#include "common.h" #include "llama.h" #include "build-info.h" #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif std::vector softmax(const std::vector& logits) { std::vector probs(logits.size()); float max_logit = logits[0]; for (float v : logits) max_logit = std::max(max_logit, v); double sum_exp = 0.0; for (size_t i = 0; i < logits.size(); i++) { // Subtract the maximum logit value from the current logit value for numerical stability const float logit = logits[i] - max_logit; const float exp_logit = expf(logit); sum_exp += exp_logit; probs[i] = exp_logit; } for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp; return probs; } void perplexity(llama_context * ctx, const gpt_params & params) { // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` // Output: `perplexity: 13.5106 [114/114]` // BOS tokens will be added for each chunk before eval auto tokens = ::llama_tokenize(ctx, params.prompt, true); const int n_chunk_max = tokens.size() / params.n_ctx; const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max); const int n_vocab = llama_n_vocab(ctx); const int n_batch = params.n_batch; int count = 0; double nll = 0.0; fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch); for (int i = 0; i < n_chunk; ++i) { const int start = i * params.n_ctx; const int end = start + params.n_ctx; const int num_batches = (params.n_ctx + n_batch - 1) / n_batch; std::vector logits; const auto t_start = std::chrono::high_resolution_clock::now(); for (int j = 0; j < num_batches; ++j) { const int batch_start = start + j * n_batch; const int batch_size = std::min(end - batch_start, n_batch); // save original token and restore it after eval const auto token_org = tokens[batch_start]; // add BOS token for the first batch of each chunk if (j == 0) { tokens[batch_start] = llama_token_bos(ctx); } if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) { fprintf(stderr, "%s : failed to eval\n", __func__); return; } // restore the original token in case it was set to BOS tokens[batch_start] = token_org; const auto batch_logits = llama_get_logits(ctx); logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); } const auto t_end = std::chrono::high_resolution_clock::now(); if (i == 0) { const float t_total = std::chrono::duration(t_end - t_start).count(); fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total); int total_seconds = (int)(t_total * n_chunk); if (total_seconds >= 60*60) { fprintf(stderr, "%d hours ", total_seconds / (60*60)); total_seconds = total_seconds % (60*60); } fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0); } // We get the logits for all the tokens in the context window (params.n_ctx) // from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity, // calculate the perplexity over the last half of the window (so the model always has // some context to predict the token). // // We rely on the fact that attention in the forward pass only looks at previous // tokens here, so the logits returned for each token are an accurate representation // of what the model would have predicted at that point. // // Example, we have a context window of 512, we will compute perplexity for each of the // last 256 tokens. Then, we split the input up into context window size chunks to // process the entire prompt. for (int j = std::min(512, params.n_ctx / 2); j < params.n_ctx - 1; ++j) { // Calculate probability of next token, given the previous ones. const std::vector tok_logits( logits.begin() + (j + 0) * n_vocab, logits.begin() + (j + 1) * n_vocab); const float prob = softmax(tok_logits)[tokens[start + j + 1]]; nll += -std::log(prob); ++count; } // perplexity is e^(average negative log-likelihood) printf("[%d]%.4lf,", i + 1, std::exp(nll / count)); fflush(stdout); } printf("\n"); } void hellaswag_score(llama_context * ctx, const gpt_params & params) { // Calculates hellaswag score (acc_norm) from prompt // // Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl // All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68 // // All 10042 tasks should be extracted to keep the results standardized like other implementations. // // Datafile layout: // ['??'] denotes json fields // 6 lines per task: // ['activity_label'] + ": " +['ctx'] - The first part of the query, the context // ['label'] - The index the best common sense ending aka gold ending // ['endings'][0] - Endings added to the first part of the query // ['endings'][1] // ['endings'][2] // ['endings'][3] std::vector prompt_lines; std::istringstream strstream(params.prompt); std::string line; while (std::getline(strstream,line,'\n')) { prompt_lines.push_back(line); } if( prompt_lines.size() % 6 != 0) { fprintf(stderr, "%s : number of lines in prompt not a multiple of 6.\n", __func__); return; } size_t hs_task_count = prompt_lines.size()/6; fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count); // This is needed as usual for LLaMA models bool prepend_bos = true; // Number of tasks to use when computing the score if ( params.hellaswag_tasks < hs_task_count ) { hs_task_count = params.hellaswag_tasks; } // The tasks should be randomized so the score stabilizes quickly. bool randomize_tasks = true; // The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now std::mt19937 rng(1); // Dataholder for hellaswag tasks struct hs_data_t { std::string context; size_t gold_ending_idx; std::string ending[4]; size_t ending_logprob_count[4]; double ending_logprob[4]; }; fprintf(stderr, "%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") ); // Select and read data from prompt lines hs_data_t *hs_data = new hs_data_t[hs_task_count]; for (size_t i=0; i < hs_task_count; i++) { size_t idx = i; // Select a random example of those left in the prompt if (randomize_tasks) { std::uniform_int_distribution dist(0, prompt_lines.size()/6-1 ) ; idx = dist(rng); } hs_data[i].context = prompt_lines[idx*6]; hs_data[i].gold_ending_idx = std::stoi( prompt_lines[idx*6+1] ); for (size_t j=0; j < 4; j++) { hs_data[i].ending[j] = " " + prompt_lines[idx*6+2+j]; } // Delete the selected random example from the prompt if (randomize_tasks) { prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) ); } } fprintf(stderr, "%s : calculating hellaswag score over selected tasks.\n", __func__); printf("\ntask\tacc_norm\n"); double acc = 0.0f; const int n_vocab = llama_n_vocab(ctx); for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) { // Tokenize the context to count tokens std::vector context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, prepend_bos); size_t context_size = context_embd.size(); for (size_t ending_idx=0;ending_idx<4;ending_idx++) { // Tokenize the query std::vector query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[ending_idx], prepend_bos); size_t query_size = query_embd.size(); // Stop if query wont fit the ctx window if (query_size > (size_t)params.n_ctx) { fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size); return; } // Speedup small evaluations by evaluating atleast 32 tokens if (query_size < 32) { query_embd.resize(32); } // Evaluate the query if (llama_eval(ctx, query_embd.data(), query_embd.size(), 0, params.n_threads)) { fprintf(stderr, "%s : failed to eval\n", __func__); return; } const auto query_logits = llama_get_logits(ctx); std::vector logits; logits.insert(logits.end(), query_logits, query_logits + query_size * n_vocab); hs_data[task_idx].ending_logprob_count[ending_idx] = 0; hs_data[task_idx].ending_logprob[ending_idx] = 0.0f; // Calculate the logprobs over the ending for (size_t j = context_size-1; j < query_size - 1; j++) { // Calculate probability of next token, given the previous ones. const std::vector tok_logits( logits.begin() + (j + 0) * n_vocab, logits.begin() + (j + 1) * n_vocab); const float prob = softmax(tok_logits)[query_embd[ j + 1]]; hs_data[task_idx].ending_logprob[ending_idx] += std::log(prob); hs_data[task_idx].ending_logprob_count[ending_idx]++; } // Calculate the mean token logprob for acc_norm hs_data[task_idx].ending_logprob[ending_idx] /= hs_data[task_idx].ending_logprob_count[ending_idx]; // printf("task %lu, ending %lu, whole_len %lu, context_len %lu, ending_logprob_count %lu, ending_logprob %.4f\n", // task_idx,ending_idx,whole_size,context_size, hs_data[task_idx].ending_logprob_count[ending_idx], hs_data[task_idx].ending_logprob[ending_idx] ); } // Find the ending with maximum logprob size_t ending_logprob_max_idx = -1; double ending_logprob_max_val = -INFINITY; for (size_t j=0; j < 4; j++) { if (hs_data[task_idx].ending_logprob[j] > ending_logprob_max_val) { ending_logprob_max_idx = j; ending_logprob_max_val = hs_data[task_idx].ending_logprob[j]; } } // printf("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_data[task_idx].gold_ending_idx); // If the gold ending got the maximum logprobe add one accuracy point if (ending_logprob_max_idx == hs_data[task_idx].gold_ending_idx) { acc += 1.0; } // Print the accumulated accuracy mean x 100 printf("%zu\t%.8lf\n",task_idx+1, acc/double(task_idx+1)*100.0); fflush(stdout); } delete [] hs_data; printf("\n"); } int main(int argc, char ** argv) { gpt_params params; params.n_batch = 512; if (gpt_params_parse(argc, argv, params) == false) { return 1; } params.perplexity = true; params.n_batch = std::min(params.n_batch, params.n_ctx); if (params.n_ctx > 2048) { fprintf(stderr, "%s: warning: model might not support context sizes greater than 2048 tokens (%d specified);" "expect poor results\n", __func__, params.n_ctx); } fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); if (params.seed == LLAMA_DEFAULT_SEED) { params.seed = time(NULL); } fprintf(stderr, "%s: seed = %u\n", __func__, params.seed); std::mt19937 rng(params.seed); if (params.random_prompt) { params.prompt = gpt_random_prompt(rng); } llama_backend_init(params.numa); llama_model * model; llama_context * ctx; // load the model and apply lora adapter, if any std::tie(model, ctx) = llama_init_from_gpt_params(params); if (model == NULL) { fprintf(stderr, "%s: error: unable to load model\n", __func__); return 1; } // print system information { fprintf(stderr, "\n"); fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info()); } if (params.hellaswag) { hellaswag_score(ctx, params); } else { perplexity(ctx, params); } llama_print_timings(ctx); llama_free(ctx); llama_free_model(model); llama_backend_free(); return 0; }