort(candidates->data, candidates->data + candidates->size, comp); } else { std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp); } candidates->sorted = true; } candidates->size = k; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) { if (p >= 1.0f) { return; } llama_sample_softmax(ctx, candidates); const int64_t t_start_sample_us = ggml_time_us(); // Compute the cumulative probabilities float cum_sum = 0.0f; size_t last_idx = candidates->size; for (size_t i = 0; i < candidates->size; ++i) { cum_sum += candidates->data[i].p; // Check if the running sum is at least p or if we have kept at least min_keep tokens // we set the last index to i+1 to indicate that the current iterate should be included in the set if (cum_sum >= p && i + 1 >= min_keep) { last_idx = i + 1; break; } } // Resize the output vector to keep only the top-p tokens candidates->size = last_idx; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) { if (z >= 1.0f || candidates->size <= 2) { return; } llama_sample_softmax(nullptr, candidates); const int64_t t_start_sample_us = ggml_time_us(); // Compute the first and second derivatives std::vector first_derivatives(candidates->size - 1); std::vector second_derivatives(candidates->size - 2); for (size_t i = 0; i < first_derivatives.size(); ++i) { first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p; } for (size_t i = 0; i < second_derivatives.size(); ++i) { second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1]; } // Calculate absolute value of second derivatives for (size_t i = 0; i < second_derivatives.size(); ++i) { second_derivatives[i] = abs(second_derivatives[i]); } // Normalize the second derivatives { const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f); if (second_derivatives_sum > 1e-6f) { for (float & value : second_derivatives) { value /= second_derivatives_sum; } } else { for (float & value : second_derivatives) { value = 1.0f / second_derivatives.size(); } } } float cum_sum = 0.0f; size_t last_idx = candidates->size; for (size_t i = 0; i < second_derivatives.size(); ++i) { cum_sum += second_derivatives[i]; // Check if the running sum is greater than z or if we have kept at least min_keep tokens if (cum_sum > z && i >= min_keep) { last_idx = i; break; } } // Resize the output vector to keep only the tokens above the tail location candidates->size = last_idx; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) { // Reference implementation: // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr if (p >= 1.0f) { return; } // Compute the softmax of logits and calculate entropy llama_sample_softmax(nullptr, candidates); const int64_t t_start_sample_us = ggml_time_us(); float entropy = 0.0f; for (size_t i = 0; i < candidates->size; ++i) { entropy += -candidates->data[i].p * logf(candidates->data[i].p); } // Compute the absolute difference between negative log probability and entropy for each candidate std::vector shifted_scores; for (size_t i = 0; i < candidates->size; ++i) { float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy); shifted_scores.push_back(shifted_score); } // Sort tokens based on the shifted_scores and their corresponding indices std::vector indices(candidates->size); std::iota(indices.begin(), indices.end(), 0); std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) { return shifted_scores[a] < shifted_scores[b]; }); // Compute the cumulative probabilities float cum_sum = 0.0f; size_t last_idx = indices.size(); for (size_t i = 0; i < indices.size(); ++i) { size_t idx = indices[i]; cum_sum += candidates->data[idx].p; // Check if the running sum is greater than typical or if we have kept at least min_keep tokens if (cum_sum > p && i >= min_keep - 1) { last_idx = i + 1; break; } } // Resize the output vector to keep only the locally typical tokens std::vector new_candidates; for (size_t i = 0; i < last_idx; ++i) { size_t idx = indices[i]; new_candidates.push_back(candidates->data[idx]); } // Replace the data in candidates with the new_candidates data std::copy(new_candidates.begin(), new_candidates.end(), candidates->data); candidates->size = new_candidates.size(); if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) { const int64_t t_start_sample_us = ggml_time_us(); for (size_t i = 0; i < candidates_p->size; ++i) { candidates_p->data[i].logit /= temp; } if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty) { if (last_tokens_size == 0 || penalty == 1.0f) { return; } const int64_t t_start_sample_us = ggml_time_us(); for (size_t i = 0; i < candidates->size; ++i) { const auto * token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id); if (token_iter == last_tokens + last_tokens_size) { continue; } // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong. // This is common fix for this problem, which is to multiply by the penalty instead of dividing. if (candidates->data[i].logit <= 0) { candidates->data[i].logit *= penalty; } else { candidates->data[i].logit /= penalty; } } candidates->sorted = false; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) { if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) { return; } const int64_t t_start_sample_us = ggml_time_us(); // Create a frequency map to count occurrences of each token in last_tokens std::unordered_map token_count; for (size_t i = 0; i < last_tokens_size; ++i) { token_count[last_tokens_p[i]]++; } // Apply frequency and presence penalties to the candidates for (size_t i = 0; i < candidates->size; ++i) { auto token_iter = token_count.find(candidates->data[i].id); if (token_iter == token_count.end()) { continue; } int count = token_iter->second; candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence; } candidates->sorted = false; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) { assert(ctx); const int64_t t_start_sample_us = ggml_time_us(); bool allow_eos = false; for (const auto & stack : grammar->stacks) { if (stack.empty()) { allow_eos = true; break; } } const llama_token eos = llama_token_eos(); std::vector> candidates_decoded; std::vector candidates_grammar; for (size_t i = 0; i < candidates->size; ++i) { const llama_token id = candidates->data[i].id; const char * str = llama_token_to_str(ctx, id); if (id == eos) { if (!allow_eos) { candidates->data[i].logit = -INFINITY; } } else if (*str == 0) { candidates->data[i].logit = -INFINITY; } else { candidates_decoded.push_back(decode_utf8(str)); candidates_grammar.push_back({ i, candidates_decoded.back().data() }); } } const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar); for (auto & reject : rejects) { candidates->data[reject.index].logit = -INFINITY; } ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } static void llama_log_softmax(float * array, size_t size) { float max_l = *std::max_element(array, array + size); float sum = 0.f; for (size_t i = 0; i < size; ++i) { float p = expf(array[i] - max_l); sum += p; array[i] = p; } for (size_t i = 0; i < size; ++i) { array[i] = logf(array[i] / sum); } } void llama_sample_classifier_free_guidance( struct llama_context * ctx, llama_token_data_array * candidates, struct llama_context * guidance_ctx, float scale) { int64_t t_start_sample_us = ggml_time_us(); assert(ctx); auto n_vocab = llama_n_vocab(ctx); assert(n_vocab == (int)candidates->size); assert(!candidates->sorted); std::vector logits_base; logits_base.reserve(candidates->size); for (size_t i = 0; i < candidates->size; ++i) { logits_base.push_back(candidates->data[i].logit); } llama_log_softmax(logits_base.data(), candidates->size); float* logits_guidance = llama_get_logits(guidance_ctx); llama_log_softmax(logits_guidance, n_vocab); for (int i = 0; i < n_vocab; ++i) { float logit_guidance = logits_guidance[i]; float logit_base = logits_base[i]; candidates->data[i].logit = scale * (logit_base - logit_guidance) + logit_guidance; } if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) { assert(ctx); auto N = float(llama_n_vocab(ctx)); int64_t t_start_sample_us; t_start_sample_us = ggml_time_us(); llama_sample_softmax(nullptr, candidates); // Estimate s_hat using the most probable m tokens float s_hat = 0.0; float sum_ti_bi = 0.0; float sum_ti_sq = 0.0; for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) { float t_i = logf(float(i + 2) / float(i + 1)); float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p); sum_ti_bi += t_i * b_i; sum_ti_sq += t_i * t_i; } s_hat = sum_ti_bi / sum_ti_sq; // Compute k from the estimated s_hat and target surprise value float epsilon_hat = s_hat - 1; float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat); // Sample the next word X using top-k sampling llama_sample_top_k(nullptr, candidates, int(k), 1); if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } llama_token X = llama_sample_token(ctx, candidates); t_start_sample_us = ggml_time_us(); // Compute error as the difference between observed surprise and target surprise value size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { return candidate.id == X; })); float observed_surprise = -log2f(candidates->data[X_idx].p); float e = observed_surprise - tau; // Update mu using the learning rate and error *mu = *mu - eta * e; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } return X; } llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) { int64_t t_start_sample_us; t_start_sample_us = ggml_time_us(); llama_sample_softmax(ctx, candidates); // Truncate the words with surprise values greater than mu candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { return -log2f(candidate.p) > *mu; })); if (candidates->size == 0) { candidates->size = 1; } if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } // Normalize the probabilities of the remaining words llama_sample_softmax(ctx, candidates); // Sample the next word X from the remaining words llama_token X = llama_sample_token(ctx, candidates); t_start_sample_us = ggml_time_us(); // Compute error as the difference between observed surprise and target surprise value size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { return candidate.id == X; })); float observed_surprise = -log2f(candidates->data[X_idx].p); float e = observed_surprise - tau; // Update mu using the learning rate and error *mu = *mu - eta * e; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } return X; } llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) { const int64_t t_start_sample_us = ggml_time_us(); // Find max element auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { return a.logit < b.logit; }); llama_token result = max_iter->id; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; ctx->n_sample++; } return result; } llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) { assert(ctx); const int64_t t_start_sample_us = ggml_time_us(); llama_sample_softmax(nullptr, candidates); std::vector probs; probs.reserve(candidates->size); for (size_t i = 0; i < candidates->size; ++i) { probs.push_back(candidates->data[i].p); } std::discrete_distribution<> dist(probs.begin(), probs.end()); auto & rng = ctx->rng; int idx = dist(rng); llama_token result = candidates->data[idx].id; ctx->t_sample_us += ggml_time_us() - t_start_sample_us; ctx->n_sample++; return result; } void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) { const int64_t t_start_sample_us = ggml_time_us(); if (token == llama_token_eos()) { for (const auto & stack : grammar->stacks) { if (stack.empty()) { return; } } GGML_ASSERT(false); } const char * str = llama_token_to_str(ctx, token); // Note terminating 0 in decoded string auto code_points = decode_utf8(str); for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) { grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it); } GGML_ASSERT(!grammar->stacks.empty()); ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } // // quantization // static void llama_convert_tensor_internal(const llama_load_tensor & tensor, gguf_buffer & output, const int nelements, const int nthread) { if (output.size < nelements * sizeof(float)) { output.resize(nelements * sizeof(float)); } float * f32_output = (float *) output.addr; ggml_type_traits_t qtype; if (ggml_is_quantized(tensor.type)) { qtype = ggml_internal_get_type_traits(tensor.type); if (qtype.to_float == NULL) { throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor.type))); } } else if (tensor.type != GGML_TYPE_F16) { throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor.type))); } if (nthread < 2) { if (tensor.type == GGML_TYPE_F16) { ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor.data, f32_output, nelements); } else if (ggml_is_quantized(tensor.type)) { qtype.to_float(tensor.data, f32_output, nelements); } else { GGML_ASSERT(false); // unreachable } return; } auto block_size = tensor.type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor.type); auto block_size_bytes = ggml_type_size(tensor.type); GGML_ASSERT(nelements % block_size == 0); auto nblocks = nelements / block_size; auto blocks_per_thread = nblocks / nthread; auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count std::vector workers; for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) { auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread auto thr_elems = thr_blocks * block_size; // number of elements for this thread auto thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) { if (typ == GGML_TYPE_F16) { ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels); } else { qtype.to_float(inbuf, outbuf, nels); } }; workers.push_back(std::thread(compute, tensor.type, tensor.data + in_buff_offs, f32_output + out_buff_offs, thr_elems)); in_buff_offs += thr_block_bytes; out_buff_offs += thr_elems; } for (auto & worker : workers) { worker.join(); } } static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) { ggml_type quantized_type; llama_ftype ftype = params->ftype; int nthread = params->nthread; switch (params->ftype) { case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break; case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break; case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break; case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break; case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break; case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break; case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break; #ifdef GGML_USE_K_QUANTS // K-quants case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break; case LLAMA_FTYPE_MOSTLY_Q3_K_S: case LLAMA_FTYPE_MOSTLY_Q3_K_M: case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break; case LLAMA_FTYPE_MOSTLY_Q4_K_S: case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break; case LLAMA_FTYPE_MOSTLY_Q5_K_S: case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break; case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break; #endif default: throw std::runtime_error(format("invalid output file type %d\n", ftype)); } if (nthread <= 0) { nthread = std::thread::hardware_concurrency(); } std::unique_ptr model_loader(new llama_model_loader(fname_inp, /*use_mmap*/ false)); gguf_file_saver file_saver(fname_out.c_str(), model_loader->file_loader.get(), params->ftype); #ifdef GGML_USE_K_QUANTS int n_attention_wv = 0; int n_feed_forward_w2 = 0; for (auto& tensor : model_loader->tensors_map.tensors) { if (tensor.name.find("attention.wv.weight") != std::string::npos) { ++n_attention_wv; } else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) { ++n_feed_forward_w2; } } int i_attention_wv = 0; int i_feed_forward_w2 = 0; #endif size_t total_size_org = 0; size_t total_size_new = 0; std::vector hist_all(1 << 4, 0); std::vector workers; std::mutex mutex; auto use_more_bits = [] (int i_layer, int num_layers) -> bool { return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2; }; size_t idx = 0; for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) { gguf_buffer read_data; read_data.resize(tensor.size); tensor.data = read_data.addr; model_loader->load_data_for(tensor); printf("[%4zu/%4zu] %36s - %16s, type = %6s, ", ++idx, model_loader->tensors_map.tensors.size(), tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(), ggml_type_name(tensor.type)); // This used to be a regex, but has an extreme cost to compile times. bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; // ends with 'weight'? // quantize only 2D tensors quantize &= (tensor.ne.size() == 2); quantize &= params->quantize_output_tensor || tensor.name != "output.weight"; quantize &= quantized_type != tensor.type; enum ggml_type new_type; void * new_data; size_t new_size; gguf_buffer work; if (!quantize) { new_type = tensor.type; new_data = tensor.data; new_size = tensor.size; printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0); } else { new_type = quantized_type; #ifdef GGML_USE_K_QUANTS if (tensor.name == "output.weight") { int nx = tensor.ne.at(0); int ny = tensor.ne.at(1); if (nx % QK_K == 0 && ny % QK_K == 0) { new_type = GGML_TYPE_Q6_K; } } else if (tensor.name.find("attention.wv.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && use_more_bits(i_attention_wv, n_attention_wv)) new_type = GGML_TYPE_Q6_K; else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) && (i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K; ++i_attention_wv; } else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K; //else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && i_feed_forward_w2 < n_feed_forward_w2/8) new_type = GGML_TYPE_Q6_K; ++i_feed_forward_w2; } else if (tensor.name.find("attention.wo.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; } bool convert_incompatible_tensor = false; if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K || new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) { int nx = tensor.ne.at(0); int ny = tensor.ne.at(1); if (nx % QK_K != 0 || ny % QK_K != 0) { fprintf(stderr, "\n\nTensor sizes %d x %d are not divisible by %d, required for k-quants.\n",nx,ny,QK_K); convert_incompatible_tensor = true; } } if (convert_incompatible_tensor) { if (tensor.name == "output.weight") { new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing. fprintf(stderr, "F16 will be used for this tensor instead.\n"); } else if (tensor.name == "tok_embeddings.weight") { new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing. fprintf(stderr, "Q4_0 will be used for this tensor instead.\n"); } else { throw std::runtime_error("Unsupported tensor size encountered\n"); } } #endif float * f32_data; size_t nelements = tensor.ne.at(0) * tensor.ne.at(1); gguf_buffer f32_conv_buf; if (tensor.type == GGML_TYPE_F32) { f32_data = (float *) tensor.data; } else if (ggml_is_quantized(tensor.type) && !params->allow_requantize) { throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor.type))); } else { llama_convert_tensor_internal(tensor, f32_conv_buf, nelements, nthread); f32_data = (float *) f32_conv_buf.addr; } printf("quantizing to %s .. ", ggml_type_name(new_type)); fflush(stdout); work.resize(nelements * 4); // upper bound on size new_data = work.addr; std::vector hist_cur(1 << 4, 0); int chunk_size = 32 * 512; const int nchunk = (nelements + chunk_size - 1)/chunk_size; const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1; if (nthread_use < 2) { new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data()); } else { size_t counter = 0; new_size = 0; auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements, chunk_size] () { std::vector local_hist; size_t local_size = 0; while (true) { std::unique_lock lock(mutex); size_t first = counter; counter += chunk_size; if (first >= nelements) { if (!local_hist.empty()) { for (int j=0; j %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0); int64_t tot_count = 0; for (size_t i = 0; i < hist_cur.size(); i++) { hist_all[i] += hist_cur[i]; tot_count += hist_cur[i]; } if (tot_count > 0) { for (size_t i = 0; i < hist_cur.size(); i++) { printf("%5.3f ", hist_cur[i] / float(nelements)); } } printf("\n"); } total_size_org += tensor.size; total_size_new += new_size; file_saver.write_tensor(tensor, new_type, new_data, new_size); } printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0); printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0); { int64_t sum_all = 0; for (size_t i = 0; i < hist_all.size(); i++) { sum_all += hist_all[i]; } if (sum_all > 0) { printf("%s: hist: ", __func__); for (size_t i = 0; i < hist_all.size(); i++) { printf("%5.3f ", hist_all[i] / float(sum_all)); } printf("\n"); } } } // // interface implementation // struct llama_model * llama_load_model_from_file( const char * path_model, struct llama_context_params params) { ggml_time_init(); llama_model * model = new llama_model; ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32; if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gqa, params.rms_norm_eps, params.n_gpu_layers, params.main_gpu, params.tensor_split, params.rope_freq_base, params.rope_freq_scale,params.low_vram, memory_type, params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback, params.progress_callback_user_data)) { delete model; fprintf(stderr, "%s: failed to load model\n", __func__); return nullptr; } return model; } void llama_free_model(struct llama_model * model) { delete model; } struct llama_context * llama_new_context_with_model( struct llama_model * model, struct llama_context_params params) { if (!model) { return nullptr; } llama_context * ctx = new llama_context(*model); if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); } unsigned cur_percentage = 0; if (params.progress_callback == NULL) { params.progress_callback_user_data = &cur_percentage; params.progress_callback = [](float progress, void * ctx) { unsigned * cur_percentage_p = (unsigned *) ctx; unsigned percentage = (unsigned) (100 * progress); while (percentage > *cur_percentage_p) { *cur_percentage_p = percentage; fprintf(stderr, "."); fflush(stderr); if (percentage >= 100) { fprintf(stderr, "\n"); } } }; } ctx->rng = std::mt19937(params.seed); ctx->logits_all = params.logits_all; ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32; // reserve memory for context buffers if (!params.vocab_only) { if (!kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) { fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__); llama_free(ctx); return nullptr; } { const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v); fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0); } const auto & hparams = ctx->model.hparams; // resized during inference if (params.logits_all) { ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab); } else { ctx->logits.reserve(hparams.n_vocab); } if (params.embedding){ ctx->embedding.resize(hparams.n_embd); } ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type) + ggml_graph_overhead()); ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type)); ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type)); } #ifdef GGML_USE_METAL if (params.n_gpu_layers > 0) { // this allocates all Metal resources and memory buffers ctx->ctx_metal = ggml_metal_init(1); void * data_ptr = NULL; size_t data_size = 0; if (params.use_mmap) { data_ptr = ctx->model.mapping->addr; data_size = ctx->model.mapping->size; } else { data_ptr = ggml_get_mem_buffer(ctx->model.ctx); data_size = ggml_get_mem_size (ctx->model.ctx); } const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx); fprintf(stderr, "%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0); #define LLAMA_METAL_CHECK_BUF(result) \ if (!(result)) { \ fprintf(stderr, "%s: failed to add buffer\n", __func__); \ llama_free(ctx); \ return NULL; \ } LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size)); LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size, 0)); LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.addr, ctx->kv_self.buf.size, 0)); LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size, 0)); LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size, 0)); #undef LLAMA_METAL_CHECK_BUF } #endif #ifdef GGML_USE_MPI ctx->ctx_mpi = ggml_mpi_init(); if (ggml_mpi_rank(ctx->ctx_mpi) > 0) { // Enter a blocking eval loop with dummy input, letting rank=0 drive the process const std::vector tmp(ctx->model.hparams.n_ctx, llama_token_bos()); while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {}; llama_backend_free(); exit(1); } #endif return ctx; } struct llama_context * llama_init_from_file( const char * path_model, struct llama_context_params params) { struct llama_model * model = llama_load_model_from_file(path_model, params); if (!model) { return nullptr; } struct llama_context * ctx = llama_new_context_with_model(model, params); ctx->model_owner = true; return ctx; } void llama_free(struct llama_context * ctx) { if (ctx->model_owner) { delete &ctx->model; } delete ctx; } int llama_model_quantize( const char * fname_inp, const char * fname_out, const llama_model_quantize_params *params) { try { llama_model_quantize_internal(fname_inp, fname_out, params); return 0; } catch (const std::exception & err) { fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.what()); return 1; } } int llama_apply_lora_from_file_internal(const struct llama_model & model, const char * path_lora, const char * path_base_model, int n_threads) { fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora); const int64_t t_start_lora_us = ggml_time_us(); auto fin = std::ifstream(path_lora, std::ios::binary); if (!fin) { fprintf(stderr, "%s: failed to open '%s'\n", __func__, path_lora); return 1; } // verify magic and version { uint32_t magic; fin.read((char *) &magic, sizeof(magic)); if (magic != LLAMA_FILE_MAGIC_GGLA) { fprintf(stderr, "%s: bad file magic\n", __func__); return 1; } uint32_t format_version; fin.read((char *) &format_version, sizeof(format_version)); if (format_version != 1) { fprintf(stderr, "%s: unsupported file version\n", __func__ ); return 1; } } int32_t lora_r; int32_t lora_alpha; fin.read((char *) &lora_r, sizeof(lora_r)); fin.read((char *) &lora_alpha, sizeof(lora_alpha)); float scaling = (float)lora_alpha / (float)lora_r; fprintf(stderr, "%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling); // create a temporary ggml context to store the lora tensors // todo: calculate size from biggest possible tensor std::vector lora_buf(1024ull * 1024ull * 1024ull); struct ggml_init_params params; params.mem_size = lora_buf.size(); params.mem_buffer = lora_buf.data(); params.no_alloc = false; ggml_context * lora_ctx = ggml_init(params); std::unordered_map lora_tensors; // create a name -> tensor map of the model to accelerate lookups std::unordered_map model_tensors; for (const auto & kv: model.tensors_by_name) { model_tensors.insert(kv); } // load base model std::unique_ptr model_loader; ggml_context * base_ctx = NULL; gguf_buffer base_buf; if (path_base_model) { fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model); model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true)); size_t ctx_size; size_t mmapped_size; model_loader->calc_sizes(&ctx_size, &mmapped_size); base_buf.resize(ctx_size); ggml_init_params base_params; base_params.mem_size = base_buf.size; base_params.mem_buffer = base_buf.addr; base_params.no_alloc = model_loader->use_mmap; base_ctx = ggml_init(base_params); model_loader->ggml_ctx = base_ctx; // maybe this should in llama_model_loader if (model_loader->use_mmap) { model_loader->mapping.reset(new gguf_mmap(&model_loader->file_loader->file, /* prefetch */ 0, ggml_is_numa())); } } // read tensors and apply bool warned = false; int n_tensors = 0; std::vector work_buffer; while (true) { int32_t n_dims; int32_t length; int32_t ftype; fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); fin.read(reinterpret_cast(&length), sizeof(length)); fin.read(reinterpret_cast(&ftype), sizeof(ftype)); if (fin.eof()) { break; } int32_t ne[2] = { 1, 1 }; for (int i = 0; i < n_dims; ++i) { fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); } std::string name; { char buf[1024]; fin.read(buf, length); name = std::string(buf, length); } // check for lora suffix and get the type of tensor const std::string lora_suffix = ".lora"; size_t pos = name.rfind(lora_suffix); if (pos == std::string::npos) { fprintf(stderr, "%s: error: '%s' is not a lora tensor\n", __func__, name.c_str()); return 1; } std::string lora_type = name.substr(pos + lora_suffix.length()); std::string base_name = name; base_name.erase(pos); // fprintf(stderr, "%s: %s => %s (lora type %s) ", __func__, name.c_str(),base_name.c_str(), lora_type.c_str()); if (model_tensors.find(base_name) == model_tensors.end()) { fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__, name.data()); return 1; } // create ggml tensor ggml_type wtype; switch (ftype) { case 0: wtype = GGML_TYPE_F32; break; case 1: wtype = GGML_TYPE_F16; break; default: { fprintf(stderr, "%s: invalid tensor data type '%d'\n", __func__, ftype); return false; } } ggml_tensor * lora_tensor; if (n_dims == 2) { lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]); } else { fprintf(stderr, "%s: unsupported tensor dimension %d\n", __func__, n_dims); return 1; } ggml_set_name(lora_tensor, "lora_tensor"); // load tensor data size_t offset = fin.tellg(); size_t tensor_data_size = ggml_nbytes(lora_tensor); offset = (offset + 31) & -32; fin.seekg(offset); fin.read((char*)lora_tensor->data, tensor_data_size); lora_tensors[name] = lora_tensor; // check if we have both A and B tensors and apply if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() && lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) { ggml_tensor * dest_t = model_tensors[base_name]; offload_func_t offload_func = llama_nop; offload_func_t offload_func_force_inplace = llama_nop; #ifdef GGML_USE_CUBLAS if (dest_t->backend == GGML_BACKEND_GPU || dest_t->backend == GGML_BACKEND_GPU_SPLIT) { if (dest_t->type != GGML_TYPE_F16) { throw std::runtime_error(format( "%s: error: the simultaneous use of LoRAs and GPU acceleration is only supported for f16 models", __func__)); } offload_func = ggml_cuda_assign_buffers; offload_func_force_inplace = ggml_cuda_assign_buffers_force_inplace; } #endif // GGML_USE_CUBLAS ggml_tensor * base_t; if (model_loader) { // load from base model if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) { fprintf(stderr, "%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str()); return 1; } size_t idx = model_loader->tensors_map.name_to_idx[base_name]; llama_load_tensor & lt = model_loader->tensors_map.tensors[idx]; base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU); lt.data = (uint8_t *) lt.ggml_tensor->data; model_loader->load_data_for(lt); lt.ggml_tensor->data = lt.data; } else { base_t = dest_t; } if (ggml_is_quantized(base_t->type)) { if (!warned) { fprintf(stderr, "%s: warning: using a lora adapter with a quantized model may result in poor quality, " "use a f16 or f32 base model with --lora-base\n", __func__); warned = true; } } ggml_tensor * loraA = lora_tensors[base_name + ".loraA"]; GGML_ASSERT(loraA->type == GGML_TYPE_F32); ggml_set_name(loraA, "loraA"); ggml_tensor * loraB = lora_tensors[base_name + ".loraB"]; GGML_ASSERT(loraB->type == GGML_TYPE_F32); ggml_set_name(loraB, "loraB"); if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) { fprintf(stderr, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");" " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]); return 1; } // w = w + BA*s ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB); offload_func(BA); ggml_set_name(BA, "BA"); if (scaling != 1.0f) { ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling); ggml_set_name(scale_tensor, "scale_tensor"); BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor); offload_func(BA); ggml_set_name(BA, "BA_scaled"); } ggml_tensor * r; if (base_t == dest_t) { r = ggml_add_inplace(lora_ctx, dest_t, BA); offload_func_force_inplace(r); ggml_set_name(r, "r_add_inplace"); } else { r = ggml_add(lora_ctx, base_t, BA); offload_func(r); ggml_set_name(r, "r_add"); r = ggml_cpy(lora_ctx, r, dest_t); offload_func(r); ggml_set_name(r, "r_cpy"); } struct ggml_cgraph gf = ggml_build_forward(r); ggml_graph_compute_helper(work_buffer, &gf, n_threads); // we won't need these tensors again, reset the context to save memory ggml_free(lora_ctx); lora_ctx = ggml_init(params); lora_tensors.clear(); n_tensors++; if (n_tensors % 4 == 0) { fprintf(stderr, "."); } } } // TODO: this should be in a destructor, it will leak on failure ggml_free(lora_ctx); if (base_ctx) { ggml_free(base_ctx); } const int64_t t_lora_us = ggml_time_us() - t_start_lora_us; fprintf(stderr, " done (%.2f ms)\n", t_lora_us / 1000.0); return 0; } int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) { try { return llama_apply_lora_from_file_internal(ctx->model, path_lora, path_base_model, n_threads); } catch (const std::exception & err) { fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what()); return 1; } } int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, const char * path_base_model, int n_threads) { try { return llama_apply_lora_from_file_internal(*model, path_lora, path_base_model, n_threads); } catch (const std::exception & err) { fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what()); return 1; } } int llama_get_kv_cache_token_count(const struct llama_context * ctx) { return ctx->kv_self.n; } #define LLAMA_MAX_RNG_STATE (64*1024) void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) { if (seed == LLAMA_DEFAULT_SEED) { seed = time(NULL); } ctx->rng.seed(seed); } // Returns the *maximum* size of the state size_t llama_get_state_size(const struct llama_context * ctx) { // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state. // for reference, std::mt19937(1337) serializes to 6701 bytes. const size_t s_rng_size = sizeof(size_t); const size_t s_rng = LLAMA_MAX_RNG_STATE; const size_t s_logits_capacity = sizeof(size_t); const size_t s_logits_size = sizeof(size_t); const size_t s_logits = ctx->logits.capacity() * sizeof(float); const size_t s_embedding_size = sizeof(size_t); const size_t s_embedding = ctx->embedding.size() * sizeof(float); const size_t s_kv_size = sizeof(size_t); const size_t s_kv_ntok = sizeof(int); const size_t s_kv = ctx->kv_self.buf.size; const size_t s_total = ( + s_rng_size + s_rng + s_logits_capacity + s_logits_size + s_logits + s_embedding_size + s_embedding + s_kv_size + s_kv_ntok + s_kv ); return s_total; } // Copies the state to the specified destination address size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) { uint8_t * out = dst; // copy rng { std::stringstream rng_ss; rng_ss << ctx->rng; const size_t rng_size = rng_ss.str().size(); char rng_buf[LLAMA_MAX_RNG_STATE]; memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE); memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size()); memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size); memcpy(out, &rng_buf[0], LLAMA_MAX_RNG_STATE); out += LLAMA_MAX_RNG_STATE; } // copy logits { const size_t logits_cap = ctx->logits.capacity(); const size_t logits_size = ctx->logits.size(); memcpy(out, &logits_cap, sizeof(logits_cap)); out += sizeof(logits_cap); memcpy(out, &logits_size, sizeof(logits_size)); out += sizeof(logits_size); if (logits_size) { memcpy(out, ctx->logits.data(), logits_size * sizeof(float)); } out += logits_cap * sizeof(float); } // copy embeddings { const size_t embedding_size = ctx->embedding.size(); memcpy(out, &embedding_size, sizeof(embedding_size)); out += sizeof(embedding_size); if (embedding_size) { memcpy(out, ctx->embedding.data(), embedding_size * sizeof(float)); out += embedding_size * sizeof(float); } } // copy kv cache { const auto & kv_self = ctx->kv_self; const auto & hparams = ctx->model.hparams; const int n_layer = hparams.n_layer; const int n_embd = hparams.n_embd; const int n_ctx = hparams.n_ctx; const size_t kv_size = kv_self.buf.size; const int kv_ntok = llama_get_kv_cache_token_count(ctx); memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size); memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok); if (kv_size) { const size_t elt_size = ggml_element_size(kv_self.k); ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true }); ggml_cgraph gf{}; ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer); kout3d->data = out; out += ggml_nbytes(kout3d); ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer); vout3d->data = out; out += ggml_nbytes(vout3d); ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k, n_embd, kv_ntok, n_layer, elt_size*n_embd, elt_size*n_embd*n_ctx, 0); ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v, kv_ntok, n_embd, n_layer, elt_size*n_ctx, elt_size*n_ctx*n_embd, 0); ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d)); ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d)); ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1); ggml_free(cpy_ctx); } } const size_t written = out - dst; const size_t max_size = llama_get_state_size(ctx); GGML_ASSERT(written <= max_size); return written; } // Sets the state reading from the specified source address size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { uint8_t * inp = src; // set rng { size_t rng_size; char rng_buf[LLAMA_MAX_RNG_STATE]; memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size); memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE); inp += LLAMA_MAX_RNG_STATE; std::stringstream rng_ss; rng_ss.str(std::string(&rng_buf[0], rng_size)); rng_ss >> ctx->rng; GGML_ASSERT(rng_ss.fail() == false); } // set logits { size_t logits_cap; size_t logits_size; memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap); memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size); GGML_ASSERT(ctx->logits.capacity() == logits_cap); if (logits_size) { ctx->logits.resize(logits_size); memcpy(ctx->logits.data(), inp, logits_size * sizeof(float)); } inp += logits_cap * sizeof(float); } // set embeddings { size_t embedding_size; memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size); GGML_ASSERT(ctx->embedding.capacity() == embedding_size); if (embedding_size) { memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float)); inp += embedding_size * sizeof(float); } } // set kv cache { const auto & kv_self = ctx->kv_self; const auto & hparams = ctx->model.hparams; const int n_layer = hparams.n_layer; const int n_embd = hparams.n_embd; const int n_ctx = hparams.n_ctx; size_t kv_size; int kv_ntok; memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size); memcpy(&kv_ntok, inp, sizeof(kv_ntok)); inp += sizeof(kv_ntok); if (kv_size) { GGML_ASSERT(kv_self.buf.size == kv_size); const size_t elt_size = ggml_element_size(kv_self.k); ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true }); ggml_cgraph gf{}; ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer); kin3d->data = (void *) inp; inp += ggml_nbytes(kin3d); ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer); vin3d->data = (void *) inp; inp += ggml_nbytes(vin3d); ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k, n_embd, kv_ntok, n_layer, elt_size*n_embd, elt_size*n_embd*n_ctx, 0); ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v, kv_ntok, n_embd, n_layer, elt_size*n_ctx, elt_size*n_ctx*n_embd, 0); ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d)); ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d)); ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1); ggml_free(cpy_ctx); } ctx->kv_self.n = kv_ntok; } const size_t nread = inp - src; const size_t max_size = llama_get_state_size(ctx); GGML_ASSERT(nread <= max_size); return nread; } static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { gguf_file file(path_session, "rb"); GGML_UNUSED(ctx); GGML_UNUSED(path_session); GGML_UNUSED(tokens_out); GGML_UNUSED(n_token_capacity); GGML_UNUSED(n_token_count_out); // TODO: implement with GGUF format return true; } bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { try { return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out); } catch (const std::exception & err) { fprintf(stderr, "error loading session file: %s\n", err.what()); return false; } } bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) { gguf_file file(path_session, "wb"); GGML_UNUSED(ctx); GGML_UNUSED(tokens); GGML_UNUSED(n_token_count); // TODO: implement with GGUF format return true; } int llama_eval( struct llama_context * ctx, const llama_token * tokens, int n_tokens, int n_past, int n_threads) { if (!llama_eval_internal(*ctx, tokens, nullptr, n_tokens, n_past, n_threads, nullptr)) { fprintf(stderr, "%s: failed to eval\n", __func__); return 1; } // get a more accurate load time, upon first eval // TODO: fix this if (!ctx->has_evaluated_once) { ctx->t_load_us = ggml_time_us() - ctx->t_start_us; ctx->has_evaluated_once = true; } return 0; } int llama_eval_embd( struct llama_context * ctx, const float * embd, int n_tokens, int n_past, int n_threads) { if (!llama_eval_internal(*ctx, nullptr, embd, n_tokens, n_past, n_threads, nullptr)) { fprintf(stderr, "%s: failed to eval\n", __func__); return 1; } // get a more accurate load time, upon first eval // TODO: fix this if (!ctx->has_evaluated_once) { ctx->t_load_us = ggml_time_us() - ctx->t_start_us; ctx->has_evaluated_once = true; } return 0; } int llama_eval_export(struct llama_context * ctx, const char * fname) { const int n_batch = 1; const int n_ctx = 512 - n_batch; const std::vector tmp(n_batch, llama_token_bos()); if (!llama_eval_internal(*ctx, tmp.data(), nullptr, tmp.size(), n_ctx, 1, fname)) { fprintf(stderr, "%s: failed to eval\n", __func__); return 1; } return 0; } int llama_tokenize_with_model( const struct llama_model * model, const char * text, llama_token * tokens, int n_max_tokens, bool add_bos) { auto res = llama_tokenize(model->vocab, text, add_bos); if (n_max_tokens < (int) res.size()) { fprintf(stderr, "%s: too many tokens\n", __func__); return -((int) res.size()); } for (size_t i = 0; i < res.size(); i++) { tokens[i] = res[i]; } return res.size(); } int llama_tokenize( struct llama_context * ctx, const char * text, llama_token * tokens, int n_max_tokens, bool add_bos) { return llama_tokenize_with_model(&ctx->model, text, tokens, n_max_tokens, add_bos); } int llama_n_vocab_from_model(const struct llama_model * model) { return model->vocab.id_to_token.size(); } int llama_n_ctx_from_model(const struct llama_model * model) { return model->hparams.n_ctx; } int llama_n_embd_from_model(const struct llama_model * model) { return model->hparams.n_embd; } int llama_n_vocab(const struct llama_context * ctx) { return ctx->model.vocab.id_to_token.size(); } int llama_n_ctx(const struct llama_context * ctx) { return ctx->model.hparams.n_ctx; } int llama_n_embd(const struct llama_context * ctx) { return ctx->model.hparams.n_embd; } int llama_get_vocab_from_model( const struct llama_model * model, const char * * strings, float * scores, int capacity) { int n = std::min(capacity, (int) model->vocab.id_to_token.size()); for (int i = 0; ivocab.id_to_token[i].tok.c_str(); scores[i] = model->vocab.id_to_token[i].score; } return n; } int llama_get_vocab( const struct llama_context * ctx, const char * * strings, float * scores, int capacity) { return llama_get_vocab_from_model(&ctx->model, strings, scores, capacity); } float * llama_get_logits(struct llama_context * ctx) { return ctx->logits.data(); } float * llama_get_embeddings(struct llama_context * ctx) { return ctx->embedding.data(); } const char * llama_token_to_str_with_model(const struct llama_model * model, llama_token token) { if (token >= llama_n_vocab_from_model(model)) { return nullptr; } return model->vocab.id_to_token[token].tok.c_str(); } const char * llama_token_to_str(const struct llama_context * ctx, llama_token token) { return llama_token_to_str_with_model(&ctx->model, token); } llama_token llama_token_bos() { return 1; } llama_token llama_token_eos() { return 2; } llama_token llama_token_nl() { return 13; } struct llama_timings llama_get_timings(struct llama_context * ctx) { struct llama_timings result = { /*.t_start_ms =*/ 1e-3 * ctx->t_start_us, /*.t_end_ms =*/ 1.00 * ggml_time_ms(), /*.t_load_ms =*/ 1e-3 * ctx->t_load_us, /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us, /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us, /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us, /*.n_sample =*/ std::max(1, ctx->n_sample), /*.n_p_eval =*/ std::max(1, ctx->n_p_eval), /*.n_eval =*/ std::max(1, ctx->n_eval), }; return result; } void llama_print_timings(struct llama_context * ctx) { const llama_timings timings = llama_get_timings(ctx); fprintf(stderr, "\n"); fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, timings.t_load_ms); fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample); fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n", __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval); fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval); fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms)); } void llama_reset_timings(struct llama_context * ctx) { ctx->t_start_us = ggml_time_us(); ctx->t_sample_us = ctx->n_sample = 0; ctx->t_eval_us = ctx->n_eval = 0; ctx->t_p_eval_us = ctx->n_p_eval = 0; } const char * llama_print_system_info(void) { static std::string s; s = ""; s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | "; s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | "; s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | "; s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | "; s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | "; s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | "; s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | "; s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | "; s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | "; s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | "; s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | "; s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | "; s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | "; s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | "; return s.c_str(); } // For internal test use const std::vector>& llama_internal_get_tensor_map(struct llama_context * ctx) { return ctx->model.tensors_by_name; }