#pragma once #include "ggml.h" #include "ggml-alloc.h" #ifdef __cplusplus extern "C" { #endif typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t; typedef struct ggml_backend_buffer * ggml_backend_buffer_t; typedef struct ggml_backend_event * ggml_backend_event_t; typedef struct ggml_backend * ggml_backend_t; typedef void * ggml_backend_graph_plan_t; // // Backend buffer // // buffer type GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft); GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size); GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft); GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft); GGML_API GGML_CALL size_t ggml_backend_buft_get_alloc_size (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor); GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft); // buffer enum ggml_backend_buffer_usage { GGML_BACKEND_BUFFER_USAGE_ANY = 0, GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1, }; GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer); GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer); GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer); GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer); GGML_API GGML_CALL void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer); GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer); GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value); GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer); GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage); GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer); GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer); // // Backend // GGML_API ggml_guid_t ggml_backend_guid(ggml_backend_t backend); GGML_API const char * ggml_backend_name(ggml_backend_t backend); GGML_API void ggml_backend_free(ggml_backend_t backend); GGML_API ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend); GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size); GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend); GGML_API size_t ggml_backend_get_max_size(ggml_backend_t backend); GGML_API void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); GGML_API GGML_CALL void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); GGML_API GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); GGML_API void ggml_backend_synchronize(ggml_backend_t backend); GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph); GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan); GGML_API enum ggml_status ggml_backend_graph_plan_compute (ggml_backend_t backend, ggml_backend_graph_plan_t plan); GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph); GGML_API enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph); GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op); GGML_API bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft); GGML_API bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op); // tensor copy between different backends GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst); // asynchronous copy // the copy is performed after all the currently queued operations in backend_src // backend_dst will wait for the copy to complete before performing other operations // automatic fallback to sync copy if async is not supported GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst); // events GGML_API ggml_backend_event_t ggml_backend_event_new (ggml_backend_t backend); GGML_API void ggml_backend_event_free (ggml_backend_event_t event); GGML_API void ggml_backend_event_record (ggml_backend_event_t event); GGML_API void ggml_backend_event_synchronize(ggml_backend_event_t event); GGML_API void ggml_backend_event_wait (ggml_backend_t backend, ggml_backend_event_t event); // // CPU backend // GGML_API ggml_backend_t ggml_backend_cpu_init(void); GGML_API GGML_CALL bool ggml_backend_is_cpu (ggml_backend_t backend); GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads); GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data); // Create a backend buffer from an existing pointer GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size); GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void); #ifdef GGML_USE_CPU_HBM GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void); #endif // // Backend registry // // The backend registry is a registry of all the available backends, and allows initializing backends in a generic way GGML_API size_t ggml_backend_reg_get_count(void); GGML_API size_t ggml_backend_reg_find_by_name(const char * name); GGML_API ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str); // str is backend_name:params (params is optional) GGML_API const char * ggml_backend_reg_get_name(size_t i); GGML_API ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params); // params is backend-specific GGML_API ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i); GGML_API ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size); // // Backend scheduler // // The backend scheduler allows for multiple backends to be used together // Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends // The backends are selected based on: // - the backend that supports the operation // - the location of the pre-allocated tensors (e.g. the weights) /* Example usage: // operations that use tensors allocated in a buffer with USAGE_WEIGHTS will be assigned // preferrably to run on the same backend as the buffer ggml_backend_buffer_set_usage(buf_weights, GGML_BACKEND_BUFFER_USAGE_WEIGHTS); sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, GGML_DEFAULT_GRAPH_SIZE, false); // initialize buffers from a max size graph (optional) reserve_graph = build_graph(sched, max_batch_size); // manually assign nodes to a backend (optional, should not be needed in most cases) struct ggml_tensor * node = ggml_mul_mat(ctx, ...); ggml_backend_sched_set_tensor_backend(sched, node, backend_gpu); ggml_backend_sched_reserve(sched, reserve_graph); // compute graph = build_graph(sched); ggml_backend_sched_graph_compute(sched, graph); // if there are graph inputs: ggml_backend_sched_reset(sched); ggml_backend_sched_alloc_graph(sched, graph); ggml_backend_tensor_set(input_tensor, ...); ggml_backend_sched_graph_compute(sched, graph); } */ struct ggml_backend_sched; typedef struct ggml_backend_sched * ggml_backend_sched_t; // when ask == true, the scheduler wants to know if the user wants to observe this node // this allows the scheduler to batch nodes together in order to evaluate them in a single call // // when ask == false, the scheduler is passing the node tensor to the user for observation // if the user returns false, the scheduler will cancel the graph compute // typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data); // Initialize a backend scheduler GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel); GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched); // Initialize backend buffers from a measure graph GGML_API bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph); GGML_API int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched); GGML_API ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i); // Get the number of splits of the last graph GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched); GGML_API int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched); GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend); GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend); GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node); // Allocate and compute graph on the backend scheduler GGML_API bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph); GGML_API enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph); GGML_API enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph); GGML_API void ggml_backend_sched_synchronize(ggml_backend_sched_t sched); // Reset all assignments and allocators - must be called before changing the node backends GGML_API void ggml_backend_sched_reset(ggml_backend_sched_t sched); // Set a callback to be called for each resulting node during graph compute GGML_API void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data); // // Utils // struct ggml_backend_graph_copy { ggml_backend_buffer_t buffer; struct ggml_context * ctx_allocated; struct ggml_context * ctx_unallocated; struct ggml_cgraph * graph; }; // Copy a graph to a different backend GGML_API struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph); GGML_API void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy); typedef bool (*GGML_CALL ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data); // Compare the output of two backends GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data); // Tensor initialization GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr); GGML_API void ggml_backend_view_init(struct ggml_tensor * tensor); #ifdef __cplusplus } #endif