#include "ggml.h" #include "llama.h" #include #include #include #include #include #include #include #include #include #include #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif //////////////////////////////////////// llama2.c model structs and functions to load models, alloc memory etc. typedef struct { int dim; // transformer dimension int hidden_dim; // for ffn layers int n_layers; // number of layers int n_heads; // number of query heads int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery) int vocab_size; // vocabulary size, usually 256 (byte-level) int seq_len; // max sequence length } Config; typedef struct { // token embedding table float* token_embedding_table; // (vocab_size, dim) // weights for rmsnorms float* rms_att_weight; // (layer, dim) rmsnorm weights float* rms_ffn_weight; // (layer, dim) // weights for matmuls float* wq; // (layer, dim, dim) float* wk; // (layer, dim, dim) float* wv; // (layer, dim, dim) float* wo; // (layer, dim, dim) // weights for ffn float* w1; // (layer, hidden_dim, dim) float* w2; // (layer, dim, hidden_dim) float* w3; // (layer, hidden_dim, dim) // final rmsnorm float* rms_final_weight; // (dim,) // freq_cis for RoPE relatively positional embeddings // float* freq_cis_real; // (seq_len, dim/2) // float* freq_cis_imag; // (seq_len, dim/2) // (optional) classifier weights for the logits, on the last layer //float* wcls; } TransformerWeights; void malloc_weights(TransformerWeights* w, Config* p) { // we calloc instead of malloc to keep valgrind happy w->token_embedding_table = new float[p->vocab_size * p->dim](); printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim); w->rms_att_weight = new float[p->n_layers * p->dim](); printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim); w->rms_ffn_weight = new float[p->n_layers * p->dim](); printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim); w->wq = new float[p->n_layers * p->dim * p->dim](); printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim); w->wk = new float[p->n_layers * p->dim * p->dim](); printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim); w->wv = new float[p->n_layers * p->dim * p->dim](); printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim); w->wo = new float[p->n_layers * p->dim * p->dim](); printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim); w->w1 = new float[p->n_layers * p->hidden_dim * p->dim](); printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim); w->w2 = new float[p->n_layers * p->hidden_dim * p->dim](); printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim); w->w3 = new float[p->n_layers * p->hidden_dim * p->dim](); printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim); w->rms_final_weight = new float[p->dim](); printf("[%s:AK] Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim); } int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f) { if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != static_cast(p->vocab_size * p->dim)) return 1; if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast(p->n_layers * p->dim)) return 1; if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast(p->n_layers * p->dim * p->dim)) return 1; if (fread(w->wk, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast(p->n_layers * p->dim * p->dim)) return 1; if (fread(w->wv, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast(p->n_layers * p->dim * p->dim)) return 1; if (fread(w->wo, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast(p->n_layers * p->dim * p->dim)) return 1; if (fread(w->rms_ffn_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast(p->n_layers * p->dim)) return 1; if (fread(w->w1, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast(p->n_layers * p->dim * p->hidden_dim)) return 1; if (fread(w->w2, sizeof(float), p->n_layers * p->hidden_dim * p->dim, f) != static_cast(p->n_layers * p->hidden_dim * p->dim)) return 1; if (fread(w->w3, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast(p->n_layers * p->dim * p->hidden_dim)) return 1; if (fread(w->rms_final_weight, sizeof(float), p->dim, f) != static_cast(p->dim)) return 1; return 0; } void free_weights(TransformerWeights* w) { delete w->token_embedding_table; delete w->rms_att_weight; delete w->rms_ffn_weight; delete w->wq; delete w->wk; delete w->wv; delete w->wo; delete w->w1; delete w->w2; delete w->w3; delete w->rms_final_weight; } void print_sample_weights(TransformerWeights *w){ printf("----- Quick print of first of the weight vales of all the variables\n"); printf("%f\n", w->token_embedding_table[0]); printf("%f\n", w->rms_att_weight[0]); printf("%f\n", w->rms_ffn_weight[0]); printf("%f\n", w->wq[0]); printf("%f\n", w->wk[0]); printf("%f\n", w->wv[0]); printf("%f\n", w->wo[0]); printf("%f\n", w->w1[0]); printf("%f\n", w->w2[0]); printf("%f\n", w->w3[0]); printf("%f\n", w->rms_att_weight[0]); } //////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////// ggml structs and functions required to load models, configs and save the model. struct llama_vocab { using id = int32_t; using token = std::string; struct token_score { token tok; float score; }; std::unordered_map token_to_id; std::vector id_to_token; }; struct my_llama_hparams { uint32_t n_vocab = 32000; uint32_t n_ctx = 512; // this is provided as user input? uint32_t n_embd = 4096; uint32_t n_mult = 4; uint32_t n_head = 32; uint32_t n_layer = 32; uint32_t n_rot = 64; bool operator!=(const my_llama_hparams& other) const { return memcmp(this, &other, sizeof(my_llama_hparams)); } }; struct my_llama_layer { // normalization struct ggml_tensor * attention_norm; // attention struct ggml_tensor * wq; struct ggml_tensor * wk; struct ggml_tensor * wv; struct ggml_tensor * wo; // normalization struct ggml_tensor * ffn_norm; // ff struct ggml_tensor * w1; struct ggml_tensor * w2; struct ggml_tensor * w3; }; struct my_llama_model { struct ggml_context * ctx = NULL; my_llama_hparams hparams; struct ggml_tensor * tok_embeddings; struct ggml_tensor * norm; struct ggml_tensor * output; std::vector layers; uint32_t train_its = 0; uint32_t train_samples = 0; uint32_t train_tokens = 0; }; struct train_params { const char * fn_vocab_model; const char * fn_llama2c_model; const char * fn_llama2c_output_model; const char * fn_train_data; const char * fn_checkpoint_in; const char * fn_checkpoint_out; const char * fn_model_out; uint32_t seed; int n_ctx; int n_embd; int n_mult; int n_head; int n_layer; int n_rotmax; int n_threads; int n_batch; int n_examples; int n_predict; int print_info_interval; int print_details_interval; bool samples_start_after_nl; bool use_adam; bool use_flash; bool use_scratch; // only adam int warmup; int cos_decay_steps; float cos_decay_restart; float cos_decay_alpha; int lbfgs_n_iter; int adam_n_iter; float adam_alpha; float adam_decay; int mem_model_gb; int mem_compute_gb; int mem_compute0_gb; int mem_compute1_gb; }; uint32_t get_n_ff(const struct my_llama_hparams* hparams) { const uint32_t n_ff = ((2*(4*hparams->n_embd)/3 + hparams->n_mult - 1)/hparams->n_mult)*hparams->n_mult; return n_ff; } void print_params(struct my_llama_hparams * params) { printf("%s: n_vocab: %d\n", __func__, params->n_vocab); printf("%s: n_ctx: %d\n", __func__, params->n_ctx); printf("%s: n_embd: %d\n", __func__, params->n_embd); printf("%s: n_mult: %d\n", __func__, params->n_mult); printf("%s: n_head: %d\n", __func__, params->n_head); printf("%s: n_ff: %d\n", __func__, get_n_ff(params)); printf("%s: n_layer: %d\n", __func__, params->n_layer); printf("%s: n_rot: %d\n", __func__, params->n_rot); } void init_model(struct my_llama_model * model) { const auto & hparams = model->hparams; const uint32_t n_embd = hparams.n_embd; const uint32_t n_layer = hparams.n_layer; const uint32_t n_vocab = hparams.n_vocab; const uint32_t n_ff = get_n_ff(&hparams); struct ggml_context * ctx = model->ctx; model->train_its = 0; model->train_samples = 0; model->train_tokens = 0; model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); printf("[%s:GG] Allocating [%d] x [%d] = [%d] float space for model->tok_embeddings\n",__func__,n_embd , n_vocab, n_embd * n_vocab); model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); printf("[%s:GG] Allocating [%d] float space for model->norm\n",__func__,n_embd); model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for model->output\n",__func__,n_embd, n_vocab, n_embd * n_vocab); // printing the per-layer allocations here so we dont print in the for loop. printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wq for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer); printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wk for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer); printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wv for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer); printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wo for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer); printf("[%s:GG] Allocating [%d] float space for layer.ffn_norm for [%d] layers\n",__func__,n_embd, n_layer); printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w1 for [%d] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer); printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w2 for [%d] layers\n",__func__, n_embd, n_ff, n_ff * n_embd, n_layer); printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w3 for [%d] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer); ggml_set_name(model->tok_embeddings, "tok_embeddings.weight"); ggml_set_name(model->norm, "norm.weight"); ggml_set_name(model->output, "output.weight"); model->layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { auto & layer = model->layers[i]; std::string layers_i = "layers." + std::to_string(i); layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd); layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); ggml_set_name(layer.attention_norm, (layers_i + ".attention_norm.weight").c_str()); ggml_set_name(layer.wq, (layers_i + ".attention.wq.weight").c_str()); ggml_set_name(layer.wk, (layers_i + ".attention.wk.weight").c_str()); ggml_set_name(layer.wv, (layers_i + ".attention.wv.weight").c_str()); ggml_set_name(layer.wo, (layers_i + ".attention.wo.weight").c_str()); ggml_set_name(layer.ffn_norm, (layers_i + ".ffn_norm.weight").c_str()); ggml_format_name(layer.w1, "%s.feed_forward.w1.weight", layers_i.c_str()); ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str()); ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str()); } } float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); return *ptr; } int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); return *ptr; } void print_row(struct ggml_tensor * probs, int i) { for (int k = 0; k < probs->ne[0]; ++k) { float p = get_f32_2d(probs, k, i); printf(" %f", p); } printf("\n"); } void print_matrix(struct ggml_tensor * probs) { assert(probs->n_dims == 2); for (int i = 0; i < probs->ne[1]; ++i) { for (int k = 0; k < probs->ne[0]; ++k) { float p = get_f32_2d(probs, k, i); printf(" %.2f", p); } printf("\n"); } } #ifdef __GNUC__ #ifdef __MINGW32__ __attribute__((format(gnu_printf, 1, 2))) #else __attribute__((format(printf, 1, 2))) #endif #endif static std::string format(const char * fmt, ...) { va_list ap, ap2; va_start(ap, fmt); va_copy(ap2, ap); int size = vsnprintf(NULL, 0, fmt, ap); GGML_ASSERT(size >= 0 && size < INT_MAX); std::vector buf(size + 1); int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); GGML_ASSERT(size2 == size); va_end(ap2); va_end(ap); return std::string(buf.data(), size); } struct llama_file { // use FILE * so we don't have to re-open the file to mmap FILE * fp; size_t size; llama_file(const char * fname, const char * mode) { fp = std::fopen(fname, mode); if (fp == NULL) { size = 0; } else { seek(0, SEEK_END); size = tell(); seek(0, SEEK_SET); } } size_t tell() const { #ifdef _WIN32 __int64 ret = _ftelli64(fp); #else long ret = std::ftell(fp); #endif GGML_ASSERT(ret != -1); // this really shouldn't fail return (size_t) ret; } void seek(size_t offset, int whence) { #ifdef _WIN32 int ret = _fseeki64(fp, (__int64) offset, whence); #else int ret = std::fseek(fp, (long) offset, whence); #endif GGML_ASSERT(ret == 0); // same } void read_raw(void * ptr, size_t size) { if (size == 0) { return; } errno = 0; std::size_t ret = std::fread(ptr, size, 1, fp); if (ferror(fp)) { throw std::runtime_error(format("read error: %s", strerror(errno))); } if (ret != 1) { throw std::runtime_error(std::string("unexpectedly reached end of file")); } } std::uint32_t read_u32() { std::uint32_t ret; read_raw(&ret, sizeof(ret)); return ret; } std::float_t read_f32() { std::float_t ret; read_raw(&ret, sizeof(ret)); return ret; } std::string read_string(std::uint32_t len) { std::vector chars(len); read_raw(chars.data(), len); return std::string(chars.data(), len); } void write_raw(const void * ptr, size_t size) { if (size == 0) { return; } errno = 0; size_t ret = std::fwrite(ptr, size, 1, fp); if (ret != 1) { throw std::runtime_error(format("write error: %s", strerror(errno))); } } void write_u32(std::uint32_t val) { write_raw(&val, sizeof(val)); } ~llama_file() { if (fp) { std::fclose(fp); } } }; void write_tensor(struct llama_file * file, struct ggml_tensor * tensor) { if (tensor == NULL) { file->write_u32(0); file->write_u32(0); file->write_u32(GGML_TYPE_F32); file->seek((0-file->tell()) & 31, SEEK_CUR); return; } const char * name = ggml_get_name(tensor); uint32_t name_len = strlen(name); uint32_t nd = tensor->n_dims; uint32_t ne[4] = { (uint32_t)tensor->ne[0], (uint32_t)tensor->ne[1], (uint32_t)tensor->ne[2], (uint32_t)tensor->ne[3] }; file->write_u32(nd); file->write_u32(name_len); file->write_u32(tensor->type); file->write_raw(ne, sizeof(ne[0]) * nd); file->write_raw(name, name_len); file->seek((0-file->tell()) & 31, SEEK_CUR); file->write_raw(tensor->data, ggml_nbytes(tensor)); } bool is_ggml_file(const char *filename) { llama_file file(filename, "rb"); if (file.size < 4) { return false; } uint32_t magic = file.read_u32(); return magic == GGUF_MAGIC; } void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) { // heuristic to infer whether vocab is from ggml or from llama2.c vocabulary if (is_ggml_file(filename)) { struct llama_context_params llama_params = llama_context_default_params(); llama_params.vocab_only = true; struct llama_model * lmodel = llama_load_model_from_file(filename, llama_params); struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params); std::vector strings; std::vector scores; int n_vocab = llama_n_vocab(lctx); strings.resize(n_vocab, NULL); scores.resize(n_vocab, 0); n_vocab = llama_get_vocab(lctx, strings.data(), scores.data(), n_vocab); GGML_ASSERT(n_vocab == llama_n_vocab(lctx)); vocab->id_to_token.resize(n_vocab); for (int i=0; iid_to_token[i].tok = tok; vocab->id_to_token[i].score = score; vocab->token_to_id.emplace(tok, i); } llama_free(lctx); llama_free_model(lmodel); } else { // assume llama2.c vocabulary printf("Assuming llama2.c vocabulary since %s is not a ggml file\n", filename); llama_file file(filename, "rb"); uint32_t n_vocab = config->vocab_size; /* uint32_t max_token_length = */ file.read_u32(); // unused vocab->id_to_token.resize(n_vocab); for (uint32_t i=0; iid_to_token[i].tok = tok; vocab->id_to_token[i].score = score; vocab->token_to_id.emplace(tok, i); } } } void stuff_karpathy_weights_into_gg(struct ggml_tensor * gg_weights, float * karpathy_weights){ int ct; switch (gg_weights->n_dims){ case 1: ct = 0; for (int i0 = 0; i0 < gg_weights->ne[0]; i0++){ float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0]); *ptr = karpathy_weights[ct]; ct++; } break; case 2: ct = 0; for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) { for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) { float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1]); *ptr = karpathy_weights[ct]; ct++; } } break; case 3: ct = 0; for (int i2 = 0; i2 < gg_weights->ne[2]; i2++) { for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) { for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) { float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1] + i2*gg_weights->nb[2]); *ptr = karpathy_weights[ct]; ct++; } } } break; } } void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename) { struct llama_file file(filename, "wb"); if (file.fp == NULL) { return; } #pragma message("TODO: implement file saving using gguf") (void) vocab; (void) model; (void) w; // // write_magic // file.write_u32(LLAMA_FILE_MAGIC); // magic // file.write_u32(LLAMA_FILE_VERSION); // version // // write_hparams // file.write_u32(model->hparams.n_vocab); // file.write_u32(model->hparams.n_embd); // file.write_u32(model->hparams.n_mult); // file.write_u32(model->hparams.n_head); // file.write_u32(model->hparams.n_layer); // file.write_u32(model->hparams.n_rot); // file.write_u32(LLAMA_FTYPE_ALL_F32); // // // write_vocab - for now we are just writing the existing BPE voc. assuming karpathy's vocabulary is the same. idk. // uint32_t n_vocab = model->hparams.n_vocab; // for (uint32_t i = 0; i < n_vocab; i++) { // const auto & token_score = vocab->id_to_token.at(i); // file.write_u32((uint32_t) token_score.tok.size()); // file.write_raw(token_score.tok.data(), token_score.tok.size()); // file.write_raw(&token_score.score, sizeof(token_score.score)); // } // // // stuff AK weights into GG weights one by one. // // w->token_embedding_table -> model->tok_embeddings // // float* -> struct ggml_tensor // stuff_karpathy_weights_into_gg(model->tok_embeddings, w->token_embedding_table); // stuff_karpathy_weights_into_gg(model->output, w->token_embedding_table); // // stuff_karpathy_weights_into_gg(model->norm, w->rms_final_weight); // //print_row(model->norm, 0); // // // for rms-att-weight // int row_length = model->hparams.n_embd; // const auto & hparams = model->hparams; // //int n_ff = model->hparams.n_embd; // int n_ff = get_n_ff(&hparams); // // for (uint32_t i = 0; i < model->hparams.n_layer; ++i){ // auto & layer = model->layers[i]; // // 1d // stuff_karpathy_weights_into_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]); // stuff_karpathy_weights_into_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]); // // // from 3d matrix layer x dim x dim to 2d matrix dim x dim // stuff_karpathy_weights_into_gg(layer.wq , &w->wq[i*row_length*row_length]); // stuff_karpathy_weights_into_gg(layer.wk , &w->wk[i*row_length*row_length]); // stuff_karpathy_weights_into_gg(layer.wv , &w->wv[i*row_length*row_length]); // stuff_karpathy_weights_into_gg(layer.wo , &w->wo[i*row_length*row_length]); // // stuff_karpathy_weights_into_gg(layer.w1 , &w->w1[i*row_length*n_ff]); // stuff_karpathy_weights_into_gg(layer.w2 , &w->w2[i*n_ff*row_length]); // stuff_karpathy_weights_into_gg(layer.w3 , &w->w3[i*row_length*n_ff]); // } // // write tensors // write_tensor(&file, model->tok_embeddings); // write_tensor(&file, model->norm); // write_tensor(&file, model->output); // ? // for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { // auto & layer = model->layers[i]; // // write_tensor(&file, layer.attention_norm); // write_tensor(&file, layer.wq); // write_tensor(&file, layer.wk); // write_tensor(&file, layer.wv); // write_tensor(&file, layer.wo); // write_tensor(&file, layer.ffn_norm); // write_tensor(&file, layer.w1); // write_tensor(&file, layer.w2); // write_tensor(&file, layer.w3); // } } struct train_params get_default_train_params() { struct train_params params; params.fn_vocab_model = "models/ggml-vocab.bin"; params.fn_llama2c_output_model = "ak_llama_model.bin"; params.fn_train_data = "shakespeare.txt"; params.fn_checkpoint_in = "checkpoint.bin"; params.fn_checkpoint_out = "checkpoint.bin"; params.fn_model_out = "ggml-checkpoint-f32.bin"; params.seed = -1; params.n_ctx = 128; params.n_embd = 256; params.n_mult = 256; params.n_head = 8; params.n_layer = 16; params.n_rotmax = 64; params.n_threads = 6; params.n_batch = 8; params.n_examples = 8; params.n_predict = 1024; params.print_info_interval = 1; params.print_details_interval = 2; params.samples_start_after_nl = false; params.use_adam = true; params.use_flash = true; params.use_scratch = true; // only adam params.warmup = 100; params.cos_decay_steps = 1000; params.cos_decay_restart = 1.1f; params.cos_decay_alpha = 0.0f; params.lbfgs_n_iter = 16; params.adam_n_iter = 16; params.adam_alpha = 1e-3f; params.adam_decay = 1e-3f; params.mem_model_gb = 2; params.mem_compute_gb = 24; params.mem_compute0_gb = 8; params.mem_compute1_gb = 2; return params; } void print_usage(int /*argc*/, char ** argv, const struct train_params * params) { fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help show this help message and exit\n"); fprintf(stderr, " --copy-vocab-from-model FNAME llama2.c vocabulary or ggml model path from which to copy vocab (default '%s')\n", params->fn_vocab_model); fprintf(stderr, " --llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model\n"); fprintf(stderr, " --llama2c-output-model FNAME model path to save the converted llama2.c model (default %s')\n", params->fn_llama2c_output_model); fprintf(stderr, "\n"); } bool params_parse(int argc, char ** argv, struct train_params * params) { bool invalid_param = false; bool reqd_param_found = false; std::string arg; struct train_params default_params = get_default_train_params(); const std::string arg_prefix = "--"; for (int i = 1; i < argc; i++) { arg = argv[i]; if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { std::replace(arg.begin(), arg.end(), '_', '-'); } if (arg == "--copy-vocab-from-model") { if (++i >= argc) { invalid_param = true; break; } params->fn_vocab_model = argv[i]; } else if (arg == "--llama2c-model") { if (++i >= argc) { invalid_param = true; break; } reqd_param_found = true; params->fn_llama2c_model = argv[i]; } else if (arg == "--llama2c-output-model") { if (++i >= argc) { invalid_param = true; break; } params->fn_llama2c_output_model = argv[i]; } else if (arg == "-h" || arg == "--help") { print_usage(argc, argv, &default_params); exit(0); } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); print_usage(argc, argv, &default_params); exit(1); } } if (invalid_param) { fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); print_usage(argc, argv, &default_params); exit(1); } if (!reqd_param_found){ fprintf(stderr, "error: please specify a llama2.c .bin file to be converted with argument --llama2c-model\n"); print_usage(argc, argv, &default_params); exit(1); } return true; } int main(int argc, char ** argv) { struct train_params params = get_default_train_params(); if (!params_parse(argc, argv, ¶ms)) { return 1; } Config config; TransformerWeights weights; { FILE *file = fopen(params.fn_llama2c_model, "rb"); if (!file) { printf("Unable to open the checkpoint file %s!\n", params.fn_llama2c_model); return 1; } // read in the config header if(fread(&config, sizeof(Config), 1, file) != 1) { return 1; } // read in the Transformer weights malloc_weights(&weights, &config); if(checkpoint_init_weights(&weights, &config, file)) { return 1; } fclose(file); } struct llama_vocab vocab; load_vocab(params.fn_vocab_model, &config, &vocab); struct my_llama_model model; model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx); model.hparams.n_ctx = params.n_ctx; model.hparams.n_embd = config.dim; //params.n_embd; model.hparams.n_mult = 32;//params.n_mult; model.hparams.n_head = config.n_heads; //params.n_head; model.hparams.n_layer = config.n_layers; //params.n_layer; model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head); print_params(&model.hparams); struct ggml_init_params lcparams; lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb); lcparams.mem_buffer = NULL; lcparams.no_alloc = false; model.ctx = ggml_init(lcparams); init_model(&model); save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model); printf("Saving llama.c model file %s in ggml format at %s\n", params.fn_llama2c_model, params.fn_llama2c_output_model); ggml_free(model.ctx); free_weights(&weights); return 0; }