#include "arg.h" #include "common.h" #include "console.h" #include "sampling.h" #include "log.h" #include "llama.h" #include #include #include #include #include #include #include #include #include #include #include #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) #include #include #elif defined (_WIN32) #define WIN32_LEAN_AND_MEAN #ifndef NOMINMAX #define NOMINMAX #endif #include #include #endif #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif static llama_context ** g_ctx; static llama_model ** g_model; static gpt_sampler ** g_smpl; static gpt_params * g_params; static std::vector * g_input_tokens; static std::ostringstream * g_output_ss; static std::vector * g_output_tokens; static bool is_interacting = false; static void write_logfile( const llama_context * ctx, const gpt_params & params, const llama_model * model, const std::vector & input_tokens, const std::string & output, const std::vector & output_tokens ) { if (params.logdir.empty()) { return; } const std::string timestamp = string_get_sortable_timestamp(); const bool success = fs_create_directory_with_parents(params.logdir); if (!success) { LOG_ERR("%s: warning: failed to create logdir %s, cannot write logfile\n", __func__, params.logdir.c_str()); return; } const std::string logfile_path = params.logdir + timestamp + ".yml"; FILE * logfile = fopen(logfile_path.c_str(), "w"); if (logfile == NULL) { LOG_ERR("%s: failed to open logfile %s\n", __func__, logfile_path.c_str()); return; } fprintf(logfile, "binary: infill\n"); char model_desc[128]; llama_model_desc(model, model_desc, sizeof(model_desc)); yaml_dump_non_result_info(logfile, params, ctx, timestamp, input_tokens, model_desc); fprintf(logfile, "\n"); fprintf(logfile, "######################\n"); fprintf(logfile, "# Generation Results #\n"); fprintf(logfile, "######################\n"); fprintf(logfile, "\n"); yaml_dump_string_multiline(logfile, "output", output.c_str()); yaml_dump_vector_int(logfile, "output_tokens", output_tokens); llama_perf_dump_yaml(logfile, ctx); fclose(logfile); } #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32) static void sigint_handler(int signo) { if (signo == SIGINT) { if (!is_interacting) { is_interacting = true; } else { console::cleanup(); LOG("\n"); gpt_perf_print(*g_ctx, *g_smpl); write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens); // make sure all logs are flushed LOG("Interrupted by user\n"); gpt_log_pause(gpt_log_main()); _exit(130); } } } #endif int main(int argc, char ** argv) { gpt_params params; g_params = ¶ms; if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_INFILL)) { return 1; } gpt_init(); auto & sparams = params.sparams; console::init(params.simple_io, params.use_color); atexit([]() { console::cleanup(); }); if (params.logits_all) { LOG_ERR("\n************\n"); LOG_ERR("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__); LOG_ERR("************\n\n"); return 0; } if (params.embedding) { LOG_ERR("\n************\n"); LOG_ERR("%s: please use the 'embedding' tool for embedding calculations\n", __func__); LOG_ERR("************\n\n"); return 0; } if (params.n_ctx != 0 && params.n_ctx < 8) { LOG_WRN("%s: minimum context size is 8, using minimum size.\n", __func__); params.n_ctx = 8; } if (!params.interactive_first && (params.input_prefix.empty() && params.input_suffix.empty())) { LOG_ERR("\n************\n"); LOG_ERR("%s: please use '--interactive_first' or specify '--in_prefix' and/or '--in_suffix'\n", __func__); LOG_ERR("************\n\n"); return 0; } if (params.rope_freq_base != 0.0) { LOG_WRN("%s: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base); } if (params.rope_freq_scale != 0.0) { LOG_WRN("%s: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale); } LOG_INF("%s: llama backend init\n", __func__); llama_backend_init(); llama_numa_init(params.numa); llama_model * model = nullptr; llama_context * ctx = nullptr; gpt_sampler * smpl = nullptr; g_model = &model; g_ctx = &ctx; g_smpl = &smpl; // load the model and apply lora adapter, if any LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__); llama_init_result llama_init = llama_init_from_gpt_params(params); model = llama_init.model; ctx = llama_init.context; if (model == NULL) { LOG_ERR("%s: unable to load model\n", __func__); return 1; } const int n_ctx_train = llama_n_ctx_train(model); const int n_ctx = llama_n_ctx(ctx); LOG_DBG("n_ctx: %d\n", n_ctx); if (n_ctx > n_ctx_train) { LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx); } // print system information { LOG_INF("\n"); LOG_INF("%s\n", gpt_params_get_system_info(params).c_str()); } const bool add_bos = llama_add_bos_token(model); GGML_ASSERT(!llama_add_eos_token(model)); std::vector embd_inp; std::vector embd_end; std::vector inp_pfx = ::llama_tokenize(ctx, params.input_prefix, false); std::vector inp_sfx = ::llama_tokenize(ctx, params.input_suffix, false); GGML_ASSERT(llama_token_fim_pre(model) >= 0); GGML_ASSERT(llama_token_fim_suf(model) >= 0); inp_pfx.insert(inp_pfx.begin(), llama_token_fim_pre(model)); inp_sfx.insert(inp_sfx.begin(), llama_token_fim_suf(model)); embd_inp = params.spm_infill ? inp_sfx : inp_pfx; embd_end = params.spm_infill ? inp_pfx : inp_sfx; if (add_bos) { embd_inp.insert(embd_inp.begin(), llama_token_bos(model)); } embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end()); const llama_token middle_token = llama_token_fim_mid(model); if (middle_token >= 0) { embd_inp.push_back(middle_token); } LOG_DBG("add_bos: %d\n", add_bos); LOG_DBG("prefix: \"%s\"\n", params.input_prefix.c_str()); LOG_DBG("suffix: \"%s\"\n", params.input_suffix.c_str()); LOG_DBG("tokens: %s\n", string_from(ctx, embd_inp).c_str()); // Should not run without any tokens if (embd_inp.empty()) { embd_inp.push_back(llama_token_bos(model)); LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str()); } if ((int) embd_inp.size() > n_ctx - 4) { LOG_ERR("%s: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4); return 1; } // number of tokens to keep when resetting context if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) { params.n_keep = (int)embd_inp.size(); } LOG_INF("inp_pfx: %s\n", string_from(ctx, inp_pfx).c_str()); LOG_INF("inp_sfx: %s\n", string_from(ctx, inp_sfx).c_str()); // enable interactive mode if interactive start is specified if (params.interactive_first) { params.interactive = true; } if (params.verbose_prompt) { LOG_INF("\n"); LOG_INF("%s: prompt: '%s'\n", __func__, params.prompt.c_str()); LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); for (int i = 0; i < (int) embd_inp.size(); i++) { LOG_INF("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str()); } if (params.n_keep > 0) { LOG_INF("%s: static prompt based on n_keep: '", __func__); for (int i = 0; i < params.n_keep; i++) { LOG_CNT("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str()); } LOG_CNT("'\n"); } LOG_INF("\n"); } if (params.interactive) { #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) struct sigaction sigint_action; sigint_action.sa_handler = sigint_handler; sigemptyset (&sigint_action.sa_mask); sigint_action.sa_flags = 0; sigaction(SIGINT, &sigint_action, NULL); #elif defined (_WIN32) auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL { return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false; }; SetConsoleCtrlHandler(reinterpret_cast(console_ctrl_handler), true); #endif LOG_INF("%s: interactive mode on.\n", __func__); if (params.input_prefix_bos) { LOG_INF("Input prefix with BOS\n"); } if (!params.input_prefix.empty()) { LOG_INF("Input prefix: '%s'\n", params.input_prefix.c_str()); } if (!params.input_suffix.empty()) { LOG_INF("Input suffix: '%s'\n", params.input_suffix.c_str()); } } smpl = gpt_sampler_init(model, sparams); LOG_INF("sampler seed: %u\n", gpt_sampler_get_seed(smpl)); LOG_INF("sampler params: \n%s\n", sparams.print().c_str()); LOG_INF("sampler chain: %s\n", gpt_sampler_print(smpl).c_str()); LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep); LOG_INF("\n"); LOG_INF("\n##### Infill mode #####\n\n"); if (params.interactive) { const char *control_message; if (params.multiline_input) { control_message = " - To return control to LLaMA, end your input with '\\'.\n" " - To return control without starting a new line, end your input with '/'.\n"; } else { control_message = " - Press Return to return control to LLaMA.\n" " - To return control without starting a new line, end your input with '/'.\n" " - If you want to submit another line, end your input with '\\'.\n"; } LOG_INF("== Running in interactive mode. ==\n"); #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32) LOG_INF( " - Press Ctrl+C to interject at any time.\n"); #endif LOG_INF( "%s\n", control_message); is_interacting = params.interactive_first; } bool input_echo = true; int n_past = 0; int n_remain = params.n_predict; int n_consumed = 0; std::vector input_tokens; g_input_tokens = &input_tokens; std::vector output_tokens; g_output_tokens = &output_tokens; std::ostringstream output_ss; g_output_ss = &output_ss; // the first thing we will do is to output the prompt, so set color accordingly console::set_display(console::prompt); std::vector embd; while (n_remain != 0 || params.interactive) { // predict if (!embd.empty()) { // Note: n_ctx - 4 here is to match the logic for commandline prompt handling via // --prompt or --file which uses the same value. int max_embd_size = n_ctx - 4; // Ensure the input doesn't exceed the context size by truncating embd if necessary. if ((int) embd.size() > max_embd_size) { const int skipped_tokens = (int) embd.size() - max_embd_size; embd.resize(max_embd_size); console::set_display(console::error); LOG_WRN("<>", skipped_tokens, skipped_tokens != 1 ? "s" : ""); console::set_display(console::reset); } // infinite text generation via context swapping // if we run out of context: // - take the n_keep first tokens from the original prompt (via n_past) // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches if (n_past + (int) embd.size() > n_ctx) { if (params.n_predict == -2) { LOG_DBG("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict); break; } const int n_left = n_past - params.n_keep - 1; const int n_discard = n_left/2; LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n", n_past, n_left, n_ctx, params.n_keep, n_discard); llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1); llama_kv_cache_seq_add(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard); n_past -= n_discard; LOG_DBG("after swap: n_past = %d\n", n_past); LOG_DBG("embd: %s\n", string_from(ctx, embd).c_str()); } // evaluate tokens in batches // embd is typically prepared beforehand to fit within a batch, but not always for (int i = 0; i < (int) embd.size(); i += params.n_batch) { int n_eval = (int) embd.size() - i; if (n_eval > params.n_batch) { n_eval = params.n_batch; } LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str()); if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) { LOG_ERR("%s : failed to eval\n", __func__); return 1; } n_past += n_eval; LOG_DBG("n_past = %d\n", n_past); } } embd.clear(); if ((int) embd_inp.size() <= n_consumed && !is_interacting) { const llama_token id = gpt_sampler_sample(smpl, ctx, -1); gpt_sampler_accept(smpl, id, true); // LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str()); embd.push_back(id); // echo this to console input_echo = true; // decrement remaining sampling budget --n_remain; LOG_DBG("n_remain: %d\n", n_remain); } else { // some user input remains from prompt or interaction, forward it to processing LOG_DBG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed); while ((int) embd_inp.size() > n_consumed) { embd.push_back(embd_inp[n_consumed]); // push the prompt in the sampling context in order to apply repetition penalties later // for the prompt, we don't apply grammar rules gpt_sampler_accept(smpl, embd_inp[n_consumed], false); ++n_consumed; if ((int) embd.size() >= params.n_batch) { break; } } } // display text if (input_echo) { for (auto id : embd) { const std::string token_str = llama_token_to_piece(ctx, id); LOG("%s", token_str.c_str()); if (embd.size() > 1) { input_tokens.push_back(id); } else { output_tokens.push_back(id); output_ss << token_str; } } } // reset color to default if we there is no pending user input if (input_echo && (int) embd_inp.size() == n_consumed) { console::set_display(console::reset); } // if not currently processing queued inputs; if ((int) embd_inp.size() <= n_consumed) { // deal with eot token in infill mode if ((gpt_sampler_last(smpl) == llama_token_eot(model) || is_interacting) && params.interactive){ if (is_interacting && !params.interactive_first) { // print an eot token LOG("%s", llama_token_to_piece(ctx, llama_token_eot(model)).c_str()); } LOG("\n"); console::set_display(console::user_input); std::string buffer; std::string line; bool another_line=true; // set a new prefix via stdin do { another_line = console::readline(line, params.multiline_input); buffer += line; } while (another_line); // check if we got an empty line, if so we use the old input if (!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) { params.input_prefix = buffer; } buffer.clear(); // set a new suffix via stdin do { another_line = console::readline(line, params.multiline_input); buffer += line; } while (another_line); // check if we got an empty line if (!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) { params.input_suffix = buffer; } buffer.clear(); // done taking input, reset color console::set_display(console::reset); if (params.escape) { //process escape sequences, for the initial prompt this is done in common.cpp when we load the params, but for the interactive mode we need to do it here string_process_escapes(params.input_prefix); string_process_escapes(params.input_suffix); } // tokenize new prefix and suffix std::vector inp_pfx = ::llama_tokenize(ctx, params.input_prefix, false); std::vector inp_sfx = ::llama_tokenize(ctx, params.input_suffix, false); inp_pfx.insert(inp_pfx.begin(), llama_token_fim_pre(model)); inp_sfx.insert(inp_sfx.begin(), llama_token_fim_suf(model)); embd_inp = params.spm_infill ? inp_sfx : inp_pfx; embd_end = params.spm_infill ? inp_pfx : inp_sfx; if (add_bos) { embd_inp.insert(embd_inp.begin(), llama_token_bos(model)); } embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end()); if (middle_token >= 0) { embd_inp.push_back(middle_token); } embd.clear(); n_remain = params.n_predict; n_past = 0; n_consumed = 0; is_interacting = false; } // deal with end of generation tokens in interactive mode else if (llama_token_is_eog(model, gpt_sampler_last(smpl))) { LOG_DBG("found EOS token\n"); if (params.interactive) { is_interacting = true; LOG("\n"); console::set_display(console::user_input); } } if (n_past > 0 && is_interacting && !params.interactive) { LOG_DBG("waiting for user input\n"); if (params.input_prefix_bos) { LOG_DBG("adding input prefix BOS token\n"); embd_inp.push_back(llama_token_bos(model)); } std::string buffer; if (!params.input_prefix.empty()) { LOG_DBG("appending input prefix: '%s'\n", params.input_prefix.c_str()); buffer += params.input_prefix; LOG("%s", buffer.c_str()); } std::string line; bool another_line = true; do { another_line = console::readline(line, params.multiline_input); buffer += line; } while (another_line); // done taking input, reset color console::set_display(console::reset); // Add tokens to embd only if the input buffer is non-empty // Entering a empty line lets the user pass control back if (buffer.length() > 1) { // append input suffix if any if (!params.input_suffix.empty()) { LOG_DBG("appending input suffix: '%s'\n", params.input_suffix.c_str()); buffer += params.input_suffix; LOG("%s", params.input_suffix.c_str()); } LOG_DBG("buffer: '%s'\n", buffer.c_str()); const size_t original_size = embd_inp.size(); const auto line_inp = ::llama_tokenize(ctx, buffer, false); LOG_DBG("input tokens: %s\n", string_from(ctx, line_inp).c_str()); embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end()); for (size_t i = original_size; i < embd_inp.size(); ++i) { const llama_token token = embd_inp[i]; output_tokens.push_back(token); output_ss << llama_token_to_piece(ctx, token); } n_remain -= line_inp.size(); LOG_DBG("n_remain: %d\n", n_remain); } else { LOG_DBG("empty line, passing control back\n"); } input_echo = false; // do not echo this again } if (n_past > 0) { if (is_interacting) { gpt_sampler_reset(smpl); } is_interacting = false; } } // end of generation if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !params.interactive) { break; } // In interactive mode, respect the maximum number of tokens and drop back to user input when reached. // We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size). if (params.interactive && n_remain <= 0 && params.n_predict >= 0) { n_remain = params.n_predict; is_interacting = true; } } if (!params.interactive && n_remain <= 0) { LOG("%s", llama_token_to_piece(ctx, llama_token_eot(model)).c_str()); } LOG("\n"); gpt_perf_print(ctx, smpl); write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens); llama_free(ctx); llama_free_model(model); gpt_sampler_free(smpl); llama_backend_free(); return 0; }