#include "common.h" #include "ggml.h" #include "llama.h" #include "train.h" #include #include #include #include #include #include #include #include #include #include #include struct random_normal_distribution { std::mt19937 gen; std::normal_distribution rd; float min; float max; }; struct random_uniform_distribution { std::mt19937 gen; std::uniform_real_distribution rd; }; struct train_state * init_train_state() { struct train_state * state = new struct train_state; state->train_its = 0; state->train_samples = 0; state->train_tokens = 0; state->train_epochs = 0; state->shuffle_samples_hash = 0; state->shuffle_sample_count = 0; state->shuffle_next_sample = 0; state->shuffle_rng_state_current = ""; state->shuffle_rng_state_next = ""; state->opt = new struct ggml_opt_context; state->opt->ctx = NULL; state->opt->params = ggml_opt_default_params(GGML_OPT_ADAM); state->opt->loss_after = 0.0f; return state; } void free_train_state(struct train_state * state) { delete state->opt; delete state; } struct random_normal_distribution * init_random_normal_distribution( int seed, float mean, float std, float min, float max ) { struct random_normal_distribution * rnd = (struct random_normal_distribution *) malloc(sizeof(struct random_normal_distribution)); rnd->gen = std::mt19937(seed); rnd->rd = std::normal_distribution{mean, std}; rnd->min = min; rnd->max = max; return rnd; } struct random_uniform_distribution * init_random_uniform_distribution(int seed, float min, float max) { struct random_uniform_distribution * rnd = (struct random_uniform_distribution *) malloc(sizeof(struct random_uniform_distribution)); rnd->gen = std::mt19937(seed); rnd->rd = std::uniform_real_distribution{min, max}; return rnd; } void free_random_normal_distribution (struct random_normal_distribution * rnd) { free(rnd); } void free_random_uniform_distribution(struct random_uniform_distribution * rnd) { free(rnd); } struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct random_normal_distribution * rnd) { float scale = 1.0f; // xavier switch (tensor->n_dims) { case 1: scale /= sqrtf((float) tensor->ne[0]); for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]); *dst = scale * frand_normal(rnd); } break; case 2: scale /= sqrtf((float) tensor->ne[0]+tensor->ne[1]); for (int i1 = 0; i1 < tensor->ne[1]; i1++) { for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); *dst = scale * frand_normal(rnd); } } break; case 3: scale /= sqrtf((float) tensor->ne[0]+tensor->ne[1]); for (int i2 = 0; i2 < tensor->ne[2]; i2++) { for (int i1 = 0; i1 < tensor->ne[1]; i1++) { for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); *dst = scale * frand_normal(rnd); } } } break; case 4: scale /= sqrtf((float) tensor->ne[0]+tensor->ne[1]); for (int i3 = 0; i3 < tensor->ne[3]; i3++) { for (int i2 = 0; i2 < tensor->ne[2]; i2++) { for (int i1 = 0; i1 < tensor->ne[1]; i1++) { for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]); *dst = scale * frand_normal(rnd); } } } } break; default: die("Unsupported tensor->n_dims"); }; return tensor; } struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd) { switch (tensor->n_dims) { case 1: for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]); *dst = frand_uniform(rnd); } break; case 2: for (int i1 = 0; i1 < tensor->ne[1]; i1++) { for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); *dst = frand_uniform(rnd); } } break; case 3: for (int i2 = 0; i2 < tensor->ne[2]; i2++) { for (int i1 = 0; i1 < tensor->ne[1]; i1++) { for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); *dst = frand_uniform(rnd); } } } break; case 4: for (int i3 = 0; i3 < tensor->ne[3]; i3++) { for (int i2 = 0; i2 < tensor->ne[2]; i2++) { for (int i1 = 0; i1 < tensor->ne[1]; i1++) { for (int i0 = 0; i0 < tensor->ne[0]; i0++) { float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]); *dst = frand_uniform(rnd); } } } } break; default: die("Unsupported tensor->n_dims"); }; return tensor; } float frand() { return (float)rand()/((float)(RAND_MAX) + 1.0f); } float frand_normal(struct random_normal_distribution * rnd) { return fclamp(rnd->rd(rnd->gen), rnd->min, rnd->max); } float frand_uniform(struct random_uniform_distribution * rnd) { return rnd->rd(rnd->gen); } int clamp(const int v, const int min, const int max) { return ((v < min) ? (min) : (v > max) ? (max) : v); } float fclamp(const float v, const float min, const float max) { return ((v < min) ? (min) : (v > max) ? (max) : v); } void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) { GGML_ASSERT(tensor->n_dims == 1); GGML_ASSERT(tensor->ne[0] == ne0); } void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) { GGML_ASSERT(tensor->n_dims == 2); GGML_ASSERT(tensor->ne[0] == ne0); GGML_ASSERT(tensor->ne[1] == ne1); } void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) { GGML_ASSERT(tensor->n_dims == 3); GGML_ASSERT(tensor->ne[0] == ne0); GGML_ASSERT(tensor->ne[1] == ne1); GGML_ASSERT(tensor->ne[2] == ne2); } void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) { GGML_ASSERT(tensor->n_dims == 4); GGML_ASSERT(tensor->ne[0] == ne0); GGML_ASSERT(tensor->ne[1] == ne1); GGML_ASSERT(tensor->ne[2] == ne2); GGML_ASSERT(tensor->ne[3] == ne3); } int64_t get_example_targets_batch( struct llama_context * lctx, struct ggml_tensor * tokens_input, struct ggml_tensor * target_probs, int64_t example_id, const size_t * samples_offs, const size_t * samples_begin, const size_t * samples_size, size_t samples_count, const llama_token * train_data, size_t n_train_data, bool separate_with_eos, bool separate_with_bos, bool fill_with_next_samples, bool sample_random_offsets ) { GGML_ASSERT(samples_count > 0); GGML_ASSERT(tokens_input->n_dims == 2); GGML_ASSERT(target_probs->n_dims == 3); int64_t n_vocab = target_probs->ne[0]; int64_t n_tokens = tokens_input->ne[0]; int64_t n_batch = tokens_input->ne[1]; GGML_ASSERT(n_vocab == target_probs->ne[0]); GGML_ASSERT(n_tokens == target_probs->ne[1]); GGML_ASSERT(n_batch == target_probs->ne[2]); int64_t used_samples = 0; ggml_set_f32(target_probs, 0.0f); llama_token bos = llama_token_bos(llama_get_model(lctx)); llama_token eos = llama_token_eos(llama_get_model(lctx)); // printf("%s: example_id=%d n_batch=%d n_train_samples=%zu\n", __func__, example_id, n_batch, n_train_samples); for (int k=0; k= sample_size && fill_with_next_samples) { if (!sample_separation_eos) { // insert eos token to separate samples sample_separation_eos = true; } else if (!sample_separation_bos) { // insert bos token to separate samples sample_separation_bos = true; token = bos; } else { // sample separation is done, continue with next sample sample_separation_eos = !separate_with_eos; sample_separation_bos = !separate_with_bos; sample_offs = 0; sample_idx = (example_id + used_samples) % samples_count; sample_begin = samples_begin[sample_idx]; sample_size = samples_size[sample_idx]; ++used_samples; } } // note: no else-if here if (sample_offs < sample_size) { token = clamp(train_data[sample_begin+sample_offs], 0, (llama_token) (n_vocab - 1)); ++sample_offs; } ggml_set_f32_nd(target_probs, token, (int) i, (int) k, 0, +1.0f); if (i+1> rng; } std::string mt19937_get_state(const std::mt19937& rng) { std::stringstream s_rng_state; s_rng_state.imbue(std::locale::classic()); s_rng_state << rng; return s_rng_state.str(); } std::string mt19937_seed_to_state(unsigned seed) { std::mt19937 rng(seed); return mt19937_get_state(rng); } std::string shuffle_samples( const std::string & rng_state, size_t * shuffled_offs, size_t * shuffled_begins, size_t * shuffled_sizes, const size_t * begins, const size_t * sizes, size_t count) { if (count == 0) return rng_state; std::mt19937 rng; mt19937_set_state(rng, rng_state); // sort indices by random value for each index std::vector idcs; { std::vector rnd; idcs.resize(count); rnd.resize(count); for (unsigned i=0; i h_string; std::hash h_ull; size_t h = h_string(std::string(fn)); h = hash_combine(h, h_ull((unsigned long long) sample_count)); for (size_t i=0; i< sample_count; ++i) { h = hash_combine(h, h_ull((unsigned long long) samples_begin[i])); h = hash_combine(h, h_ull((unsigned long long) samples_size[i])); } return h; } std::string replace_str(const char * s, const char * needle, const char * replacement) { std::string str = s; size_t pos = str.find(needle); if (pos != std::string::npos) { str.replace(pos, strlen(needle), replacement); } return str; } void print_duration(double fmillis) { if (fmillis < 1000.0f) { printf("%.1fms", (float) fmillis); return; } const int64_t one_sec = 1000; const int64_t one_min = one_sec * 60; const int64_t one_hour = one_min * 60; const int64_t one_day = one_hour * 24; int64_t millis = (int64_t) fmillis; int64_t days = millis/one_day; int64_t hours = (millis - days*one_day)/one_hour; int64_t minutes = (millis - days*one_day - hours*one_hour)/one_min; int64_t seconds = (millis - days*one_day - hours*one_hour - minutes*one_min)/one_sec; // to print int64_t either cast to (long long int) or use macro PRId64 from if (days > 0) { printf("%lldd ", (long long int) days); } printf("%02lld:%02lld:%02lld", (long long int) hours, (long long int) minutes, (long long int) seconds); } float cosine_decay(int64_t step, int64_t decay_steps, float minimum) { if (step > decay_steps) { step = decay_steps; } const float cosine_decay = 0.50f*(1.0f + cosf(3.14159265359f*step/decay_steps)); const float decay = (1 - minimum)*cosine_decay + minimum; return decay; } float cosine_decay_restart(int64_t step, int64_t decay_steps, float minimum, float restart_step_mult) { while (step > decay_steps) { step -= decay_steps; decay_steps = (int64_t) (restart_step_mult * decay_steps); } return cosine_decay(step, decay_steps, minimum); } float learning_schedule( int64_t step, int64_t warmup_steps, int64_t cos_decay_steps, float learning_rate, float overall_minimum, float cos_decay_minimum, float cos_decay_restart_step_mult, bool enable_restart) { float result = (step < warmup_steps) ? (float) step / (float) warmup_steps : enable_restart ? cosine_decay_restart( step - warmup_steps, cos_decay_steps, cos_decay_minimum, cos_decay_restart_step_mult) : cosine_decay( step, cos_decay_steps, cos_decay_minimum); float min = overall_minimum / learning_rate; result = min + result * (1.0f - min); return result; } static bool are_same_layout(struct ggml_tensor * a, struct ggml_tensor * b) { GGML_ASSERT(a != NULL); GGML_ASSERT(b != NULL); GGML_ASSERT(a->type == b->type); GGML_ASSERT(ggml_are_same_shape(a, b)); GGML_ASSERT(ggml_is_contiguous(a) && ggml_is_contiguous(b)); return true; } void copy_tensor_by_name(struct ggml_tensor * dst, struct ggml_context * ctx, const char * name) { if (dst == NULL) { return; } struct ggml_tensor * t = ggml_get_tensor(ctx, name); GGML_ASSERT(are_same_layout(dst, t)); memcpy(dst->data, t->data, ggml_nbytes(t)); if (strlen(ggml_get_name(dst)) == 0) { ggml_set_name(dst, name); } } // gguf constants static const char * LLM_KV_OPTIMIZER_TYPE = "optimizer.type"; static const char * LLM_KV_OPTIMIZER_TYPE_ADAM = "adam"; static const char * LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs"; static const char * LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version"; static const char * LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count"; static const char * LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count"; static const char * LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count"; static const char * LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized"; static const char * LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss"; static const char * LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss"; static const char * LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count"; static const char * LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count"; static const char * LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss"; static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step"; static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j"; static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k"; static const char * LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end"; static const char * LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count"; static const char * LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments"; static const char * LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments"; static const char * LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values"; static const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters"; static const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters"; static const char * LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients"; static const char * LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients"; static const char * LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction"; static const char * LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values"; static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha"; static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys"; static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"; static const char * LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"; static const char * LLM_KV_TRAINING_FILE_VERSION = "training.file_version"; static const char * LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"; static const char * LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"; static const char * LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"; static const char * LLM_KV_TRAINING_EPOCH_COUNT = "training.epoch_count"; static const char * LLM_KV_TRAINING_SHUFFLE_SAMPLES_HASH = "training.shuffle.samples_hash"; static const char * LLM_KV_TRAINING_SHUFFLE_RNG_STATE = "training.shuffle.rng_state"; static const char * LLM_KV_TRAINING_SHUFFLE_SAMPLE_COUNT = "training.shuffle.sample_count"; static const char * LLM_KV_TRAINING_SHUFFLE_NEXT_SAMPLE = "training.shuffle.next_sample"; #define GGUF_GET_KEY(ctx, dst, func, type, req, key) \ { \ const std::string skey(key); \ const int kid = gguf_find_key(ctx, skey.c_str()); \ if (kid >= 0) { \ enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \ if (ktype != (type)) { \ die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \ } \ (dst) = func(ctx, kid); \ } else if (req) { \ die_fmt("key not found in model: %s", skey.c_str()); \ } \ } void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct ggml_opt_context * opt) { // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read uint32_t file_version; GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_FILE_VERSION); GGML_ASSERT(file_version == 0); GGUF_GET_KEY(fctx, opt->params.past, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT); GGUF_GET_KEY(fctx, opt->iter, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ITERATION_COUNT); GGUF_GET_KEY(fctx, opt->just_initialized, gguf_get_val_bool, GGUF_TYPE_BOOL, true, LLM_KV_OPTIMIZER_JUST_INITIALIZED); uint64_t nx; GGUF_GET_KEY(fctx, nx, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_OPTIMIZER_PARAMETER_COUNT); opt->nx = (size_t) nx; // don't call ggml_opt_init until optimizer type and optimizer specific parameters are know std::string opt_type; GGUF_GET_KEY(fctx, opt_type, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_OPTIMIZER_TYPE); if (opt_type == LLM_KV_OPTIMIZER_TYPE_ADAM) { opt->params.type = GGML_OPT_ADAM; GGUF_GET_KEY(fctx, opt->adam.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS); GGUF_GET_KEY(fctx, opt->adam.fx_prev, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS); GGUF_GET_KEY(fctx, opt->adam.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT); ggml_opt_init(opt->ctx, opt, opt->params, opt->nx); copy_tensor_by_name(opt->adam.m, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS); copy_tensor_by_name(opt->adam.v, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS); copy_tensor_by_name(opt->adam.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES); } else if (opt_type == LLM_KV_OPTIMIZER_TYPE_LBFGS) { opt->params.type = GGML_OPT_LBFGS; GGUF_GET_KEY(fctx, opt->params.lbfgs.m, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT); GGUF_GET_KEY(fctx, opt->lbfgs.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS); GGUF_GET_KEY(fctx, opt->lbfgs.step, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP); GGUF_GET_KEY(fctx, opt->lbfgs.j, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J); GGUF_GET_KEY(fctx, opt->lbfgs.k, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K); GGUF_GET_KEY(fctx, opt->lbfgs.end, gguf_get_val_i32, GGUF_TYPE_INT32, true, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END); GGUF_GET_KEY(fctx, opt->lbfgs.n_no_improvement, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT); ggml_opt_init(opt->ctx, opt, opt->params, opt->nx); copy_tensor_by_name(opt->lbfgs.x, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS); copy_tensor_by_name(opt->lbfgs.xp, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS); copy_tensor_by_name(opt->lbfgs.g, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS); copy_tensor_by_name(opt->lbfgs.gp, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS); copy_tensor_by_name(opt->lbfgs.d, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION); copy_tensor_by_name(opt->lbfgs.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES); copy_tensor_by_name(opt->lbfgs.lmal, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA); copy_tensor_by_name(opt->lbfgs.lmys, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS); copy_tensor_by_name(opt->lbfgs.lms, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S); copy_tensor_by_name(opt->lbfgs.lmy, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y); } else { die("unknown optimizer type\n"); } } void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * opt) { gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_FILE_VERSION, 0); gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, opt->params.past); gguf_set_val_u64(fctx, LLM_KV_OPTIMIZER_PARAMETER_COUNT, (uint64_t) opt->nx); gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ITERATION_COUNT, opt->iter); gguf_set_val_bool(fctx, LLM_KV_OPTIMIZER_JUST_INITIALIZED, opt->just_initialized); switch (opt->params.type) { case GGML_OPT_ADAM: { gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM); gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, opt->adam.fx_best); gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, opt->adam.fx_prev); gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, opt->adam.n_no_improvement); ggml_set_name(opt->adam.m, LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS); ggml_set_name(opt->adam.v, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS); if (opt->adam.pf) { ggml_set_name(opt->adam.pf, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES); } gguf_add_tensor(fctx, opt->adam.m); gguf_add_tensor(fctx, opt->adam.v); if (opt->adam.pf) { gguf_add_tensor(fctx, opt->adam.pf); } } break; case GGML_OPT_LBFGS: { gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS); gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, opt->params.lbfgs.m); gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, opt->lbfgs.fx_best); gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, opt->lbfgs.step); gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, opt->lbfgs.j); gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, opt->lbfgs.k); gguf_set_val_i32(fctx, LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, opt->lbfgs.end); gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, opt->lbfgs.n_no_improvement); ggml_set_name(opt->lbfgs.x, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS); ggml_set_name(opt->lbfgs.xp, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS); ggml_set_name(opt->lbfgs.g, LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS); ggml_set_name(opt->lbfgs.gp, LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS); ggml_set_name(opt->lbfgs.d, LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION); if (opt->lbfgs.pf) { ggml_set_name(opt->lbfgs.pf, LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES); } ggml_set_name(opt->lbfgs.lmal, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA); ggml_set_name(opt->lbfgs.lmys, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS); ggml_set_name(opt->lbfgs.lms, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S); ggml_set_name(opt->lbfgs.lmy, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y); gguf_add_tensor(fctx, opt->lbfgs.x); gguf_add_tensor(fctx, opt->lbfgs.xp); gguf_add_tensor(fctx, opt->lbfgs.g); gguf_add_tensor(fctx, opt->lbfgs.gp); gguf_add_tensor(fctx, opt->lbfgs.d); if (opt->lbfgs.pf) { gguf_add_tensor(fctx, opt->lbfgs.pf); } gguf_add_tensor(fctx, opt->lbfgs.lmal); gguf_add_tensor(fctx, opt->lbfgs.lmys); gguf_add_tensor(fctx, opt->lbfgs.lms); gguf_add_tensor(fctx, opt->lbfgs.lmy); } break; } } bool load_train_state_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct train_state * train) { if (gguf_find_key(fctx, LLM_KV_TRAINING_FILE_VERSION) < 0) { return false; } uint32_t file_version; GGUF_GET_KEY(fctx, file_version, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_FILE_VERSION); GGML_ASSERT(file_version <= 1); if (file_version == 0) { GGUF_GET_KEY(fctx, train->train_its, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_ITERATION_COUNT); GGUF_GET_KEY(fctx, train->train_samples, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_SAMPLE_COUNT); GGUF_GET_KEY(fctx, train->train_tokens, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_TOKEN_COUNT); } else if (file_version == 1) { GGUF_GET_KEY(fctx, train->train_its, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_ITERATION_COUNT); GGUF_GET_KEY(fctx, train->train_samples, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_SAMPLE_COUNT); GGUF_GET_KEY(fctx, train->train_tokens, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_TOKEN_COUNT); GGUF_GET_KEY(fctx, train->train_epochs, gguf_get_val_u64, GGUF_TYPE_UINT64, true, LLM_KV_TRAINING_EPOCH_COUNT); GGUF_GET_KEY(fctx, train->shuffle_samples_hash, gguf_get_val_u64, GGUF_TYPE_UINT64, false, LLM_KV_TRAINING_SHUFFLE_SAMPLES_HASH); GGUF_GET_KEY(fctx, train->shuffle_rng_state_current, gguf_get_val_str, GGUF_TYPE_STRING, false, LLM_KV_TRAINING_SHUFFLE_RNG_STATE); GGUF_GET_KEY(fctx, train->shuffle_sample_count, gguf_get_val_u64, GGUF_TYPE_UINT64, false, LLM_KV_TRAINING_SHUFFLE_SAMPLE_COUNT); GGUF_GET_KEY(fctx, train->shuffle_next_sample, gguf_get_val_u64, GGUF_TYPE_UINT64, false, LLM_KV_TRAINING_SHUFFLE_NEXT_SAMPLE); } load_opt_context_gguf(fctx, f_ggml_ctx, train->opt); return true; } void save_train_state_gguf(struct gguf_context * fctx, struct train_state * train) { gguf_set_val_u32(fctx, LLM_KV_TRAINING_FILE_VERSION, 1); gguf_set_val_u64(fctx, LLM_KV_TRAINING_ITERATION_COUNT, train->train_its); gguf_set_val_u64(fctx, LLM_KV_TRAINING_SAMPLE_COUNT, train->train_samples); gguf_set_val_u64(fctx, LLM_KV_TRAINING_TOKEN_COUNT, train->train_tokens); gguf_set_val_u64(fctx, LLM_KV_TRAINING_EPOCH_COUNT, train->train_epochs); gguf_set_val_u64(fctx, LLM_KV_TRAINING_SHUFFLE_SAMPLES_HASH, (uint64_t) train->shuffle_samples_hash); gguf_set_val_str(fctx, LLM_KV_TRAINING_SHUFFLE_RNG_STATE, train->shuffle_rng_state_current.c_str()); gguf_set_val_u64(fctx, LLM_KV_TRAINING_SHUFFLE_SAMPLE_COUNT, (uint64_t) train->shuffle_sample_count); gguf_set_val_u64(fctx, LLM_KV_TRAINING_SHUFFLE_NEXT_SAMPLE, (uint64_t) train->shuffle_next_sample); save_opt_context_gguf(fctx, train->opt); } struct llama_file { // use FILE * so we don't have to re-open the file to mmap FILE * fp; size_t size; llama_file(const char * fname, const char * mode) { fp = std::fopen(fname, mode); if (fp == NULL) { size = 0; } else { seek(0, SEEK_END); size = tell(); seek(0, SEEK_SET); } } size_t tell() const { #ifdef _WIN32 __int64 ret = _ftelli64(fp); #else long ret = std::ftell(fp); #endif GGML_ASSERT(ret != -1); // this really shouldn't fail return (size_t) ret; } void seek(size_t offset, int whence) { #ifdef _WIN32 int ret = _fseeki64(fp, (__int64) offset, whence); #else int ret = std::fseek(fp, (long) offset, whence); #endif GGML_ASSERT(ret == 0); // same } void read_raw(void * ptr, size_t size) { if (size == 0) { return; } errno = 0; std::size_t ret = std::fread(ptr, size, 1, fp); if (ferror(fp)) { die_fmt("read error: %s", strerror(errno)); } if (ret != 1) { die("unexpectedly reached end of file"); } } std::uint32_t read_u32() { std::uint32_t ret; read_raw(&ret, sizeof(ret)); return ret; } std::string read_string(std::uint32_t len) { std::vector chars(len); read_raw(chars.data(), len); return std::string(chars.data(), len); } void write_raw(const void * ptr, size_t size) { if (size == 0) { return; } errno = 0; size_t ret = std::fwrite(ptr, size, 1, fp); if (ret != 1) { die_fmt("write error: %s", strerror(errno)); } } void write_u32(std::uint32_t val) { write_raw(&val, sizeof(val)); } ~llama_file() { if (fp) { std::fclose(fp); } } }; static size_t utf8_len(char src) { const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 }; uint8_t highbits = static_cast(src) >> 4; return lookup[highbits]; } // mark each byte with its utf8 unit number. // returns the number of utf8 characters. // e.g. when bytes == '\x61\xD0\xB0\x62', // then utf8_units will become [0,0,1,0] // utf8_nunits will become [1,2,2,1] and 3 is returned. // bytes where utf8_units is zero, are the begin of an utf8 character. static size_t mark_utf8_units(const char* bytes, int * utf8_units, int * utf8_nunits, size_t count) { size_t offs = 0; size_t count_utf8 = 0; while(offs < count) { int len = (int) utf8_len(bytes[offs]); for (int i=0; i & out_tokens, std::vector & out_samples_begin, std::vector & out_samples_size) { struct llama_file f(filename, "rb"); if (f.size == 0) { out_tokens.clear(); out_samples_begin.clear(); out_samples_size.clear(); printf("%s: warning: empty or not existing training data file '%s'\n", __func__, filename); return out_tokens.size(); } // account for possible leading whitespace that will be added by tokenizer // e.g. '\t' will be tokenized by llama spm tokenizer to [29871, 12] const int n_max_tokens_overhead = 1; std::vector buf; buf.resize(f.size); f.read_raw(buf.data(), f.size); std::vector utf8_units; std::vector utf8_nunits; utf8_units.resize(buf.size()); utf8_nunits.resize(buf.size()); mark_utf8_units(buf.data(), utf8_units.data(), utf8_nunits.data(), buf.size()); if (sample_start.size() == 0) { // tokenize all data at once out_tokens.resize(buf.size() + n_max_tokens_overhead); int n_tokens = llama_tokenize( llama_get_model(lctx), buf.data(), (int) buf.size(), out_tokens.data(), (int) out_tokens.size(), false, false); if (n_tokens < 0) { out_tokens.resize(-n_tokens); n_tokens = llama_tokenize( llama_get_model(lctx), buf.data(), (int) buf.size(), out_tokens.data(), (int) out_tokens.size(), false, false); } if (n_tokens >= 0) { out_tokens.resize(n_tokens); } // generate sample starts at all token positions out_samples_begin.clear(); out_samples_begin.push_back(0); out_samples_size.push_back(std::min((size_t) context_length, out_tokens.size())); size_t end = (out_tokens.size() >= context_length) ? (out_tokens.size() - context_length) : 0; for (size_t sample_begin = 1; sample_begin < end; ++sample_begin) { out_samples_begin.push_back(sample_begin); out_samples_size.push_back(context_length); } } else { // split data into samples and tokenize each sample std::string data_str(buf.data(), buf.size()); out_samples_begin.clear(); out_samples_size.clear(); out_tokens.clear(); // find all positions of pattern sample_start size_t sample_begin = data_str.find(sample_start, 0); while (sample_begin != std::string::npos) { out_samples_begin.push_back(sample_begin); const size_t search_start = sample_begin + sample_start.size(); sample_begin = data_str.find(sample_start, search_start); } if (out_samples_begin.size() == 0) { printf("%s: warning: sample start pattern '%s' not found. inserting single sample at data begin\n", __func__, sample_start.c_str()); out_samples_begin.push_back(0); } out_samples_size.resize(out_samples_begin.size(), 0); std::vector buf_sample; std::vector tok_sample; const size_t sample_begin_offset = (include_sample_start ? 0 : sample_start.size()); size_t found_too_big_sample = 0; size_t found_too_small_sample = 0; size_t found_empty_sample = 0; size_t found_min_sample_size = SIZE_MAX; size_t found_max_sample_size = 0; size_t max_token_text_size = 0; int n_vocab = llama_n_vocab(llama_get_model(lctx)); for (llama_token token=0; token < n_vocab; ++token) { max_token_text_size = std::max( max_token_text_size, strlen(llama_token_get_text(llama_get_model(lctx), token))); } // upper bound of context byte length. // strings with this byte length should always tokenize to at least context_length tokens. size_t context_byte_len = max_token_text_size*context_length; for (unsigned i=0; i 0) { // sample end is in the middle of an utf8 character. // advance sample_end to the begin of the next utf8 character. sample_end += utf8_nunits[sample_end] - utf8_units[sample_end]; } size_t sample_size = sample_end - sample_begin; if (sample_size == 0) { ++found_empty_sample; } if (sample_size > 0) { // llama_tokenize expects zero terminated string, // copy sample into buffer and zero terminate it. buf_sample.resize(sample_size); memcpy(buf_sample.data(), data_str.data() + sample_begin, sample_size); // printf("sample: '%s'\n", buf_sample.data()); // tokenize the sample tok_sample.resize(buf_sample.size() + n_max_tokens_overhead); int n_tokens = llama_tokenize(llama_get_model(lctx), buf_sample.data(), (int) buf_sample.size(), tok_sample.data(), (int) tok_sample.size(), false, false); if (n_tokens < 0) { tok_sample.resize(-n_tokens); n_tokens = llama_tokenize(llama_get_model(lctx), buf_sample.data(), (int) buf_sample.size(), tok_sample.data(), (int) tok_sample.size(), false, false); GGML_ASSERT(n_tokens >= 0); } GGML_ASSERT(n_tokens <= (int) tok_sample.size()); if ((size_t) n_tokens > context_length) { ++found_too_big_sample; } else if ((size_t) n_tokens < context_length) { ++found_too_small_sample; } found_max_sample_size = std::max(found_max_sample_size, (size_t) n_tokens); found_min_sample_size = std::min(found_min_sample_size, (size_t) n_tokens); // write out tokens, start and size of sample // overwrite the string start position with the token start position out_samples_begin[i] = out_tokens.size(); out_samples_size[i] = (size_t) n_tokens; out_tokens.insert(out_tokens.end(), tok_sample.begin(), tok_sample.begin() + n_tokens); } else { out_samples_begin[i] = out_tokens.size(); out_samples_size[i] = 0; } } if (found_too_big_sample > 0) { printf("%s: warning: found %zu samples (max length %zu) that exceed context length of %u. samples will be cut off.\n", __func__, found_too_big_sample, found_max_sample_size, context_length); } if (found_too_small_sample > 0) { printf("%s: warning: found %zu samples (min length %zu) that are shorter than context length of %u.\n", __func__, found_too_small_sample, found_min_sample_size, context_length); } if (found_empty_sample) { printf("%s: warning: found %zu empty samples.\n", __func__, found_empty_sample); } } printf("%s: total number of samples: %zu\n", __func__, out_samples_begin.size()); GGML_ASSERT(out_samples_begin.size() == out_samples_size.size()); return out_tokens.size(); } std::string get_train_filename(const char * filename, const char * pattern_it, const char * latest, int64_t iteration) { std::string sit = (iteration >= 0) ? std::to_string(iteration) : std::string(latest); return replace_str(filename, pattern_it, sit.c_str()); } struct train_params_common get_default_train_params_common() { struct train_params_common params; params.fn_train_data = "shakespeare.txt"; params.fn_checkpoint_in = "checkpoint.gguf"; params.fn_checkpoint_out = "checkpoint-ITERATION.gguf"; params.pattern_fn_it = "ITERATION"; params.fn_latest = "LATEST"; params.print_usage = false; params.save_every = 10; params.seed = -1; params.n_ctx = 128; params.n_threads = 6; params.n_batch = 8; params.n_gradient_accumulation = 1; params.n_epochs = -1; params.n_gpu_layers = 0; params.custom_n_ctx = false; params.use_flash = true; params.use_checkpointing = true; params.sample_start = ""; params.include_sample_start = false; params.escape = false; params.overlapping_samples = false; params.fill_with_next_samples = false; params.separate_with_eos = false; params.separate_with_bos = true; params.sample_random_offsets = false; params.force_reshuffle = false; params.opt_past = 0; params.opt_delta = 1e-5f; params.opt_max_no_improvement = 0; params.warmup = 100; params.cos_decay_steps = 1000; params.cos_decay_restart = 1.1f; params.cos_decay_min = 0.1f; params.enable_restart = false; params.adam_n_iter = 256; params.adam_alpha = 1e-3f; params.adam_min_alpha = 0; params.adam_decay = 1e-1f; params.adam_decay_min_ndim = 2; params.adam_beta1 = 0.9f; params.adam_beta2 = 0.999f; params.adam_gclip = 1.0f; params.adam_eps_f = 0.0f; return params; } void print_common_train_usage(int /*argc*/, char ** /*argv*/, const struct train_params_common * params) { // fprintf(stderr, "usage: %s [options]\n", argv[0]); // fprintf(stderr, "\n"); // fprintf(stderr, "options:\n"); // fprintf(stderr, " -h, --help show this help message and exit\n"); fprintf(stderr, " --train-data FNAME path from which to load training data (default '%s')\n", params->fn_train_data); fprintf(stderr, " --checkpoint-in FNAME path from which to load training checkpoint (default '%s')\n", params->fn_checkpoint_in); fprintf(stderr, " --checkpoint-out FNAME path to save training checkpoint (default '%s')\n", params->fn_checkpoint_out); fprintf(stderr, " --pattern-fn-it STR pattern in output filenames to be replaced by iteration number (default '%s')\n", params->pattern_fn_it); fprintf(stderr, " --fn-latest STR string to use instead of iteration number for saving latest output (default '%s')\n", params->fn_latest); fprintf(stderr, " --save-every N save checkpoint and lora every N iterations. Disabled when N <= 0. (default '%d')\n", params->save_every); fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for -1)\n"); fprintf(stderr, " -c N, --ctx N Context size used during training (default %d)\n", params->n_ctx); fprintf(stderr, " -t N, --threads N Number of threads (default %d)\n", params->n_threads); fprintf(stderr, " -b N, --batch N Parallel batch size (default %d)\n", params->n_batch); fprintf(stderr, " --grad-acc N Number of gradient accumulation steps (simulates larger batch size of batch*gradacc) (default %d)\n", params->n_gradient_accumulation); fprintf(stderr, " --sample-start STR Sets the starting point for samples after the specified pattern. If empty use every token position as sample start. (default '%s')\n", params->sample_start.c_str()); fprintf(stderr, " --include-sample-start Include the sample start in the samples. (default off)\n"); fprintf(stderr, " --escape process sample start escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n"); fprintf(stderr, " --overlapping-samples Samples my overlap, will include sample-start of second and following samples. When off, samples will end at begin of next sample. (default off)\n"); fprintf(stderr, " --fill-with-next-samples Samples shorter than context length will be followed by the next (shuffled) samples. (default off)\n"); fprintf(stderr, " --separate-with-eos When fill-with-next-samples, insert end-of-sequence token between samples.%s\n", params->separate_with_eos ? " (default)" : ""); fprintf(stderr, " --separate-with-bos When fill-with-next-samples, insert begin-of-sequence token between samples.%s\n", params->separate_with_bos ? " (default)" : ""); fprintf(stderr, " --no-separate-with-eos When fill-with-next-samples, don't insert end-of-sequence token between samples.%s\n", !params->separate_with_eos ? " (default)" : ""); fprintf(stderr, " --no-separate-with-bos When fill-with-next-samples, don't insert begin-of-sequence token between samples.%s\n", !params->separate_with_bos ? " (default)" : ""); fprintf(stderr, " --sample-random-offsets Use samples beginning at random offsets. Together with fill-with-next-samples this may help for training endless text generation.%s\n", params->sample_random_offsets ? " (default)" : ""); fprintf(stderr, " --force-reshuffle Force a reshuffling of data at program start, otherwise the shuffling of loaded checkpoint is resumed.\n"); fprintf(stderr, " --no-flash Don't use flash attention \n"); fprintf(stderr, " --use-flash Use flash attention (default)\n"); fprintf(stderr, " --no-checkpointing Don't use gradient checkpointing\n"); fprintf(stderr, " --use-checkpointing Use gradient checkpointing (default)\n"); fprintf(stderr, " --warmup N Only for Adam optimizer. Number of warmup steps (default %d)\n", params->warmup); fprintf(stderr, " --cos-decay-steps N Only for Adam optimizer. Number of cosine decay steps (default %d)\n", params->cos_decay_steps); fprintf(stderr, " --cos-decay-restart N Only for Adam optimizer. Increase of cosine decay steps after restart (default %f)\n", params->cos_decay_restart); fprintf(stderr, " --cos-decay-min N Only for Adam optimizer. Cosine decay minimum (default %f)\n", params->cos_decay_min); fprintf(stderr, " --enable-restart N Only for Adam optimizer. Enable restarts of cos-decay %s\n", params->enable_restart ? "(default)" : ""); fprintf(stderr, " --disable-restart N Only for Adam optimizer. Disable restarts of cos-decay %s\n", !params->enable_restart ? "(default)" : ""); fprintf(stderr, " --opt-past N Number of optimization iterations to track for delta convergence test. Disabled when zero. (default %d)\n", params->opt_past); fprintf(stderr, " --opt-delta N Maximum delta for delta convergence test. Disabled when <= zero. (default %f)\n", params->opt_delta); fprintf(stderr, " --opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero. (default %d)\n", params->opt_max_no_improvement); fprintf(stderr, " --epochs N Maximum number epochs to process. (default %d)\n", params->n_epochs); fprintf(stderr, " --adam-iter N Maximum number of Adam optimization iterations for each batch (default %d)\n", params->adam_n_iter); fprintf(stderr, " --adam-alpha N Adam learning rate alpha (default %f)\n", params->adam_alpha); fprintf(stderr, " --adam-min-alpha N Adam minimum learning rate alpha - including warmup phase (default %f)\n", params->adam_min_alpha); fprintf(stderr, " --adam-decay N AdamW weight decay. Values greater zero enable AdamW instead of regular Adam. (default %f)\n", params->adam_decay); fprintf(stderr, " --adam-decay-min-ndim N Minimum number of tensor dimensions to apply AdamW weight decay. Weight decay is not applied to tensors with less n_dims. (default %d)\n", params->adam_decay_min_ndim); fprintf(stderr, " --adam-beta1 N AdamW beta1 in interval [0,1). How much to smooth the first moment of gradients. (default %f)\n", params->adam_beta1); fprintf(stderr, " --adam-beta2 N AdamW beta2 in interval [0,1). How much to smooth the second moment of gradients. (default %f)\n", params->adam_beta2); fprintf(stderr, " --adam-gclip N AdamW gradient clipping. Disabled when zero. (default %f)\n", params->adam_gclip); fprintf(stderr, " --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. (default %f)\n", params->adam_eps_f); fprintf(stderr, "\n"); } bool consume_common_train_arg( int argc, char ** argv, int * idx, struct train_params_common * params, bool * invalid_param ) { int& i = *idx; std::string arg = argv[i]; const std::string arg_prefix = "--"; if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { std::replace(arg.begin(), arg.end(), '_', '-'); } if (arg == "--train-data") { if (++i >= argc) { *invalid_param = true; return true; } params->fn_train_data = argv[i]; } else if (arg == "--checkpoint-in") { if (++i >= argc) { *invalid_param = true; return true; } params->fn_checkpoint_in = argv[i]; } else if (arg == "--checkpoint-out") { if (++i >= argc) { *invalid_param = true; return true; } params->fn_checkpoint_out = argv[i]; } else if (arg == "--pattern-fn-it") { if (++i >= argc) { *invalid_param = true; return true; } params->pattern_fn_it = argv[i]; } else if (arg == "--fn-latest") { if (++i >= argc) { *invalid_param = true; return true; } params->fn_latest = argv[i]; } else if (arg == "--save-every") { if (++i >= argc) { *invalid_param = true; return true; } params->save_every = std::stoi(argv[i]); } else if (arg == "-s" || arg == "--seed") { if (++i >= argc) { *invalid_param = true; return true; } params->seed = std::stoi(argv[i]); } else if (arg == "-c" || arg == "--ctx") { if (++i >= argc) { *invalid_param = true; return true; } params->n_ctx = std::stoi(argv[i]); params->custom_n_ctx = true; } else if (arg == "-t" || arg == "--threads") { if (++i >= argc) { *invalid_param = true; return true; } params->n_threads = std::stoi(argv[i]); } else if (arg == "-b" || arg == "--batch") { if (++i >= argc) { *invalid_param = true; return true; } params->n_batch = std::stoi(argv[i]); } else if (arg == "--grad-acc") { if (++i >= argc) { *invalid_param = true; return true; } params->n_gradient_accumulation = std::max(1, std::stoi(argv[i])); } else if (arg == "--sample-start") { if (++i >= argc) { *invalid_param = true; return true; } params->sample_start = std::string(argv[i]); } else if (arg == "--escape") { params->escape = true; } else if (arg == "--include-sample-start") { params->include_sample_start = true; } else if (arg == "--overlapping-samples") { params->overlapping_samples = true; } else if (arg == "--fill-with-next-samples") { params->fill_with_next_samples = true; } else if (arg == "--separate-with-eos") { params->separate_with_eos = true; } else if (arg == "--separate-with-bos") { params->separate_with_bos = true; } else if (arg == "--no-separate-with-eos") { params->separate_with_eos = false; } else if (arg == "--no-separate-with-bos") { params->separate_with_bos = false; } else if (arg == "--sample-random-offsets") { params->sample_random_offsets = true; } else if (arg == "--force-reshuffle") { params->force_reshuffle = true; } else if (arg == "--no-flash") { params->use_flash = false; } else if (arg == "--use-flash") { params->use_flash = true; } else if (arg == "--no-checkpointing") { params->use_checkpointing = false; } else if (arg == "--use-checkpointing") { params->use_checkpointing = true; } else if (arg == "--warmup") { if (++i >= argc) { *invalid_param = true; return true; } params->warmup = std::stoi(argv[i]); } else if (arg == "--cos-decay-steps") { if (++i >= argc) { *invalid_param = true; return true; } params->cos_decay_steps = std::stoi(argv[i]); } else if (arg == "--cos-decay-restart") { if (++i >= argc) { *invalid_param = true; return true; } params->cos_decay_restart = std::stof(argv[i]); } else if (arg == "--cos-decay-min") { if (++i >= argc) { *invalid_param = true; return true; } params->cos_decay_min = std::stof(argv[i]); } else if (arg == "--enable-restart") { params->enable_restart = true; } else if (arg == "--disable-restart") { params->enable_restart = false; } else if (arg == "--opt-past") { if (++i >= argc) { *invalid_param = true; return true; } params->opt_past = std::stoi(argv[i]); } else if (arg == "--opt-delta") { if (++i >= argc) { *invalid_param = true; return true; } params->opt_delta = std::stof(argv[i]); } else if (arg == "--opt-max-no-improvement") { if (++i >= argc) { *invalid_param = true; return true; } params->opt_max_no_improvement = std::stoi(argv[i]); } else if (arg == "--adam-epsf") { if (++i >= argc) { *invalid_param = true; return true; } params->adam_eps_f = std::stof(argv[i]); } else if (arg == "--epochs") { if (++i >= argc) { *invalid_param = true; return true; } params->n_epochs = std::stoi(argv[i]); } else if (arg == "--adam-iter") { if (++i >= argc) { *invalid_param = true; return true; } params->adam_n_iter = std::stoi(argv[i]); } else if (arg == "--adam-alpha") { if (++i >= argc) { *invalid_param = true; return true; } params->adam_alpha = std::stof(argv[i]); } else if (arg == "--adam-min-alpha") { if (++i >= argc) { *invalid_param = true; return true; } params->adam_min_alpha = std::stof(argv[i]); } else if (arg == "--adam-decay") { if (++i >= argc) { *invalid_param = true; return true; } params->adam_decay = std::stof(argv[i]); } else if (arg == "--adam-decay-min-ndim") { if (++i >= argc) { *invalid_param = true; return true; } params->adam_decay_min_ndim = std::stoi(argv[i]); } else if (arg == "--adam-beta1") { if (++i >= argc) { *invalid_param = true; return true; } params->adam_beta1 = std::stof(argv[i]); } else if (arg == "--adam-beta2") { if (++i >= argc) { *invalid_param = true; return true; } params->adam_beta2 = std::stof(argv[i]); } else if (arg == "--adam-gclip") { if (++i >= argc) { *invalid_param = true; return true; } params->adam_gclip = std::stof(argv[i]); } else if (arg == "-h" || arg == "--help") { params->print_usage = true; return true; } else { return false; } return true; } void finish_processing_train_args(struct train_params_common * params) { if (params->escape) { process_escapes(params->sample_start); } } void train_opt_callback(void * vdata, int accum_step, float * sched, bool * cancel) { struct train_opt_callback_data * data = (struct train_opt_callback_data *) vdata; struct train_params_common * params = data->params; struct train_state * train = data->train; struct ggml_opt_context * opt = train->opt; int n_batch = params->n_batch; int n_ctx = params->n_ctx; if (accum_step == 0) { // time measurement int64_t now = ggml_time_ms(); if (now > data->last_time && opt->iter > data->first_iter) { double dt = (double) (now - data->last_time); if (data->millis_per_iter == 0.0) { data->millis_per_iter = dt; } else { const double gain = 0.7; data->millis_per_iter = data->millis_per_iter*(1.0-gain) + dt*gain; } } double remaining_millis = 0.0; if (data->millis_per_iter > 0.0) { const int n_iter = params->adam_n_iter; const int done_iter = opt->iter - data->first_iter; const int remaining_iter = n_iter - done_iter; remaining_millis = remaining_iter * data->millis_per_iter; } // file saving const bool save_now = (params->save_every > 0) && (opt->iter - data->last_save_iter >= params->save_every); if (save_now) { int new_iters = opt->iter - data->last_save_iter; train->train_its += new_iters; train->train_tokens += new_iters * opt->params.n_gradient_accumulation * n_batch * n_ctx; if (data->save_cb) { data->save_cb(data->save_data, train); } data->last_save_iter = opt->iter; } // exclude file saving from time measurement, by measuring last_time after saving data->last_time = ggml_time_ms(); *sched = learning_schedule( opt->iter, params->warmup, params->cos_decay_steps, params->adam_alpha, params->adam_min_alpha, params->cos_decay_min, params->cos_decay_restart, params->enable_restart); int impr_plot = -(int)(1 + (opt->loss_before - opt->loss_after) * 10.0f + 0.5f); if (impr_plot > 0) impr_plot = 0; if (std::isnan(opt->loss_before) || std::isnan(opt->loss_after)) impr_plot = 0; printf("%s: iter=%6d sample=%zu/%zu sched=%f loss=%f", __func__, opt->iter, std::min(1+train->shuffle_next_sample, train->shuffle_sample_count), train->shuffle_sample_count, *sched, opt->loss_after); if (data->millis_per_iter > 0) { printf(" dt="); print_duration(data->millis_per_iter); printf(" eta="); print_duration(remaining_millis); } float improvement = opt->loss_before - opt->loss_after; const float plot_scale = 10.0f; int bar_len = (int)(1 + improvement*plot_scale + 0.5); printf(" |"); for (int i=0; i"); printf("\n"); } int64_t used_samples = get_example_targets_batch( data->lctx, data->tokens_input, data->target_probs, train->shuffle_next_sample, data->shuffled_samples_offs, data->shuffled_samples_begin, data->shuffled_samples_size, data->samples_count, data->tokens_data, data->tokens_size, params->separate_with_eos, params->separate_with_bos, params->fill_with_next_samples, params->sample_random_offsets); train->train_samples += used_samples; train->shuffle_next_sample += used_samples; if (train->shuffle_next_sample >= train->shuffle_sample_count) { ++train->train_epochs; printf("%s: reshuffle samples. completed epochs: %llu\n", __func__, (long long unsigned) train->train_epochs); // note: we may have used some samples from the current shuffling more than once train->shuffle_rng_state_current = train->shuffle_rng_state_next; train->shuffle_rng_state_next = shuffle_samples( train->shuffle_rng_state_current, data->shuffled_samples_offs, data->shuffled_samples_begin, data->shuffled_samples_size, data->samples_begin, data->samples_size, data->samples_count); train->shuffle_next_sample = 0; } const bool last_epoch_reached = (params->n_epochs > 0 && (int64_t) train->train_epochs - data->first_epoch >= params->n_epochs); if (last_epoch_reached) { // allow optimization iteration at last epoch to be completed before canceling if (data->iter_at_last_epoch < 0) { data->iter_at_last_epoch = opt->iter; } else if (opt->iter > data->iter_at_last_epoch) { *cancel = true; } } }