# Quick and dirty HF gptneox--> gguf conversion import gguf import sys import struct import json import numpy as np from typing import Any, List from pathlib import Path from transformers import AutoModelForCausalLM if len(sys.argv) < 3: print("Usage: convert-h5-to-ggml.py dir-model ftype\n") print(" ftype == 0 -> float32") print(" ftype == 1 -> float16") sys.exit(1) # output in the same directory as the model dir_model = sys.argv[1] fname_out = sys.argv[1] + "/ggml-model.bin" # possible tensor data types # ftype == 0 -> float32 # ftype == 1 -> float16 # # map from ftype to string ftype_str = ["f32", "f16"] ftype = 1 if len(sys.argv) > 2: ftype = int(sys.argv[2]) if ftype < 0 or ftype > 1: print("Invalid ftype: " + str(ftype)) sys.exit(1) fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf" with open(dir_model + "/config.json", "r", encoding="utf-8") as f: hparams = json.load(f) if hparams["architectures"][0] != "GPTNeoXForCausalLM": print("Model architecture not supported: " + hparams["architectures"][0] ) sys.exit() model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True) list_vars = model.state_dict() # count tensors to be converted tensor_count = 0 for name in list_vars.keys(): # we don't need these if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"): continue tensor_count += 1 gguf_writer = gguf.GGUFWriter.open(fname_out) # This must be changed when adding/deleting kv kv_count = 14 print("tensors " + str(tensor_count) + " kv " + str(kv_count)) print("write gguf header") gguf_writer.write_header(tensor_count, kv_count) print("write gguf hparams") llm_arch = "gptneox" gguf_writer.write_name("pythia-70b-deduped") gguf_writer.write_description("gguf test model") gguf_writer.write_architecture(llm_arch) gguf_writer.write_context_length(llm_arch, hparams["max_position_embeddings"]) gguf_writer.write_embedding_length(llm_arch, hparams["hidden_size"]) gguf_writer.write_layer_count(llm_arch, hparams["num_hidden_layers"]) gguf_writer.write_feed_forward_length(llm_arch, hparams["intermediate_size"]) gguf_writer.write_rope_dimension_count(llm_arch, int( hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])) ) gguf_writer.write_head_count(llm_arch, hparams["num_attention_heads"]) gguf_writer.write_parallel_residual(llm_arch, hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True) gguf_writer.write_layer_norm_eps(llm_arch, hparams["layer_norm_eps"]) # TOKENIZATION print("write gguf tokenizer") tokens: List[str] = [] merges: List[str] = [] if Path(dir_model + "/tokenizer.json").is_file(): # vocab type gpt2 print("Adding gpt2 tokenizer vocab") with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f: tokenizer = json.load(f) for key in tokenizer["model"]["vocab"]: tokens.append(key) merges = tokenizer["model"]["merges"] gguf_writer.write_tokenizer_model("gpt2") gguf_writer.write_token_list(tokens) gguf_writer.write_token_merges(merges) # TENSORS # tensor info print("write gguf tensor info") for name in list_vars.keys(): data = list_vars[name].squeeze().numpy() # we don't need these if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"): continue n_dims = len(data.shape) # ftype == 0 -> float32, ftype == 1 -> float16 ftype_cur = 0 if ftype != 0: if name.endswith(".weight") and n_dims == 2: data = data.astype(np.float16) ftype_cur = 1 else: data = data.astype(np.float32) ftype_cur = 0 else: if data.dtype != np.float32: data = data.astype(np.float32) ftype_cur = 0 gguf_writer.write_tensor_info(name, data) # tensor data print("write gguf tensor data") for name in list_vars.keys(): data = list_vars[name].squeeze().numpy() print("Process tensor: " + name + " with shape: ", data.shape) # we don't need these if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"): print(" Skip tensor: " + name) continue n_dims = len(data.shape) # ftype == 0 -> float32, ftype == 1 -> float16 ftype_cur = 0 if ftype != 0: if name.endswith(".weight") and n_dims == 2: print(" Converting to float16") data = data.astype(np.float16) ftype_cur = 1 else: print(" Converting to float32") data = data.astype(np.float32) ftype_cur = 0 else: if data.dtype != np.float32: print(" Converting to float32") data = data.astype(np.float32) ftype_cur = 0 gguf_writer.write_tensor(data) gguf_writer.close() print("Done. Output file: " + fname_out) print("")