#include "ggml.h" #include "llama.h" #include "common.h" #include "ggml-cuda.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // utils static uint64_t get_time_ns() { using clock = std::chrono::high_resolution_clock; return std::chrono::nanoseconds(clock::now().time_since_epoch()).count(); } template static std::string join(const std::vector & values, const std::string & delim) { std::ostringstream str; for (size_t i = 0; i < values.size(); i++) { str << values[i]; if (i < values.size() - 1) { str << delim; } } return str.str(); } template static std::vector split(const std::string & str, char delim) { std::vector values; std::istringstream str_stream(str); std::string token; while (std::getline(str_stream, token, delim)) { T value; std::istringstream token_stream(token); token_stream >> value; values.push_back(value); } return values; } template static T avg(const std::vector & v) { if (v.empty()) { return 0; } T sum = std::accumulate(v.begin(), v.end(), T(0)); return sum / (T)v.size(); } template static T stdev(const std::vector & v) { if (v.size() <= 1) { return 0; } T mean = avg(v); T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0)); T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1)); return stdev; } static std::string get_cpu_info() { std::string id; #ifdef __linux__ FILE * f = fopen("/proc/cpuinfo", "r"); if (f) { char buf[1024]; while (fgets(buf, sizeof(buf), f)) { if (strncmp(buf, "model name", 10) == 0) { char * p = strchr(buf, ':'); if (p) { p++; while (std::isspace(*p)) { p++; } while (std::isspace(p[strlen(p) - 1])) { p[strlen(p) - 1] = '\0'; } id = p; break; } } } } #endif // TODO: other platforms return id; } static std::string get_gpu_info() { std::string id; #ifdef GGML_USE_CUBLAS int count = ggml_cuda_get_device_count(); for (int i = 0; i < count; i++) { char buf[128]; ggml_cuda_get_device_description(i, buf, sizeof(buf)); id += buf; if (i < count - 1) { id += "/"; } } #endif // TODO: other backends return id; } // command line params enum output_formats {CSV, JSON, MARKDOWN, SQL}; struct cmd_params { std::vector model; std::vector n_prompt; std::vector n_gen; std::vector n_batch; std::vector f32_kv; std::vector n_threads; std::vector n_gpu_layers; std::vector main_gpu; std::vector mul_mat_q; std::vector> tensor_split; int reps; bool verbose; output_formats output_format; }; static const cmd_params cmd_params_defaults = { /* model */ {"models/7B/ggml-model-q4_0.gguf"}, /* n_prompt */ {512}, /* n_gen */ {128}, /* n_batch */ {512}, /* f32_kv */ {false}, /* n_threads */ {get_num_physical_cores()}, /* n_gpu_layers */ {99}, /* main_gpu */ {0}, /* mul_mat_q */ {true}, /* tensor_split */ {{}}, /* reps */ 5, /* verbose */ false, /* output_format */ MARKDOWN }; static void print_usage(int /* argc */, char ** argv) { printf("usage: %s [options]\n", argv[0]); printf("\n"); printf("options:\n"); printf(" -h, --help\n"); printf(" -m, --model (default: %s)\n", join(cmd_params_defaults.model, ",").c_str()); printf(" -p, --n-prompt (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str()); printf(" -n, --n-gen (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str()); printf(" -b, --batch-size (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str()); printf(" --memory-f32 <0|1> (default: %s)\n", join(cmd_params_defaults.f32_kv, ",").c_str()); printf(" -t, --threads (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str()); printf(" -ngl, --n-gpu-layers (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str()); printf(" -mg, --main-gpu (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str()); printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str()); printf(" -ts, --tensor_split \n"); printf(" -r, --repetitions (default: %d)\n", cmd_params_defaults.reps); printf(" -o, --output (default: %s)\n", cmd_params_defaults.output_format == CSV ? "csv" : cmd_params_defaults.output_format == JSON ? "json" : cmd_params_defaults.output_format == MARKDOWN ? "md" : "sql"); printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0"); printf("\n"); printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n"); } static cmd_params parse_cmd_params(int argc, char ** argv) { cmd_params params; std::string arg; bool invalid_param = false; const std::string arg_prefix = "--"; const char split_delim = ','; params.verbose = cmd_params_defaults.verbose; params.output_format = cmd_params_defaults.output_format; params.reps = cmd_params_defaults.reps; for (int i = 1; i < argc; i++) { arg = argv[i]; if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { std::replace(arg.begin(), arg.end(), '_', '-'); } if (arg == "-h" || arg == "--help") { print_usage(argc, argv); exit(0); } else if (arg == "-m" || arg == "--model") { if (++i >= argc) { invalid_param = true; break; } auto p = split(argv[i], split_delim); params.model.insert(params.model.end(), p.begin(), p.end()); } else if (arg == "-p" || arg == "--n-prompt") { if (++i >= argc) { invalid_param = true; break; } auto p = split(argv[i], split_delim); params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end()); } else if (arg == "-n" || arg == "--n-gen") { if (++i >= argc) { invalid_param = true; break; } auto p = split(argv[i], split_delim); params.n_gen.insert(params.n_gen.end(), p.begin(), p.end()); } else if (arg == "-b" || arg == "--batch-size") { if (++i >= argc) { invalid_param = true; break; } auto p = split(argv[i], split_delim); params.n_batch.insert(params.n_batch.end(), p.begin(), p.end()); } else if (arg == "--memory-f32") { if (++i >= argc) { invalid_param = true; break; } auto p = split(argv[i], split_delim); params.f32_kv.insert(params.f32_kv.end(), p.begin(), p.end()); } else if (arg == "-t" || arg == "--threads") { if (++i >= argc) { invalid_param = true; break; } auto p = split(argv[i], split_delim); params.n_threads.insert(params.n_threads.end(), p.begin(), p.end()); } else if (arg == "-ngl" || arg == "--n-gpu-layers") { if (++i >= argc) { invalid_param = true; break; } auto p = split(argv[i], split_delim); params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end()); } else if (arg == "-mg" || arg == "--main-gpu") { if (++i >= argc) { invalid_param = true; break; } params.main_gpu = split(argv[i], split_delim); } else if (arg == "-mmq" || arg == "--mul-mat-q") { if (++i >= argc) { invalid_param = true; break; } auto p = split(argv[i], split_delim); params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end()); } else if (arg == "-ts" || arg == "--tensor-split") { if (++i >= argc) { invalid_param = true; break; } for (auto ts : split(argv[i], split_delim)) { // split string by ; and / const std::regex regex{R"([;/]+)"}; std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1}; std::vector split_arg{it, {}}; GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES); std::array tensor_split; for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) { if (i < split_arg.size()) { tensor_split[i] = std::stof(split_arg[i]); } else { tensor_split[i] = 0.0f; } } params.tensor_split.push_back(tensor_split); } } else if (arg == "-r" || arg == "--repetitions") { if (++i >= argc) { invalid_param = true; break; } params.reps = std::stoi(argv[i]); } else if (arg == "-o" || arg == "--output") { if (++i >= argc) { invalid_param = true; break; } if (argv[i] == std::string("csv")) { params.output_format = CSV; } else if (argv[i] == std::string("json")) { params.output_format = JSON; } else if (argv[i] == std::string("md")) { params.output_format = MARKDOWN; } else if (argv[i] == std::string("sql")) { params.output_format = SQL; } else { invalid_param = true; break; } } else if (arg == "-v" || arg == "--verbose") { params.verbose = true; } else { invalid_param = true; break; } } if (invalid_param) { fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); print_usage(argc, argv); exit(1); } // set defaults if (params.model.empty()) { params.model = cmd_params_defaults.model; } if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; } if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; } if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; } if (params.f32_kv.empty()) { params.f32_kv = cmd_params_defaults.f32_kv; } if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; } if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; } if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; } if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; } if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; } return params; } struct cmd_params_instance { std::string model; int n_prompt; int n_gen; int n_batch; bool f32_kv; int n_threads; int n_gpu_layers; int main_gpu; bool mul_mat_q; std::array tensor_split; llama_model_params to_llama_mparams() const { llama_model_params mparams = llama_model_default_params(); mparams.n_gpu_layers = n_gpu_layers; mparams.main_gpu = main_gpu; mparams.tensor_split = tensor_split.data(); return mparams; } bool equal_mparams(const cmd_params_instance & other) const { return model == other.model && n_gpu_layers == other.n_gpu_layers && main_gpu == other.main_gpu && tensor_split == other.tensor_split; } llama_context_params to_llama_cparams() const { llama_context_params cparams = llama_context_default_params(); cparams.n_ctx = n_prompt + n_gen; cparams.n_batch = n_batch; cparams.f16_kv = !f32_kv; cparams.mul_mat_q = mul_mat_q; return cparams; } }; static std::vector get_cmd_params_instances_int(const cmd_params & params, int n_gen, int n_prompt) { std::vector instances; for (const auto & m : params.model) for (const auto & nl : params.n_gpu_layers) for (const auto & mg : params.main_gpu) for (const auto & ts : params.tensor_split) for (const auto & nb : params.n_batch) for (const auto & fk : params.f32_kv) for (const auto & mmq : params.mul_mat_q) for (const auto & nt : params.n_threads) { cmd_params_instance instance = { /* .model = */ m, /* .n_prompt = */ n_prompt, /* .n_gen = */ n_gen, /* .n_batch = */ nb, /* .f32_kv = */ fk, /* .n_threads = */ nt, /* .n_gpu_layers = */ nl, /* .main_gpu = */ mg, /* .mul_mat_q = */ mmq, /* .tensor_split = */ ts, }; instances.push_back(instance); } return instances; } static std::vector get_cmd_params_instances(const cmd_params & params) { std::vector instances; #if 1 // this ordering minimizes the number of times that each model needs to be reloaded for (const auto & m : params.model) for (const auto & nl : params.n_gpu_layers) for (const auto & mg : params.main_gpu) for (const auto & ts : params.tensor_split) for (const auto & nb : params.n_batch) for (const auto & fk : params.f32_kv) for (const auto & mmq : params.mul_mat_q) for (const auto & nt : params.n_threads) { for (const auto & n_prompt : params.n_prompt) { if (n_prompt == 0) { continue; } cmd_params_instance instance = { /* .model = */ m, /* .n_prompt = */ n_prompt, /* .n_gen = */ 0, /* .n_batch = */ nb, /* .f32_kv = */ fk, /* .n_threads = */ nt, /* .n_gpu_layers = */ nl, /* .main_gpu = */ mg, /* .mul_mat_q = */ mmq, /* .tensor_split = */ ts, }; instances.push_back(instance); } for (const auto & n_gen : params.n_gen) { if (n_gen == 0) { continue; } cmd_params_instance instance = { /* .model = */ m, /* .n_prompt = */ 0, /* .n_gen = */ n_gen, /* .n_batch = */ nb, /* .f32_kv = */ fk, /* .n_threads = */ nt, /* .n_gpu_layers = */ nl, /* .main_gpu = */ mg, /* .mul_mat_q = */ mmq, /* .tensor_split = */ ts, }; instances.push_back(instance); } } #else // this ordering separates the prompt and generation tests for (const auto & n_prompt : params.n_prompt) { if (n_prompt == 0) { continue; } auto instances_prompt = get_cmd_params_instances_int(params, 0, n_prompt); instances.insert(instances.end(), instances_prompt.begin(), instances_prompt.end()); } for (const auto & n_gen : params.n_gen) { if (n_gen == 0) { continue; } auto instances_gen = get_cmd_params_instances_int(params, n_gen, 0); instances.insert(instances.end(), instances_gen.begin(), instances_gen.end()); } #endif return instances; } struct test { static const std::string build_commit; static const int build_number; static const bool cuda; static const bool opencl; static const bool metal; static const bool gpu_blas; static const bool blas; static const std::string cpu_info; static const std::string gpu_info; std::string model_filename; std::string model_type; uint64_t model_size; uint64_t model_n_params; int n_batch; int n_threads; bool f32_kv; int n_gpu_layers; int main_gpu; bool mul_mat_q; std::array tensor_split; int n_prompt; int n_gen; std::string test_time; std::vector samples_ns; test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) { model_filename = inst.model; char buf[128]; llama_model_desc(lmodel, buf, sizeof(buf)); model_type = buf; model_size = llama_model_size(lmodel); model_n_params = llama_model_n_params(lmodel); n_batch = inst.n_batch; n_threads = inst.n_threads; f32_kv = inst.f32_kv; n_gpu_layers = inst.n_gpu_layers; main_gpu = inst.main_gpu; mul_mat_q = inst.mul_mat_q; tensor_split = inst.tensor_split; n_prompt = inst.n_prompt; n_gen = inst.n_gen; // RFC 3339 date-time format time_t t = time(NULL); std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t)); test_time = buf; (void) ctx; } uint64_t avg_ns() const { return ::avg(samples_ns); } uint64_t stdev_ns() const { return ::stdev(samples_ns); } std::vector get_ts() const { int n_tokens = n_prompt + n_gen; std::vector ts; std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; }); return ts; } double avg_ts() const { return ::avg(get_ts()); } double stdev_ts() const { return ::stdev(get_ts()); } static std::string get_backend() { if (cuda) { return GGML_CUDA_NAME; } if (opencl) { return "OpenCL"; } if (metal) { return "Metal"; } if (gpu_blas) { return "GPU BLAS"; } if (blas) { return "BLAS"; } return "CPU"; } static const std::vector & get_fields() { static const std::vector fields = { "build_commit", "build_number", "cuda", "opencl", "metal", "gpu_blas", "blas", "cpu_info", "gpu_info", "model_filename", "model_type", "model_size", "model_n_params", "n_batch", "n_threads", "f16_kv", "n_gpu_layers", "main_gpu", "mul_mat_q", "tensor_split", "n_prompt", "n_gen", "test_time", "avg_ns", "stddev_ns", "avg_ts", "stddev_ts" }; return fields; } enum field_type {STRING, BOOL, INT, FLOAT}; static field_type get_field_type(const std::string & field) { if (field == "build_number" || field == "n_batch" || field == "n_threads" || field == "model_size" || field == "model_n_params" || field == "n_gpu_layers" || field == "main_gpu" || field == "n_prompt" || field == "n_gen" || field == "avg_ns" || field == "stddev_ns") { return INT; } if (field == "cuda" || field == "opencl" || field == "metal" || field == "gpu_blas" || field == "blas" || field == "f16_kv" || field == "mul_mat_q") { return BOOL; } if (field == "avg_ts" || field == "stddev_ts") { return FLOAT; } return STRING; } std::vector get_values() const { std::string tensor_split_str; int max_nonzero = 0; for (int i = 0; i < LLAMA_MAX_DEVICES; i++) { if (tensor_split[i] > 0) { max_nonzero = i; } } for (int i = 0; i <= max_nonzero; i++) { char buf[32]; snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]); tensor_split_str += buf; if (i < max_nonzero) { tensor_split_str += "/"; } } std::vector values = { build_commit, std::to_string(build_number), std::to_string(cuda), std::to_string(opencl), std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas), cpu_info, gpu_info, model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params), std::to_string(n_batch), std::to_string(n_threads), std::to_string(!f32_kv), std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), tensor_split_str, std::to_string(n_prompt), std::to_string(n_gen), test_time, std::to_string(avg_ns()), std::to_string(stdev_ns()), std::to_string(avg_ts()), std::to_string(stdev_ts()) }; return values; } std::map get_map() const { std::map map; auto fields = get_fields(); auto values = get_values(); std::transform(fields.begin(), fields.end(), values.begin(), std::inserter(map, map.end()), std::make_pair); return map; } }; const std::string test::build_commit = LLAMA_COMMIT; const int test::build_number = LLAMA_BUILD_NUMBER; const bool test::cuda = !!ggml_cpu_has_cublas(); const bool test::opencl = !!ggml_cpu_has_clblast(); const bool test::metal = !!ggml_cpu_has_metal(); const bool test::gpu_blas = !!ggml_cpu_has_gpublas(); const bool test::blas = !!ggml_cpu_has_blas(); const std::string test::cpu_info = get_cpu_info(); const std::string test::gpu_info = get_gpu_info(); struct printer { virtual ~printer() {} FILE * fout; virtual void print_header(const cmd_params & params) { (void) params; } virtual void print_test(const test & t) = 0; virtual void print_footer() { } }; struct csv_printer : public printer { static std::string escape_csv(const std::string & field) { std::string escaped = "\""; for (auto c : field) { if (c == '"') { escaped += "\""; } escaped += c; } escaped += "\""; return escaped; } void print_header(const cmd_params & params) override { std::vector fields = test::get_fields(); fprintf(fout, "%s\n", join(fields, ",").c_str()); (void) params; } void print_test(const test & t) override { std::vector values = t.get_values(); std::transform(values.begin(), values.end(), values.begin(), escape_csv); fprintf(fout, "%s\n", join(values, ",").c_str()); } }; struct json_printer : public printer { bool first = true; static std::string escape_json(const std::string & value) { std::string escaped; for (auto c : value) { if (c == '"') { escaped += "\\\""; } else if (c == '\\') { escaped += "\\\\"; } else if (c <= 0x1f) { char buf[8]; snprintf(buf, sizeof(buf), "\\u%04x", c); escaped += buf; } else { escaped += c; } } return escaped; } static std::string format_value(const std::string & field, const std::string & value) { switch (test::get_field_type(field)) { case test::STRING: return "\"" + escape_json(value) + "\""; case test::BOOL: return value == "0" ? "false" : "true"; default: return value; } } void print_header(const cmd_params & params) override { fprintf(fout, "[\n"); (void) params; } void print_fields(const std::vector & fields, const std::vector & values) { assert(fields.size() == values.size()); for (size_t i = 0; i < fields.size(); i++) { fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str()); } } void print_test(const test & t) override { if (first) { first = false; } else { fprintf(fout, ",\n"); } fprintf(fout, " {\n"); print_fields(test::get_fields(), t.get_values()); fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str()); fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str()); fprintf(fout, " }"); fflush(fout); } void print_footer() override { fprintf(fout, "\n]\n"); } }; struct markdown_printer : public printer { std::vector fields; static int get_field_width(const std::string & field) { if (field == "model") { return -30; } if (field == "t/s") { return 16; } if (field == "size" || field == "params") { return 10; } if (field == "n_gpu_layers") { return 3; } int width = std::max((int)field.length(), 10); if (test::get_field_type(field) == test::STRING) { return -width; } return width; } static std::string get_field_display_name(const std::string & field) { if (field == "n_gpu_layers") { return "ngl"; } if (field == "n_threads") { return "threads"; } if (field == "mul_mat_q") { return "mmq"; } if (field == "tensor_split") { return "ts"; } return field; } void print_header(const cmd_params & params) override { // select fields to print fields.push_back("model"); fields.push_back("size"); fields.push_back("params"); fields.push_back("backend"); bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS"; if (!is_cpu_backend) { fields.push_back("n_gpu_layers"); } if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) { fields.push_back("n_threads"); } if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) { fields.push_back("n_batch"); } if (params.f32_kv.size() > 1 || params.f32_kv != cmd_params_defaults.f32_kv) { fields.push_back("f16_kv"); } if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) { fields.push_back("main_gpu"); } if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) { fields.push_back("mul_mat_q"); } if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) { fields.push_back("tensor_split"); } fields.push_back("test"); fields.push_back("t/s"); fprintf(fout, "|"); for (const auto & field : fields) { fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str()); } fprintf(fout, "\n"); fprintf(fout, "|"); for (const auto & field : fields) { int width = get_field_width(field); fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-"); } fprintf(fout, "\n"); } void print_test(const test & t) override { std::map vmap = t.get_map(); fprintf(fout, "|"); for (const auto & field : fields) { std::string value; char buf[128]; if (field == "model") { value = t.model_type; } else if (field == "size") { if (t.model_size < 1024*1024*1024) { snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0); } else { snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0); } value = buf; } else if (field == "params") { if (t.model_n_params < 1000*1000*1000) { snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6); } else { snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9); } value = buf; } else if (field == "backend") { value = test::get_backend(); } else if (field == "test") { if (t.n_prompt > 0 && t.n_gen == 0) { snprintf(buf, sizeof(buf), "pp %d", t.n_prompt); } else if (t.n_gen > 0 && t.n_prompt == 0) { snprintf(buf, sizeof(buf), "tg %d", t.n_gen); } else { assert(false); exit(1); } value = buf; } else if (field == "t/s") { snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts()); value = buf; } else if (vmap.find(field) != vmap.end()) { value = vmap.at(field); } else { assert(false); exit(1); } int width = get_field_width(field); if (field == "t/s") { // HACK: the utf-8 character is 2 bytes width += 1; } fprintf(fout, " %*s |", width, value.c_str()); } fprintf(fout, "\n"); } void print_footer() override { fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number); } }; struct sql_printer : public printer { static std::string get_sql_field_type(const std::string & field) { switch (test::get_field_type(field)) { case test::STRING: return "TEXT"; case test::BOOL: case test::INT: return "INTEGER"; case test::FLOAT: return "REAL"; default: assert(false); exit(1); } } void print_header(const cmd_params & params) override { std::vector fields = test::get_fields(); fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n"); for (size_t i = 0; i < fields.size(); i++) { fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : ""); } fprintf(fout, ");\n"); fprintf(fout, "\n"); (void) params; } void print_test(const test & t) override { fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str()); fprintf(fout, "VALUES ("); std::vector values = t.get_values(); for (size_t i = 0; i < values.size(); i++) { fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : ""); } fprintf(fout, ");\n"); } }; static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) { std::vector tokens(n_batch, llama_token_bos(llama_get_model(ctx))); int n_processed = 0; llama_set_n_threads(ctx, n_threads, n_threads); while (n_processed < n_prompt) { int n_tokens = std::min(n_prompt - n_processed, n_batch); llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0)); n_processed += n_tokens; } } static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) { llama_token token = llama_token_bos(llama_get_model(ctx)); llama_set_n_threads(ctx, n_threads, n_threads); for (int i = 0; i < n_gen; i++) { llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0)); } } static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) { (void) level; (void) text; (void) user_data; } int main(int argc, char ** argv) { // try to set locale for unicode characters in markdown setlocale(LC_CTYPE, ".UTF-8"); #if !defined(NDEBUG) fprintf(stderr, "warning: asserts enabled, performance may be affected\n"); #endif #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__)) fprintf(stderr, "warning: debug build, performance may be affected\n"); #endif #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__) fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n"); #endif cmd_params params = parse_cmd_params(argc, argv); // initialize llama.cpp if (!params.verbose) { llama_log_set(llama_null_log_callback, NULL); } bool numa = false; llama_backend_init(numa); // initialize printer std::unique_ptr p; switch (params.output_format) { case CSV: p.reset(new csv_printer()); break; case JSON: p.reset(new json_printer()); break; case MARKDOWN: p.reset(new markdown_printer()); break; case SQL: p.reset(new sql_printer()); break; default: assert(false); exit(1); } p->fout = stdout; p->print_header(params); std::vector params_instances = get_cmd_params_instances(params); llama_model * lmodel = nullptr; const cmd_params_instance * prev_inst = nullptr; for (const auto & inst : params_instances) { // keep the same model between tests when possible if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) { if (lmodel) { llama_free_model(lmodel); } lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams()); if (lmodel == NULL) { fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str()); return 1; } prev_inst = &inst; } llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams()); if (ctx == NULL) { fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str()); llama_free_model(lmodel); return 1; } test t(inst, lmodel, ctx); llama_kv_cache_clear(ctx); // warmup run if (t.n_prompt > 0) { test_prompt(ctx, std::min(2, t.n_batch), 0, t.n_batch, t.n_threads); } if (t.n_gen > 0) { test_gen(ctx, 1, 0, t.n_threads); } for (int i = 0; i < params.reps; i++) { llama_kv_cache_clear(ctx); uint64_t t_start = get_time_ns(); if (t.n_prompt > 0) { test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads); } if (t.n_gen > 0) { test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads); } uint64_t t_ns = get_time_ns() - t_start; t.samples_ns.push_back(t_ns); } p->print_test(t); llama_print_timings(ctx); llama_free(ctx); } llama_free_model(lmodel); p->print_footer(); llama_backend_free(); return 0; }