#!/usr/bin/env python3 # -*- coding: utf-8 -*- # This script downloads the tokenizer models of the specified models from Huggingface and # generates the get_vocab_base_pre() function for convert_hf_to_gguf.py # # This is necessary in order to analyze the type of pre-tokenizer used by the model and # provide the necessary information to llama.cpp via the GGUF header in order to implement # the same pre-tokenizer. # # ref: https://github.com/ggerganov/llama.cpp/pull/6920 # # Instructions: # # - Add a new model to the "models" list # - Run the script with your huggingface token: # # python3 convert_hf_to_gguf_update.py # # - The convert_hf_to_gguf.py script will have had its get_vocab_base_pre() function updated # - Update llama.cpp with the new pre-tokenizer if necessary # # TODO: generate tokenizer tests for llama.cpp # import logging import os import pathlib import re import requests import sys import json import shutil from hashlib import sha256 from enum import IntEnum, auto from transformers import AutoTokenizer logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger("convert_hf_to_gguf_update") sess = requests.Session() class TOKENIZER_TYPE(IntEnum): SPM = auto() BPE = auto() WPM = auto() UGM = auto() # TODO: this string has to exercise as much pre-tokenizer functionality as possible # will be updated with time - contributions welcome CHK_TXT = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL' if len(sys.argv) == 2: token = sys.argv[1] if not token.startswith("hf_"): logger.info("Huggingface token seems invalid") logger.info("Usage: python convert_hf_to_gguf_update.py ") sys.exit(1) else: logger.info("Usage: python convert_hf_to_gguf_update.py ") sys.exit(1) # TODO: add models here, base models preferred models = [ {"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", }, {"name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", }, {"name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", }, {"name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", }, {"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", }, {"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", }, {"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", }, {"name": "falcon3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon3-7B-Base", }, {"name": "bert-bge-large", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/BAAI/bge-large-zh-v1.5", }, {"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", }, {"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", }, {"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", }, {"name": "stablelm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", }, {"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", }, {"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", }, {"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", }, {"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", }, {"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", }, {"name": "jina-v1-en", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-reranker-v1-tiny-en", }, {"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM! {"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", }, {"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", }, {"name": "smaug-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct", }, {"name": "poro-chat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Poro-34B-chat", }, {"name": "jina-v2-code", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-code", }, {"name": "viking", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Viking-7B", }, # Also used for Viking 13B and 33B {"name": "gemma", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2b", }, {"name": "gemma-2", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2-9b", }, {"name": "jais", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/core42/jais-13b", }, {"name": "t5", "tokt": TOKENIZER_TYPE.UGM, "repo": "https://huggingface.co/google-t5/t5-small", }, {"name": "codeshell", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/WisdomShell/CodeShell-7B", }, {"name": "tekken", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistralai/Mistral-Nemo-Base-2407", }, {"name": "smollm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/HuggingFaceTB/SmolLM-135M", }, {'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", }, {'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", }, {"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", }, {"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", }, {"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", }, {"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", }, {"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"}, {"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"}, {"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"}, {"name": "deepseek-v3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-V3"}, ] def download_file_with_auth(url, token, save_path): headers = {"Authorization": f"Bearer {token}"} response = sess.get(url, headers=headers) response.raise_for_status() os.makedirs(os.path.dirname(save_path), exist_ok=True) with open(save_path, 'wb') as downloaded_file: downloaded_file.write(response.content) logger.info(f"File {save_path} downloaded successfully") def download_model(model): name = model["name"] repo = model["repo"] tokt = model["tokt"] os.makedirs(f"models/tokenizers/{name}", exist_ok=True) files = ["config.json", "tokenizer.json", "tokenizer_config.json"] if tokt == TOKENIZER_TYPE.SPM: files.append("tokenizer.model") if tokt == TOKENIZER_TYPE.UGM: files.append("spiece.model") if os.path.isdir(repo): # If repo is a path on the file system, copy the directory for file in files: src_path = os.path.join(repo, file) dst_path = f"models/tokenizers/{name}/{file}" if os.path.isfile(dst_path): logger.info(f"{name}: File {dst_path} already exists - skipping") continue if os.path.isfile(src_path): shutil.copy2(src_path, dst_path) logger.info(f"{name}: Copied {src_path} to {dst_path}") else: logger.warning(f"{name}: Source file {src_path} does not exist") else: # If repo is a URL, download the files for file in files: save_path = f"models/tokenizers/{name}/{file}" if os.path.isfile(save_path): logger.info(f"{name}: File {save_path} already exists - skipping") continue download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path) for model in models: try: download_model(model) except Exception as e: logger.error(f"Failed to download model {model['name']}. Error: {e}") # generate the source code for the convert_hf_to_gguf.py:get_vocab_base_pre() function: src_ifs = "" for model in models: name = model["name"] tokt = model["tokt"] if tokt == TOKENIZER_TYPE.SPM or tokt == TOKENIZER_TYPE.UGM: continue # Skip if the tokenizer folder does not exist or there are other download issues previously if not os.path.exists(f"models/tokenizers/{name}"): logger.warning(f"Directory for tokenizer {name} not found. Skipping...") continue # create the tokenizer try: if name == "t5": tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False) else: tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}") except OSError as e: logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}") continue # Skip to the next model if the tokenizer can't be loaded chktok = tokenizer.encode(CHK_TXT) chkhsh = sha256(str(chktok).encode()).hexdigest() logger.info(f"model: {name}") logger.info(f"tokt: {tokt}") logger.info(f"repo: {model['repo']}") logger.info(f"chktok: {chktok}") logger.info(f"chkhsh: {chkhsh}") # print the "pre_tokenizer" content from the tokenizer.json with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f: cfg = json.load(f) normalizer = cfg["normalizer"] logger.info("normalizer: " + json.dumps(normalizer, indent=4)) pre_tokenizer = cfg["pre_tokenizer"] logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4)) if "ignore_merges" in cfg["model"]: logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4)) logger.info("") src_ifs += f" if chkhsh == \"{chkhsh}\":\n" src_ifs += f" # ref: {model['repo']}\n" src_ifs += f" res = \"{name}\"\n" src_func = f""" def get_vocab_base_pre(self, tokenizer) -> str: # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that # is specific for the BPE pre-tokenizer used by the model # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can # use in llama.cpp to implement the same pre-tokenizer chktxt = {repr(CHK_TXT)} chktok = tokenizer.encode(chktxt) chkhsh = sha256(str(chktok).encode()).hexdigest() logger.debug(f"chktok: {{chktok}}") logger.debug(f"chkhsh: {{chkhsh}}") res = None # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script # or pull the latest version of the model from Huggingface # don't edit the hashes manually! {src_ifs} if res is None: logger.warning("\\n") logger.warning("**************************************************************************************") logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!") logger.warning("** There are 2 possible reasons for this:") logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet") logger.warning("** - the pre-tokenization config has changed upstream") logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.") logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920") logger.warning("**") logger.warning(f"** chkhsh: {{chkhsh}}") logger.warning("**************************************************************************************") logger.warning("\\n") raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()") logger.debug(f"tokenizer.ggml.pre: {{repr(res)}}") logger.debug(f"chkhsh: {{chkhsh}}") return res """ convert_py_pth = pathlib.Path("convert_hf_to_gguf.py") convert_py = convert_py_pth.read_text(encoding="utf-8") convert_py = re.sub( r"(# Marker: Start get_vocab_base_pre)(.+?)( +# Marker: End get_vocab_base_pre)", lambda m: m.group(1) + src_func + m.group(3), convert_py, flags=re.DOTALL | re.MULTILINE, ) convert_py_pth.write_text(convert_py, encoding="utf-8") logger.info("+++ convert_hf_to_gguf.py was updated") # generate tests for each tokenizer model tests = [ "ied 4 ½ months", "Führer", "", " ", " ", " ", "\t", "\n", "\n\n", "\n\n\n", "\t\n", "Hello world", " Hello world", "Hello World", " Hello World", " Hello World!", "Hello, world!", " Hello, world!", " this is 🦙.cpp", "w048 7tuijk dsdfhu", "нещо на Български", "កាន់តែពិសេសអាចខលចេញ", "🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)", "Hello", " Hello", " Hello", " Hello", " Hello", " Hello\n Hello", " (", "\n =", "' era", "Hello, y'all! How are you 😁 ?我想在apple工作1314151天~", "!!!!!!", "3", "33", "333", "3333", "33333", "333333", "3333333", "33333333", "333333333", "Cửa Việt", # llama-bpe fails on this " discards", CHK_TXT, ] # write the tests to ./models/ggml-vocab-{name}.gguf.inp # the format is: # # test0 # __ggml_vocab_test__ # test1 # __ggml_vocab_test__ # ... # # with each model, encode all tests and write the results in ./models/ggml-vocab-{name}.gguf.out # for each test, write the resulting tokens on a separate line for model in models: name = model["name"] tokt = model["tokt"] # Skip if the tokenizer folder does not exist or there are other download issues previously if not os.path.exists(f"models/tokenizers/{name}"): logger.warning(f"Directory for tokenizer {name} not found. Skipping...") continue # create the tokenizer try: if name == "t5": tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False) else: tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}") except OSError as e: logger.error(f"Failed to load tokenizer for model {name}. Error: {e}") continue # Skip this model and continue with the next one in the loop with open(f"models/ggml-vocab-{name}.gguf.inp", "w", encoding="utf-8") as f: for text in tests: f.write(f"{text}") f.write("\n__ggml_vocab_test__\n") with open(f"models/ggml-vocab-{name}.gguf.out", "w") as f: for text in tests: res = tokenizer.encode(text, add_special_tokens=False) for r in res: f.write(f" {r}") f.write("\n") logger.info(f"Tests for {name} written in ./models/ggml-vocab-{name}.gguf.*") # generate commands for creating vocab files logger.info("\nRun the following commands to generate the vocab files for testing:\n") for model in models: name = model["name"] print(f"python3 convert_hf_to_gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only") # noqa: NP100 logger.info("\n")