#include "common.h" #include "llama.h" #include #include #include #include #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif struct Stats { std::vector values; int ncall = 0; }; struct StatParams { std::string ofile = "imatrix.dat"; int n_output_frequency = 10; int verbosity = 1; bool collect_output_weight = false; }; class IMatrixCollector { public: IMatrixCollector() = default; void set_parameters(StatParams&& params) { m_params = std::move(params); } bool collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data); void save_imatrix() const; private: std::unordered_map m_stats; StatParams m_params; std::mutex m_mutex; int m_last_call = 0; std::vector m_src1_data; std::vector m_ids; // the expert ids from ggml_mul_mat_id }; bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) { GGML_UNUSED(user_data); const struct ggml_tensor * src0 = t->src[0]; const struct ggml_tensor * src1 = t->src[1]; // when ask is true, the scheduler wants to know if we are interested in data from this tensor // if we return true, a follow-up call will be made with ask=false in which we can do the actual collection if (ask) { if (t->op == GGML_OP_MUL_MAT_ID) return true; // collect all indirect matrix multiplications if (t->op != GGML_OP_MUL_MAT) return false; if (src1->ne[1] < 16 || src1->type != GGML_TYPE_F32) return false; if (!(strncmp(src0->name, "blk.", 4) == 0 || (m_params.collect_output_weight && strcmp(src0->name, "output.weight") == 0))) return false; return true; } std::lock_guard lock(m_mutex); // copy the data from the GPU memory if needed const bool is_host = ggml_backend_buffer_is_host(src1->buffer); if (!is_host) { m_src1_data.resize(ggml_nelements(src1)); ggml_backend_tensor_get(src1, m_src1_data.data(), 0, ggml_nbytes(src1)); } const float * data = is_host ? (const float *) src1->data : m_src1_data.data(); if (t->op == GGML_OP_MUL_MAT_ID) { const int idx = ((int32_t *) t->op_params)[0]; const int n_as = ((int32_t *) t->op_params)[1]; // the top-k selected expert ids are stored in the src0 tensor // for simplicity, always copy src0 to host, because it is small // take into account that src0 is not contiguous! GGML_ASSERT(src0->ne[1] == src1->ne[1]); GGML_ASSERT(n_as*ggml_nrows(src0)*sizeof(int) == GGML_PAD(ggml_nbytes(src0), n_as*sizeof(int))); m_ids.resize(ggml_nbytes(src0)/sizeof(int)); ggml_backend_tensor_get(src0, m_ids.data(), 0, ggml_nbytes(src0)); // loop over all possible experts, regardless if they are used or not in the batch // this is necessary to guarantee equal number of "ncall" for each tensor for (int ex = 0; ex < n_as; ++ex) { src0 = t->src[2 + ex]; auto& e = m_stats[src0->name]; if (e.values.empty()) { e.values.resize(src1->ne[0], 0); } else if (e.values.size() != (size_t)src1->ne[0]) { fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", src0->name, (int)e.values.size(), (int)src1->ne[0]); exit(1); //GGML_ASSERT(false); } // NOTE: since we select top-k experts, the number of calls for the expert tensors will be k times larger // using the following line, we can correct for that if needed //if (idx == t->src[0]->ne[0] - 1) ++e.ncall; ++e.ncall; if (m_params.verbosity > 1) { printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, src0->name, ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type); } for (int row = 0; row < (int)src1->ne[1]; ++row) { const int excur = m_ids[row*n_as + idx]; GGML_ASSERT(excur >= 0 && excur < n_as); // sanity check if (excur != ex) continue; const float * x = data + row * src1->ne[0]; for (int j = 0; j < (int)src1->ne[0]; ++j) { e.values[j] += x[j]*x[j]; } } if (e.ncall > m_last_call) { m_last_call = e.ncall; if (m_last_call % m_params.n_output_frequency == 0) { save_imatrix(); } } } } else { auto& e = m_stats[src0->name]; if (e.values.empty()) { e.values.resize(src1->ne[0], 0); } else if (e.values.size() != (size_t)src1->ne[0]) { fprintf(stderr, "Oops: inconsistent size for %s (%d vs %d)\n", src0->name, (int)e.values.size(), (int)src1->ne[0]); exit(1); //GGML_ASSERT(false); } ++e.ncall; if (m_params.verbosity > 1) { printf("%s[%d]: %32s, %s, %5d x %5d, %d\n", __func__, m_last_call, src0->name, ggml_op_name(t->op), (int)src1->ne[0], (int)src1->ne[1], (int)src1->type); } for (int row = 0; row < (int)src1->ne[1]; ++row) { const float * x = data + row * src1->ne[0]; for (int j = 0; j < (int)src1->ne[0]; ++j) { e.values[j] += x[j]*x[j]; } } if (e.ncall > m_last_call) { m_last_call = e.ncall; if (m_last_call % m_params.n_output_frequency == 0) { save_imatrix(); } } } return true; } void IMatrixCollector::save_imatrix() const { const char * fname = m_params.ofile.empty() ? "imatrix.dat" : m_params.ofile.c_str(); std::ofstream out(fname, std::ios::binary); int n_entries = m_stats.size(); out.write((const char*)&n_entries, sizeof(n_entries)); for (auto& p : m_stats) { int len = p.first.size(); out.write((const char*)&len, sizeof(len)); out.write(p.first.c_str(), len); out.write((const char*)&p.second.ncall, sizeof(p.second.ncall)); int nval = p.second.values.size(); out.write((const char*)&nval, sizeof(nval)); if (nval > 0) out.write((const char*)p.second.values.data(), nval*sizeof(float)); } if (m_params.verbosity > 0) { fprintf(stderr, "\n%s: stored collected data after %d chunks in %s\n",__func__,m_last_call,fname); } } static IMatrixCollector g_collector; static bool ik_collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) { return g_collector.collect_imatrix(t, ask, user_data); } struct results_log_softmax { double log_softmax; float logit; float prob; }; static std::vector softmax(const std::vector& logits) { std::vector probs(logits.size()); float max_logit = logits[0]; for (float v : logits) { max_logit = std::max(max_logit, v); } double sum_exp = 0.0; for (size_t i = 0; i < logits.size(); i++) { // Subtract the maximum logit value from the current logit value for numerical stability const float logit = logits[i] - max_logit; const float exp_logit = expf(logit); sum_exp += exp_logit; probs[i] = exp_logit; } for (size_t i = 0; i < probs.size(); i++) { probs[i] /= sum_exp; } return probs; } static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) { float max_logit = logits[0]; for (int i = 1; i < n_vocab; ++i) { max_logit = std::max(max_logit, logits[i]); } double sum_exp = 0.0; for (int i = 0; i < n_vocab; ++i) { sum_exp += expf(logits[i] - max_logit); } return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp}; } static void process_logits( int n_vocab, const float * logits, const int * tokens, int n_token, std::vector & workers, double & nll, double & nll2, float * logit_history, float * prob_history ) { std::mutex mutex; int counter = 0; auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () { double local_nll = 0; double local_nll2 = 0; while (true) { std::unique_lock lock(mutex); int i = counter++; if (i >= n_token) { nll += local_nll; nll2 += local_nll2; break; } lock.unlock(); const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]); const double v = -results.log_softmax; local_nll += v; local_nll2 += v*v; logit_history[i] = results.logit; prob_history[i] = results.prob; } }; for (auto & w : workers) { w = std::thread(compute); } compute(); for (auto & w : workers) { w.join(); } } static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool compute_ppl) { const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); const int n_ctx = llama_n_ctx(ctx); auto tim1 = std::chrono::high_resolution_clock::now(); fprintf(stderr, "%s: tokenizing the input ..\n", __func__); std::vector tokens = ::llama_tokenize(ctx, params.prompt, add_bos); auto tim2 = std::chrono::high_resolution_clock::now(); fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast(tim2-tim1).count()); if (int(tokens.size()) < 2*n_ctx) { fprintf(stderr, "%s: you need at least %d tokens for a context of %d tokens\n",__func__,2*n_ctx, n_ctx); fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size()); return false; } std::vector logit_history; std::vector prob_history; if (compute_ppl) { logit_history.resize(tokens.size()); prob_history.resize(tokens.size()); } const int n_chunk_max = tokens.size() / n_ctx; const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max); const int n_vocab = llama_n_vocab(llama_get_model(ctx)); const int n_batch = params.n_batch; int count = 0; double nll = 0.0; double nll2 = 0.0; fprintf(stderr, "%s: computing over %d chunks with batch_size %d\n", __func__, n_chunk, n_batch); std::vector workers(std::thread::hardware_concurrency() - 1); const int num_batches = (n_ctx + n_batch - 1) / n_batch; std::vector logits; if (compute_ppl && num_batches > 1) { logits.reserve((size_t)n_ctx * n_vocab); } for (int i = 0; i < n_chunk; ++i) { const int start = i * n_ctx; const int end = start + n_ctx; std::vector logits; const auto t_start = std::chrono::high_resolution_clock::now(); // clear the KV cache llama_kv_cache_clear(ctx); for (int j = 0; j < num_batches; ++j) { const int batch_start = start + j * n_batch; const int batch_size = std::min(end - batch_start, n_batch); // save original token and restore it after eval const auto token_org = tokens[batch_start]; // add BOS token for the first batch of each chunk if (add_bos && j == 0) { tokens[batch_start] = llama_token_bos(llama_get_model(ctx)); } if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) { fprintf(stderr, "%s : failed to eval\n", __func__); return false; } // restore the original token in case it was set to BOS tokens[batch_start] = token_org; if (compute_ppl && num_batches > 1) { const auto * batch_logits = llama_get_logits(ctx); logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); } } const auto t_end = std::chrono::high_resolution_clock::now(); if (i == 0) { const float t_total = std::chrono::duration(t_end - t_start).count(); fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total); int total_seconds = (int)(t_total * n_chunk); if (total_seconds >= 60*60) { fprintf(stderr, "%d hours ", total_seconds / (60*60)); total_seconds = total_seconds % (60*60); } fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0); } if (compute_ppl) { const int first = n_ctx/2; const auto all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx); process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first, workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first); count += n_ctx - first - 1; printf("[%d]%.4lf,", i + 1, std::exp(nll / count)); fflush(stdout); logits.clear(); } } printf("\n"); if (compute_ppl) { nll2 /= count; nll /= count; const double ppl = exp(nll); nll2 -= nll * nll; if (nll2 > 0) { nll2 = sqrt(nll2/(count-1)); printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl); } else { printf("Unexpected negative standard deviation of log(prob)\n"); } } return true; } int main(int argc, char ** argv) { StatParams sparams; bool compute_ppl = true; std::vector args; args.push_back(argv[0]); int iarg = 1; for (; iarg < argc-1; ++iarg) { std::string arg{argv[iarg]}; if (arg == "-o" || arg == "--output-file") { sparams.ofile = argv[++iarg]; } else if (arg == "-ofreq" || arg == "--output-frequency") { sparams.n_output_frequency = std::stoi(argv[++iarg]); } else if (arg == "-ow" || arg == "--output-weight") { sparams.collect_output_weight = std::stoi(argv[++iarg]); } else if (arg == "--verbosity") { sparams.verbosity = std::stoi(argv[++iarg]); } else if (arg == "--no-ppl") { compute_ppl = false; } else { args.push_back(argv[iarg]); } } if (iarg < argc) { std::string arg{argv[iarg]}; if (arg == "--no-ppl") { compute_ppl = false; } else { args.push_back(argv[iarg]); } } gpt_params params; params.n_batch = 512; if (!gpt_params_parse(args.size(), args.data(), params)) { return 1; } g_collector.set_parameters(std::move(sparams)); params.logits_all = true; params.n_batch = std::min(params.n_batch, params.n_ctx); print_build_info(); if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); } fprintf(stderr, "%s: seed = %u\n", __func__, params.seed); std::mt19937 rng(params.seed); if (params.random_prompt) { params.prompt = gpt_random_prompt(rng); } llama_backend_init(params.numa); llama_model_params mparams = llama_model_params_from_gpt_params(params); llama_model * model = llama_load_model_from_file(params.model.c_str(), mparams); if (model == NULL) { fprintf(stderr, "%s: error: unable to load model\n", __func__); return 1; } llama_context_params cparams = llama_context_params_from_gpt_params(params); // pass the callback to the backend scheduler // it will be executed for each node during the graph computation cparams.cb_eval = ik_collect_imatrix; cparams.cb_eval_user_data = NULL; llama_context * ctx = llama_new_context_with_model(model, cparams); if (ctx == NULL) { fprintf(stderr, "%s: error: unable to create context\n", __func__); return 1; } const int n_ctx_train = llama_n_ctx_train(model); if (params.n_ctx > n_ctx_train) { fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, params.n_ctx); } // print system information { fprintf(stderr, "\n"); fprintf(stderr, "%s\n", get_system_info(params).c_str()); } bool OK = compute_imatrix(ctx, params, compute_ppl); if (!OK) { return 1; } g_collector.save_imatrix(); llama_print_timings(ctx); llama_free(ctx); llama_free_model(model); llama_backend_free(); return 0; }