#include "arg.h" #include "common.h" #include "sampling.h" #include "log.h" #include "llama.h" #include #include #include #include #include #include #include #define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 100 #define SPEC_VOCAB_CHECK_START_TOKEN_ID 5 struct seq_draft { bool active = false; bool drafting = false; bool skip = false; int i_batch_dft = 0; std::vector i_batch_tgt; std::vector tokens; std::vector> dists; struct common_sampler * smpl = nullptr; }; int main(int argc, char ** argv) { common_params params; // needed to get candidate probs even for temp <= 0.0 params.sparams.n_probs = 128; if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) { return 1; } if (params.n_predict < -1) { LOG_ERR("%s: --n-predict must be >= -1\n", __func__); return 1; } common_init(); if (params.model_draft.empty()) { LOG_ERR("%s: --model-draft is required\n", __func__); return 1; } // max number of parallel drafting sequences (i.e. tree branches) const int n_seq_dft = params.n_parallel; // probability threshold for splitting a draft branch (only for n_seq_dft > 1) const float p_split = params.p_split; std::default_random_engine rng(params.sparams.seed == LLAMA_DEFAULT_SEED ? std::random_device()() : params.sparams.seed); std::uniform_real_distribution<> u_dist; // init llama.cpp llama_backend_init(); llama_numa_init(params.numa); llama_model * model_tgt = NULL; llama_model * model_dft = NULL; llama_context * ctx_tgt = NULL; llama_context * ctx_dft = NULL; // load the target model common_init_result llama_init_tgt = common_init_from_params(params); model_tgt = llama_init_tgt.model; ctx_tgt = llama_init_tgt.context; // load the draft model params.model = params.model_draft; params.n_gpu_layers = params.n_gpu_layers_draft; if (params.draft_cpuparams.n_threads > 0) { params.cpuparams.n_threads = params.draft_cpuparams.n_threads; } params.cpuparams_batch.n_threads = params.draft_cpuparams_batch.n_threads; common_init_result llama_init_dft = common_init_from_params(params); model_dft = llama_init_dft.model; ctx_dft = llama_init_dft.context; const bool vocab_type_tgt = llama_vocab_type(model_tgt); LOG_DBG("vocab_type tgt: %d\n", vocab_type_tgt); const bool vocab_type_dft = llama_vocab_type(model_dft); LOG_DBG("vocab_type dft: %d\n", vocab_type_dft); if (vocab_type_tgt != vocab_type_dft) { LOG_ERR("%s: draft model vocab type must match target model to use speculation but ", __func__); LOG_ERR("vocab_type_dft = %d while vocab_type_tgt = %d\n", vocab_type_dft, vocab_type_tgt); return 1; } if ( llama_add_bos_token(model_tgt) != llama_add_bos_token(model_dft) || llama_add_eos_token(model_tgt) != llama_add_eos_token(model_dft) || llama_token_bos(model_tgt) != llama_token_bos(model_dft) || llama_token_eos(model_tgt) != llama_token_eos(model_dft) ) { LOG_ERR("%s: draft model special tokens must match target model to use speculation\n", __func__); return 1; } { const int n_vocab_tgt = llama_n_vocab(model_tgt); const int n_vocab_dft = llama_n_vocab(model_dft); const int vocab_diff = n_vocab_tgt > n_vocab_dft ? n_vocab_tgt - n_vocab_dft : n_vocab_dft - n_vocab_tgt; if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) { LOG_ERR("%s: draft model vocab must closely match target model to use speculation but ", __func__); LOG_ERR("target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n", n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE); return 1; } for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) { const char * token_text_tgt = llama_token_get_text(model_tgt, i); const char * token_text_dft = llama_token_get_text(model_dft, i); if (std::strcmp(token_text_tgt, token_text_dft) != 0) { LOG_ERR("%s: draft model vocab must match target model to use speculation but ", __func__); LOG_ERR("token %d content differs - target '%s', draft '%s'\n", i, common_token_to_piece(ctx_tgt, i).c_str(), common_token_to_piece(ctx_dft, i).c_str()); return 1; } } } // Tokenize the prompt std::vector inp; inp = common_tokenize(ctx_tgt, params.prompt, true, true); const int max_context_size = llama_n_ctx(ctx_tgt); const int max_tokens_list_size = max_context_size - 4; if ((int) inp.size() > max_tokens_list_size) { LOG_ERR("%s: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size); return 1; } LOG("\n\n"); for (auto id : inp) { LOG("%s", common_token_to_piece(ctx_tgt, id).c_str()); } const int n_input = inp.size(); const auto t_enc_start = ggml_time_us(); // eval the prompt with both models llama_decode(ctx_tgt, llama_batch_get_one( inp.data(), n_input - 1)); llama_decode(ctx_tgt, llama_batch_get_one(&inp.back(), 1)); llama_decode(ctx_dft, llama_batch_get_one( inp.data(), n_input)); const auto t_enc_end = ggml_time_us(); // the 2 models should have the same vocab //GGML_ASSERT(n_vocab == llama_n_vocab(model_dft)); // how many tokens to draft each time int n_draft = params.n_draft; int n_predict = 0; int n_drafted = 0; int n_accept = 0; int n_past_tgt = inp.size(); int n_past_dft = inp.size(); // used to determine end of generation bool has_eos = false; // target model sampling context (reuse the llama_context's sampling instance) struct common_sampler * smpl = common_sampler_init(model_tgt, params.sparams); struct llama_sampler * softmax = llama_sampler_init_softmax(); // draft sequence data std::vector drafts(n_seq_dft); for (int s = 0; s < n_seq_dft; ++s) { // allocate llama_sampler for each draft sequence drafts[s].smpl = common_sampler_init(model_dft, params.sparams); } llama_batch batch_dft = llama_batch_init(llama_n_ctx(ctx_dft), 0, 1); llama_batch batch_tgt = llama_batch_init(llama_n_ctx(ctx_tgt), 0, n_seq_dft); const auto t_dec_start = ggml_time_us(); // sample from the last token of the prompt drafts[0].i_batch_tgt.resize(1); drafts[0].i_batch_tgt[0] = 0; while (true) { std::set active_seqs = {}; // print current draft sequences for (int s = 0; s < n_seq_dft; ++s) { if (!drafts[s].active) { continue; } active_seqs.insert(s); const auto & tokens = drafts[s].tokens; LOG_DBG("draft %d: %s\n", s, string_from(ctx_dft, tokens).c_str()); } int i_dft = 0; int s_keep = 0; llama_token token_id; std::string token_str; // loop until we fail to accept a drafted token or we run out of drafted tokens while (true) { // check if the target token matches any of the drafts // for stochastic sampling, attempt to match the token with the drafted tokens { bool accept = false; if (params.sparams.temp > 0) { // stochastic verification common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true); auto & dist_tgt = *common_sampler_get_candidates(smpl); float p_tgt = 0.0f; float p_dft = 0.0f; while (active_seqs.size() > 0) { // randomly select a sequence to verify from active sequences std::uniform_int_distribution u_int_dist(0, active_seqs.size() - 1); int s = *std::next(active_seqs.begin(), u_int_dist(rng)); if (i_dft >= (int) drafts[s].tokens.size()) { drafts[s].active = false; active_seqs.erase(s); continue; } if (accept) { // if we already accepted a token, we can skip the rest if (drafts[s].tokens[i_dft] != drafts[s_keep].tokens[i_dft]) { drafts[s].active = false; active_seqs.erase(s); } continue; } LOG_DBG("verifying sequence #%d at pos #%d from %d active sequence(s)\n", s, i_dft, (int) active_seqs.size()); float r = u_dist(rng); llama_token_data_array dist_dft = { drafts[s].dists[i_dft].data() , drafts[s].dists[i_dft].size(), LLAMA_TOKEN_NULL, true }; //GGML_ASSERT(dist_tgt.size <= dist_dft.size); // acquire the token probabilities assigned by the draft and target models for (size_t i = 0; i < dist_tgt.size; i++) { if (dist_tgt.data[i].id == drafts[s].tokens[i_dft]) { p_tgt = dist_tgt.data[i].p; } if (dist_dft.data[i].id == drafts[s].tokens[i_dft]) { p_dft = dist_dft.data[i].p; } if (p_tgt && p_dft) { break; } } LOG_DBG("r = %f, p_dft = %f, p_tgt = %f\n", r, p_dft, p_tgt); if (r <= p_tgt / p_dft) { s_keep = s; accept = true; token_id = drafts[s].tokens[i_dft]; token_str = common_token_to_piece(ctx_tgt, token_id); common_sampler_accept(smpl, token_id, true); LOG_DBG("draft token %d of sequence %d (%d, '%s') accepted\n", i_dft, s, token_id, token_str.c_str()); break; } else { LOG_DBG("draft token %d of sequence %d (%d, '%s') rejected\n", i_dft, s, drafts[s].tokens[i_dft], common_token_to_piece(ctx_tgt, drafts[s].tokens[i_dft]).c_str()); drafts[s].active = false; // calculate residual probability GGML_ASSERT(dist_tgt.sorted); GGML_ASSERT(dist_dft.sorted); // sort dist by id std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) { return a.id < b.id; }); std::sort(dist_dft.data, dist_dft.data + dist_dft.size, [](const llama_token_data &a, const llama_token_data &b) { return a.id < b.id; }); float sum_probs = 0.0f; for (size_t i = 0; i < dist_tgt.size; i++) { if (i < dist_dft.size) { dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p - dist_dft.data[i].p); } else { dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p); } sum_probs += dist_tgt.data[i].p; } for (size_t i = 0; i < dist_tgt.size; i++) { dist_tgt.data[i].p /= sum_probs; } // sort dist_tgt by p desc std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) { return a.p > b.p; }); } active_seqs.erase(s); for(int i = 0; i < n_seq_dft; i++) { if (i == s) { continue; } if (drafts[i].tokens[i_dft] == drafts[s].tokens[i_dft]) { // synchronize active status for sequences with the same drafted token drafts[i].active = drafts[i].active && accept; if (!drafts[i].active) { active_seqs.erase(s); } } } } if (!accept) { // all drafted tokens were rejected // sample from the target model LOG_DBG("all drafted tokens were rejected, sampling from residual distribution\n"); std::vector probs(dist_tgt.size); for (size_t i = 0; i < dist_tgt.size; ++i) { probs[i] = dist_tgt.data[i].p; } std::discrete_distribution<> dist(probs.begin(), probs.end()); const int idx = dist(rng); token_id = dist_tgt.data[idx].id; common_sampler_accept(smpl, token_id, true); token_str = common_token_to_piece(ctx_tgt, token_id); } } else { // greedy verification // sample from the target model LOG_DBG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]); token_id = common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft]); common_sampler_accept(smpl, token_id, true); token_str = common_token_to_piece(ctx_tgt, token_id); for (int s = 0; s < n_seq_dft; ++s) { if (!drafts[s].active) { continue; } if (i_dft < (int) drafts[s].tokens.size() && token_id == drafts[s].tokens[i_dft]) { LOG_DBG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, token_id, token_str.c_str()); s_keep = s; accept = true; } else { drafts[s].active = false; } } } if (llama_token_is_eog(model_tgt, token_id)) { has_eos = true; } ++n_predict; if (accept) { ++n_accept; ++n_past_tgt; ++n_past_dft; ++i_dft; if (params.use_color) { // Color token according to its origin sequence LOG("\u001b[%dm%s\u001b[37m", (36 - s_keep % 6), token_str.c_str()); } else { LOG("%s", token_str.c_str()); } continue; } else { LOG("%s", token_str.c_str()); break; } } } { LOG_DBG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", token_id, token_str.c_str()); // TODO: simplify { LOG_DBG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft); llama_kv_cache_seq_keep(ctx_dft, s_keep); llama_kv_cache_seq_cp (ctx_dft, s_keep, 0, -1, -1); llama_kv_cache_seq_keep(ctx_dft, 0); llama_kv_cache_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1); llama_kv_cache_seq_keep(ctx_tgt, s_keep); llama_kv_cache_seq_cp (ctx_tgt, s_keep, 0, -1, -1); llama_kv_cache_seq_keep(ctx_tgt, 0); } for (int s = 0; s < n_seq_dft; ++s) { drafts[s].active = false; drafts[s].tokens.clear(); drafts[s].i_batch_tgt.clear(); drafts[s].dists.clear(); } // note: will be erased after the speculation phase drafts[0].tokens.push_back(token_id); drafts[0].dists.push_back(std::vector()); drafts[0].i_batch_tgt.push_back(0); common_batch_clear(batch_dft); common_batch_add (batch_dft, token_id, n_past_dft, { 0 }, true); llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1); // LOG_DBG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str()); llama_decode(ctx_dft, batch_dft); ++n_past_dft; } if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) { break; } if (drafts[0].smpl) { common_sampler_free(drafts[0].smpl); } drafts[0].smpl = common_sampler_clone(smpl); int n_seq_cur = 1; int n_past_cur = n_past_dft; for (int s = 0; s < n_seq_dft; ++s) { drafts[s].active = false; drafts[s].drafting = false; } drafts[0].active = true; drafts[0].drafting = true; drafts[0].i_batch_dft = 0; common_batch_clear(batch_tgt); common_batch_add (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true); // sample n_draft tokens from the draft model using tree-based sampling for (int i = 0; i < n_draft; ++i) { batch_dft.n_tokens = 0; for (int s = 0; s < n_seq_dft; ++s) { drafts[s].skip = false; } for (int s = 0; s < n_seq_dft; ++s) { if (!drafts[s].drafting || drafts[s].skip) { continue; } common_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft, true); const auto * cur_p = common_sampler_get_candidates(drafts[s].smpl); for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p->size); ++k) { LOG_DBG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n", k, s, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx_dft, cur_p->data[k].id).c_str()); } std::vector sa(1, s); // attempt to split the branch if the probability is high enough for (int f = 1; f < 8; ++f) { if (n_seq_cur < n_seq_dft && cur_p->data[f].p > p_split) { LOG_DBG("splitting seq %3d into %3d\n", s, n_seq_cur); llama_kv_cache_seq_rm(ctx_dft, n_seq_cur, -1, -1); llama_kv_cache_seq_cp(ctx_dft, s, n_seq_cur, -1, -1); // all previous tokens from this branch are now also part of the new branch for (int t = 0; t < batch_tgt.n_tokens; ++t) { for (int p = 0; p < batch_tgt.n_seq_id[t]; ++p) { if (batch_tgt.seq_id[t][p] == s) { batch_tgt.seq_id[t][batch_tgt.n_seq_id[t]] = n_seq_cur; batch_tgt.n_seq_id[t]++; break; } } } // copy the draft state drafts[n_seq_cur].active = true; drafts[n_seq_cur].drafting = true; drafts[n_seq_cur].skip = true; drafts[n_seq_cur].tokens = drafts[s].tokens; drafts[n_seq_cur].dists = drafts[s].dists; drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft; drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt; if (drafts[n_seq_cur].smpl) { common_sampler_free(drafts[n_seq_cur].smpl); } drafts[n_seq_cur].smpl = common_sampler_clone(drafts[s].smpl); sa.push_back(n_seq_cur); n_seq_cur++; } else { break; } } // add drafted token for each sequence for (int is = 0; is < (int) sa.size(); ++is) { const llama_token id = cur_p->data[is].id; const int s = sa[is]; common_sampler_accept(drafts[s].smpl, id, true); drafts[s].tokens.push_back(id); // save cur_p.data into drafts[s].dists drafts[s].dists.push_back({cur_p->data, cur_p->data + cur_p->size}); // add unique drafted tokens to the target batch drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens); common_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true); // add the token to the batch for batched decoding with the draft model drafts[s].i_batch_dft = batch_dft.n_tokens; common_batch_add(batch_dft, id, n_past_cur, { s }, true); if (batch_tgt.n_tokens > n_draft) { drafts[s].drafting = false; } } } // no sequence is drafting anymore if (batch_dft.n_tokens == 0) { break; } // evaluate the drafted tokens on the draft model llama_decode(ctx_dft, batch_dft); ++n_past_cur; ++n_drafted; if (batch_tgt.n_tokens > n_draft) { break; } } // evaluate the target model on the drafted tokens { llama_kv_cache_seq_keep(ctx_tgt, 0); for (int s = 1; s < n_seq_dft; ++s) { llama_kv_cache_seq_cp(ctx_tgt, 0, s, -1, -1); } // LOG_DBG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str()); llama_decode(ctx_tgt, batch_tgt); ++n_past_tgt; } // the first token is always proposed by the target model before the speculation loop so we erase it here for (int s = 0; s < n_seq_dft; ++s) { if (!drafts[s].active) { continue; } drafts[s].tokens.erase(drafts[s].tokens.begin()); drafts[s].dists.erase(drafts[s].dists.begin()); } } auto t_dec_end = ggml_time_us(); LOG("\n\n"); LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f)); LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f)); LOG_INF("\n"); LOG_INF("n_draft = %d\n", n_draft); LOG_INF("n_predict = %d\n", n_predict); LOG_INF("n_drafted = %d\n", n_drafted); LOG_INF("n_accept = %d\n", n_accept); LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted); LOG_INF("\n"); LOG_INF("draft:\n\n"); // TODO: print sampling/grammar timings for all drafts llama_perf_context_print(ctx_dft); LOG_INF("\n"); LOG_INF("target:\n\n"); common_perf_print(ctx_tgt, smpl); common_sampler_free(smpl); for (int s = 0; s < n_seq_dft; ++s) { common_sampler_free(drafts[s].smpl); } llama_sampler_free(softmax); llama_batch_free(batch_dft); llama_free(ctx_tgt); llama_free_model(model_tgt); llama_free(ctx_dft); llama_free_model(model_dft); llama_backend_free(); LOG("\n\n"); return 0; }