from __future__ import annotations import argparse import json import os import re import signal import socket import subprocess import sys import threading import time import traceback from contextlib import closing from datetime import datetime import matplotlib import matplotlib.dates import matplotlib.pyplot as plt import requests from statistics import mean def main(args_in: list[str] | None = None) -> None: parser = argparse.ArgumentParser(description="Start server benchmark scenario") parser.add_argument("--name", type=str, help="Bench name", required=True) parser.add_argument("--runner-label", type=str, help="Runner label", required=True) parser.add_argument("--branch", type=str, help="Branch name", default="detached") parser.add_argument("--commit", type=str, help="Commit name", default="dirty") parser.add_argument("--host", type=str, help="Server listen host", default="0.0.0.0") parser.add_argument("--port", type=int, help="Server listen host", default="8080") parser.add_argument("--model-path-prefix", type=str, help="Prefix where to store the model files", default="models") parser.add_argument("--n-prompts", type=int, help="SERVER_BENCH_N_PROMPTS: total prompts to randomly select in the benchmark", required=True) parser.add_argument("--max-prompt-tokens", type=int, help="SERVER_BENCH_MAX_PROMPT_TOKENS: maximum prompt tokens to filter out in the dataset", required=True) parser.add_argument("--max-tokens", type=int, help="SERVER_BENCH_MAX_CONTEXT: maximum context size of the completions request to filter out in the dataset: prompt + predicted tokens", required=True) parser.add_argument("--hf-repo", type=str, help="Hugging Face model repository", required=True) parser.add_argument("--hf-file", type=str, help="Hugging Face model file", required=True) parser.add_argument("-ngl", "--n-gpu-layers", type=int, help="layers to the GPU for computation", required=True) parser.add_argument("--ctx-size", type=int, help="Set the size of the prompt context", required=True) parser.add_argument("--parallel", type=int, help="Set the number of slots for process requests", required=True) parser.add_argument("--batch-size", type=int, help="Set the batch size for prompt processing", required=True) parser.add_argument("--ubatch-size", type=int, help="physical maximum batch size", required=True) parser.add_argument("--scenario", type=str, help="Scenario to run", required=True) parser.add_argument("--duration", type=str, help="Bench scenario", required=True) args = parser.parse_args(args_in) start_time = time.time() # Start the server and performance scenario try: server_process = start_server(args) except Exception: print("bench: server start error :") traceback.print_exc(file=sys.stdout) sys.exit(1) # start the benchmark iterations = 0 data = {} try: start_benchmark(args) with open("results.github.env", 'w') as github_env: # parse output with open('k6-results.json', 'r') as bench_results: # Load JSON data from file data = json.load(bench_results) for metric_name in data['metrics']: for metric_metric in data['metrics'][metric_name]: value = data['metrics'][metric_name][metric_metric] if isinstance(value, float) or isinstance(value, int): value = round(value, 2) data['metrics'][metric_name][metric_metric]=value github_env.write( f"{escape_metric_name(metric_name)}_{escape_metric_name(metric_metric)}={value}\n") iterations = data['root_group']['checks']['success completion']['passes'] except Exception: print("bench: error :") traceback.print_exc(file=sys.stdout) # Stop the server if server_process: try: print(f"bench: shutting down server pid={server_process.pid} ...") if os.name == 'nt': interrupt = signal.CTRL_C_EVENT else: interrupt = signal.SIGINT server_process.send_signal(interrupt) server_process.wait(0.5) except subprocess.TimeoutExpired: print(f"server still alive after 500ms, force-killing pid={server_process.pid} ...") server_process.kill() # SIGKILL server_process.wait() while is_server_listening(args.host, args.port): time.sleep(0.1) title = (f"llama.cpp {args.name} on {args.runner_label}\n " f"duration={args.duration} {iterations} iterations") xlabel = (f"{args.hf_repo}/{args.hf_file}\n" f"parallel={args.parallel} ctx-size={args.ctx_size} ngl={args.n_gpu_layers} batch-size={args.batch_size} ubatch-size={args.ubatch_size} pp={args.max_prompt_tokens} pp+tg={args.max_tokens}\n" f"branch={args.branch} commit={args.commit}") # Prometheus end_time = time.time() prometheus_metrics = {} if is_server_listening("0.0.0.0", 9090): metrics = ['prompt_tokens_seconds', 'predicted_tokens_seconds', 'kv_cache_usage_ratio', 'requests_processing', 'requests_deferred'] for metric in metrics: resp = requests.get(f"http://localhost:9090/api/v1/query_range", params={'query': 'llamacpp:' + metric, 'start': start_time, 'end': end_time, 'step': 2}) with open(f"{metric}.json", 'w') as metric_json: metric_json.write(resp.text) if resp.status_code != 200: print(f"bench: unable to extract prometheus metric {metric}: {resp.text}") else: metric_data = resp.json() values = metric_data['data']['result'][0]['values'] timestamps, metric_values = zip(*values) metric_values = [float(value) for value in metric_values] prometheus_metrics[metric] = metric_values timestamps_dt = [str(datetime.fromtimestamp(int(ts))) for ts in timestamps] plt.figure(figsize=(16, 10), dpi=80) plt.plot(timestamps_dt, metric_values, label=metric) plt.xticks(rotation=0, fontsize=14, horizontalalignment='center', alpha=.7) plt.yticks(fontsize=12, alpha=.7) ylabel = f"llamacpp:{metric}" plt.title(title, fontsize=14, wrap=True) plt.grid(axis='both', alpha=.3) plt.ylabel(ylabel, fontsize=22) plt.xlabel(xlabel, fontsize=14, wrap=True) plt.gca().xaxis.set_major_locator(matplotlib.dates.MinuteLocator()) plt.gca().xaxis.set_major_formatter(matplotlib.dates.DateFormatter("%Y-%m-%d %H:%M:%S")) plt.gcf().autofmt_xdate() # Remove borders plt.gca().spines["top"].set_alpha(0.0) plt.gca().spines["bottom"].set_alpha(0.3) plt.gca().spines["right"].set_alpha(0.0) plt.gca().spines["left"].set_alpha(0.3) # Save the plot as a jpg image plt.savefig(f'{metric}.jpg', dpi=60) plt.close() # Mermaid format in case images upload failed with open(f"{metric}.mermaid", 'w') as mermaid_f: mermaid = ( f"""--- config: xyChart: titleFontSize: 12 width: 900 height: 600 themeVariables: xyChart: titleColor: "#000000" --- xychart-beta title "{title}" y-axis "llamacpp:{metric}" x-axis "llamacpp:{metric}" {int(min(timestamps))} --> {int(max(timestamps))} line [{', '.join([str(round(float(value), 2)) for value in metric_values])}] """) mermaid_f.write(mermaid) # 140 chars max for commit status description bench_results = { "i": iterations, "req": { "p95": round(data['metrics']["http_req_duration"]["p(95)"], 2), "avg": round(data['metrics']["http_req_duration"]["avg"], 2), }, "pp": { "p95": round(data['metrics']["llamacpp_prompt_processing_second"]["p(95)"], 2), "avg": round(data['metrics']["llamacpp_prompt_processing_second"]["avg"], 2), "0": round(mean(prometheus_metrics['prompt_tokens_seconds']), 2) if 'prompt_tokens_seconds' in prometheus_metrics else 0, }, "tg": { "p95": round(data['metrics']["llamacpp_tokens_second"]["p(95)"], 2), "avg": round(data['metrics']["llamacpp_tokens_second"]["avg"], 2), "0": round(mean(prometheus_metrics['predicted_tokens_seconds']), 2) if 'predicted_tokens_seconds' in prometheus_metrics else 0, }, } with open("results.github.env", 'a') as github_env: github_env.write(f"BENCH_RESULTS={json.dumps(bench_results, indent=None, separators=(',', ':') )}\n") github_env.write(f"BENCH_ITERATIONS={iterations}\n") title = title.replace('\n', ' ') xlabel = xlabel.replace('\n', ' ') github_env.write(f"BENCH_GRAPH_TITLE={title}\n") github_env.write(f"BENCH_GRAPH_XLABEL={xlabel}\n") def start_benchmark(args): k6_path = './k6' if 'BENCH_K6_BIN_PATH' in os.environ: k6_path = os.environ['BENCH_K6_BIN_PATH'] k6_args = [ 'run', args.scenario, '--no-color', '--no-connection-reuse', '--no-vu-connection-reuse', ] k6_args.extend(['--duration', args.duration]) k6_args.extend(['--iterations', args.n_prompts]) k6_args.extend(['--vus', args.parallel]) k6_args.extend(['--summary-export', 'k6-results.json']) k6_args.extend(['--out', 'csv=k6-results.csv']) args = f"SERVER_BENCH_N_PROMPTS={args.n_prompts} SERVER_BENCH_MAX_PROMPT_TOKENS={args.max_prompt_tokens} SERVER_BENCH_MAX_CONTEXT={args.max_tokens} " args = args + ' '.join([str(arg) for arg in [k6_path, *k6_args]]) print(f"bench: starting k6 with: {args}") k6_completed = subprocess.run(args, shell=True, stdout=sys.stdout, stderr=sys.stderr) if k6_completed.returncode != 0: raise Exception("bench: unable to run k6") def start_server(args): server_process = start_server_background(args) attempts = 0 max_attempts = 600 if 'GITHUB_ACTIONS' in os.environ: max_attempts *= 2 while not is_server_listening(args.host, args.port): attempts += 1 if attempts > max_attempts: assert False, "server not started" print(f"bench: waiting for server to start ...") time.sleep(0.5) attempts = 0 while not is_server_ready(args.host, args.port): attempts += 1 if attempts > max_attempts: assert False, "server not ready" print(f"bench: waiting for server to be ready ...") time.sleep(0.5) print("bench: server started and ready.") return server_process def start_server_background(args): # Start the server server_path = '../../../build/bin/llama-server' if 'LLAMA_SERVER_BIN_PATH' in os.environ: server_path = os.environ['LLAMA_SERVER_BIN_PATH'] server_args = [ '--host', args.host, '--port', args.port, ] server_args.extend(['--hf-repo', args.hf_repo]) server_args.extend(['--hf-file', args.hf_file]) server_args.extend(['--n-gpu-layers', args.n_gpu_layers]) server_args.extend(['--ctx-size', args.ctx_size]) server_args.extend(['--parallel', args.parallel]) server_args.extend(['--batch-size', args.batch_size]) server_args.extend(['--ubatch-size', args.ubatch_size]) server_args.extend(['--n-predict', args.max_tokens * 2]) server_args.extend(['--defrag-thold', "0.1"]) server_args.append('--cont-batching') server_args.append('--metrics') server_args.append('--flash-attn') args = [str(arg) for arg in [server_path, *server_args]] print(f"bench: starting server with: {' '.join(args)}") pkwargs = { 'stdout': subprocess.PIPE, 'stderr': subprocess.PIPE } server_process = subprocess.Popen( args, **pkwargs) # pyright: ignore[reportArgumentType, reportCallIssue] def server_log(in_stream, out_stream): for line in iter(in_stream.readline, b''): print(line.decode('utf-8'), end='', file=out_stream) thread_stdout = threading.Thread(target=server_log, args=(server_process.stdout, sys.stdout)) thread_stdout.start() thread_stderr = threading.Thread(target=server_log, args=(server_process.stderr, sys.stderr)) thread_stderr.start() return server_process def is_server_listening(server_fqdn, server_port): with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock: result = sock.connect_ex((server_fqdn, server_port)) _is_server_listening = result == 0 if _is_server_listening: print(f"server is listening on {server_fqdn}:{server_port}...") return _is_server_listening def is_server_ready(server_fqdn, server_port): url = f"http://{server_fqdn}:{server_port}/health" response = requests.get(url) return response.status_code == 200 def escape_metric_name(metric_name): return re.sub('[^A-Z0-9]', '_', metric_name.upper()) if __name__ == '__main__': main()