// Internal header to be included only by llama.cpp. // Contains wrappers around OS interfaces. #ifndef LLAMA_UTIL_H #define LLAMA_UTIL_H #define _PRELOAD_MMAP_FILE 1 // when using mmap, preload the entire file to prevent loading during first token inference #include #include #include #include #include #include #include #include #include #include #ifdef __has_include #if __has_include() #include #if defined(_POSIX_MAPPED_FILES) #include #endif #endif #endif #if defined(_WIN32) #define WIN32_LEAN_AND_MEAN #define NOMINMAX #include #include #include // for _fseeki64 typedef volatile LONG atomic_int; typedef atomic_int atomic_bool; typedef HANDLE pthread_t; typedef DWORD thread_ret_t; static int pthread_create(pthread_t *out, void *unused, thread_ret_t (*func)(void *), void *arg) { HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)func, arg, 0, NULL); if (handle == NULL) { return EAGAIN; } *out = handle; return 0; } static int pthread_join(pthread_t thread, void *unused) { return (int)WaitForSingleObject(thread, INFINITE); } #else #include #include #include typedef void *thread_ret_t; #endif #define LLAMA_ASSERT(x) \ do { \ if (!(x)) { \ fprintf(stderr, "LLAMA_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \ abort(); \ } \ } while (0) #ifdef __GNUC__ __attribute__((format(printf, 1, 2))) #endif static std::string format(const char * fmt, ...) { va_list ap, ap2; va_start(ap, fmt); va_copy(ap2, ap); int size = vsnprintf(NULL, 0, fmt, ap); LLAMA_ASSERT(size >= 0 && size < INT_MAX); std::vector buf(size + 1); int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); LLAMA_ASSERT(size2 == size); va_end(ap2); va_end(ap); return std::string(buf.data(), size); }; struct llama_file { // use FILE * so we don't have to re-open the file to mmap FILE * fp; size_t size; llama_file(const char * fname, const char * mode) { fp = std::fopen(fname, mode); if (fp == NULL) { throw format("failed to open %s: %s", fname, std::strerror(errno)); } seek(0, SEEK_END); size = tell(); seek(0, SEEK_SET); } size_t tell() const { #ifdef _WIN32 __int64 ret = _ftelli64(fp); #else long ret = std::ftell(fp); #endif LLAMA_ASSERT(ret != -1); // this really shouldn't fail return (size_t) ret; } void seek(size_t offset, int whence) { #ifdef _WIN32 int ret = _fseeki64(fp, (__int64) offset, whence); #else int ret = std::fseek(fp, (long) offset, whence); #endif LLAMA_ASSERT(ret == 0); // same } void read_raw(void * ptr, size_t size) { if (size == 0) { return; } errno = 0; std::size_t ret = std::fread(ptr, size, 1, fp); if (ferror(fp)) { throw format("read error: %s", strerror(errno)); } if (ret != 1) { throw std::string("unexpectedly reached end of file"); } } std::uint32_t read_u32() { std::uint32_t ret; read_raw(&ret, sizeof(ret)); return ret; } std::string read_string(std::uint32_t len) { std::vector chars(len); read_raw(chars.data(), len); return std::string(chars.data(), len); } void write_raw(const void * ptr, size_t size) { if (size == 0) { return; } errno = 0; size_t ret = std::fwrite(ptr, size, 1, fp); if (ret != 1) { throw format("write error: %s", strerror(errno)); } } void write_u32(std::uint32_t val) { write_raw(&val, sizeof(val)); } ~llama_file() { if (fp) { std::fclose(fp); } } }; #if defined(_WIN32) static std::string llama_format_win_err(DWORD err) { LPSTR buf; size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL); if (!size) { return "FormatMessageA failed"; } std::string ret(buf, size); LocalFree(buf); return ret; } #endif struct llama_mmap { void * addr; size_t size; typedef struct { size_t start; size_t end; void *addr; int n_threads; int n_thread; int page_size; } thread_data_t; static thread_ret_t worker_preload_memory(void *arg) { thread_data_t *data = (thread_data_t *)arg; volatile char buffer; for (size_t offset = data->start + data->n_thread * data->page_size; offset <= data->end; offset += data->n_threads * data->page_size) { volatile void *buffer_ptr = &buffer; memcpy((void *)buffer_ptr, (char *)data->addr + offset, sizeof(buffer)); if (data->n_threads < data->n_thread && buffer==0) exit(-1); // to avoid compiler optimization - the previous simple access method did not work in thread workers } return NULL; } void preload_mmap_file(void *addr, size_t length, int n_threads) { #ifndef _PRELOAD_MMAP_FILE return; #endif // Get the page size of the system #if defined(_WIN32) SYSTEM_INFO si; GetSystemInfo(&si); long page_size = si.dwPageSize; #else long page_size = sysconf(_SC_PAGE_SIZE); // in windows we can use GetSystemInfo: #endif if (page_size == -1) { perror("sysconf"); return; } #ifdef _WIN32 HANDLE hProcess = GetCurrentProcess(); WIN32_MEMORY_RANGE_ENTRY range; range.VirtualAddress = addr; range.NumberOfBytes = length; // if (!VirtualLock(addr, length)) { }; // no benefit. for systems with too little RAM we should lock a part and restrict the preload to that new length if (!PrefetchVirtualMemory(hProcess, 1, &range, 0)) { }; // Prefetches part of the data and signals readahead to the file system #else // todo //if (posix_madvise(addr, length, POSIX_MADV_WILLNEED) == -1) { }; // readahead() should be the equivalent method for Linux. I don't think madvise will cause a full fetch // the multi threaded read below is pseudo sequential, it also needs a test without OS level readahead in place (worst case set threads to 1 in linux or return) #endif if (n_threads > 32) n_threads = 32; pthread_t threads[32]; thread_data_t thread_data[32]; // we split the pages between the threads - that was the only reliable solution I could find size_t num_pages_per_thread = (length / page_size) / n_threads; int pages = ceil(length / page_size); for (int page_start = 0; page_start < pages; page_start += n_threads * num_pages_per_thread) { size_t chunk_start = page_start * page_size; size_t chunk_end = chunk_start + page_size * n_threads * num_pages_per_thread; for (int i = 0; i < n_threads; ++i) { thread_data[i].start = chunk_start; thread_data[i].end = chunk_end; if (thread_data[i].end > length) { thread_data[i].end = length; } thread_data[i].addr = addr; thread_data[i].page_size = page_size; thread_data[i].n_threads = n_threads; thread_data[i].n_thread = i; pthread_create(&threads[i], NULL, worker_preload_memory, &thread_data[i]); if (thread_data[i].end == length) break; } for (int i = 0; i < n_threads; ++i) { pthread_join(threads[i], NULL); } } } llama_mmap(const llama_mmap &) = delete; #ifdef _POSIX_MAPPED_FILES static constexpr bool SUPPORTED = true; llama_mmap(struct llama_file * file) { size = file->size; int fd = fileno(file->fp); int flags = MAP_SHARED; #ifdef __linux__ flags |= MAP_POPULATE; #endif addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0); close(fd); if (addr == MAP_FAILED) { throw format("mmap failed: %s", strerror(errno)); } // Advise the kernel to preload the mapped memory if (madvise(addr, file->size, MADV_WILLNEED)) { fprintf(stderr, "warning: madvise(.., MADV_WILLNEED) failed: %s\n", strerror(errno)); } // if _PRELOAD_MMAP_FILE is define, this will preload the file into the page cache efficiently preload_mmap_file(addr, file->size); } ~llama_mmap() { munmap(addr, size); } #elif defined(_WIN32) static constexpr bool SUPPORTED = true; llama_mmap(struct llama_file * file) { size = file->size; HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp)); HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL); DWORD error = GetLastError(); CloseHandle(hFile); if (hMapping == NULL) { throw format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()); } addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0); error = GetLastError(); CloseHandle(hMapping); if (addr == NULL) { throw format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()); } // Advise the kernel to preload the mapped memory WIN32_MEMORY_RANGE_ENTRY range; range.VirtualAddress = addr; range.NumberOfBytes = (SIZE_T)size; if (!PrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) { fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n", llama_format_win_err(GetLastError()).c_str()); } // if _PRELOAD_MMAP_FILE is define, this will preload the file into the page cache efficiently preload_mmap_file(addr, file->size, std::thread::hardware_concurrency()/2); } ~llama_mmap() { if (!UnmapViewOfFile(addr)) { fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n", llama_format_win_err(GetLastError()).c_str()); } } #else static constexpr bool SUPPORTED = false; llama_mmap(struct llama_file *) { throw std::string("mmap not supported"); } #endif }; // Represents some region of memory being locked using mlock or VirtualLock; // will automatically unlock on destruction. struct llama_mlock { void * addr = NULL; size_t size = 0; bool failed_already = false; llama_mlock() {} llama_mlock(const llama_mlock &) = delete; ~llama_mlock() { if (size) { raw_unlock(addr, size); } } void init(void * addr) { LLAMA_ASSERT(this->addr == NULL && this->size == 0); this->addr = addr; } void grow_to(size_t target_size) { LLAMA_ASSERT(addr); if (failed_already) { return; } size_t granularity = lock_granularity(); target_size = (target_size + granularity - 1) & ~(granularity - 1); if (target_size > size) { if (raw_lock((uint8_t *) addr + size, target_size - size)) { size = target_size; } else { failed_already = true; } } } #ifdef _POSIX_MEMLOCK_RANGE static constexpr bool SUPPORTED = true; size_t lock_granularity() { return (size_t) sysconf(_SC_PAGESIZE); } #ifdef __APPLE__ #define MLOCK_SUGGESTION \ "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \ "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n" #else #define MLOCK_SUGGESTION \ "Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n" #endif bool raw_lock(const void * addr, size_t size) { if (!mlock(addr, size)) { return true; } else { fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n" MLOCK_SUGGESTION, size, this->size, std::strerror(errno)); return false; } } #undef MLOCK_SUGGESTION void raw_unlock(void * addr, size_t size) { if (munlock(addr, size)) { fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno)); } } #elif defined(_WIN32) static constexpr bool SUPPORTED = true; size_t lock_granularity() { SYSTEM_INFO si; GetSystemInfo(&si); return (size_t) si.dwPageSize; } bool raw_lock(void * addr, size_t size) { for (int tries = 1; ; tries++) { if (VirtualLock(addr, size)) { return true; } if (tries == 2) { fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n", size, this->size, llama_format_win_err(GetLastError()).c_str()); return false; } // It failed but this was only the first try; increase the working // set size and try again. SIZE_T min_ws_size, max_ws_size; if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) { fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n", llama_format_win_err(GetLastError()).c_str()); return false; } // Per MSDN: "The maximum number of pages that a process can lock // is equal to the number of pages in its minimum working set minus // a small overhead." // Hopefully a megabyte is enough overhead: size_t increment = size + 1048576; // The minimum must be <= the maximum, so we need to increase both: min_ws_size += size; max_ws_size += size; if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) { fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n", llama_format_win_err(GetLastError()).c_str()); return false; } } } void raw_unlock(void * addr, size_t size) { if (!VirtualUnlock(addr, size)) { fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n", llama_format_win_err(GetLastError()).c_str()); } } #else static constexpr bool SUPPORTED = false; void raw_lock(const void * addr, size_t size) { fprintf(stderr, "warning: mlock not supported on this system\n"); } void raw_unlock(const void * addr, size_t size) {} #endif }; // Replacement for std::vector that doesn't require zero-initialization. struct llama_buffer { uint8_t * addr = NULL; size_t size = 0; void resize(size_t size) { delete[] addr; addr = new uint8_t[size]; this->size = size; } ~llama_buffer() { delete[] addr; } }; #endif