#include "arg.h" #include "common.h" #include "log.h" #include "llama.h" #include #if defined(_MSC_VER) #pragma warning(disable: 4244 4267) // possible loss of data #endif static std::vector split_lines(const std::string & s, const std::string & separator = "\n") { std::vector lines; size_t start = 0; size_t end = s.find(separator); while (end != std::string::npos) { lines.push_back(s.substr(start, end - start)); start = end + separator.length(); end = s.find(separator, start); } lines.push_back(s.substr(start)); // Add the last part return lines; } static void batch_add_seq(llama_batch & batch, const std::vector & tokens, llama_seq_id seq_id) { size_t n_tokens = tokens.size(); for (size_t i = 0; i < n_tokens; i++) { common_batch_add(batch, tokens[i], i, { seq_id }, true); } } static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd, int embd_norm) { const enum llama_pooling_type pooling_type = llama_pooling_type(ctx); const struct llama_model * model = llama_get_model(ctx); // clear previous kv_cache values (irrelevant for embeddings) llama_kv_cache_clear(ctx); // run model LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq); if (llama_model_has_encoder(model) && !llama_model_has_decoder(model)) { // encoder-only model if (llama_encode(ctx, batch) < 0) { LOG_ERR("%s : failed to encode\n", __func__); } } else if (!llama_model_has_encoder(model) && llama_model_has_decoder(model)) { // decoder-only model if (llama_decode(ctx, batch) < 0) { LOG_ERR("%s : failed to decode\n", __func__); } } for (int i = 0; i < batch.n_tokens; i++) { if (!batch.logits[i]) { continue; } const float * embd = nullptr; int embd_pos = 0; if (pooling_type == LLAMA_POOLING_TYPE_NONE) { // try to get token embeddings embd = llama_get_embeddings_ith(ctx, i); embd_pos = i; GGML_ASSERT(embd != NULL && "failed to get token embeddings"); } else { // try to get sequence embeddings - supported only when pooling_type is not NONE embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]); embd_pos = batch.seq_id[i][0]; GGML_ASSERT(embd != NULL && "failed to get sequence embeddings"); } float * out = output + embd_pos * n_embd; common_embd_normalize(embd, out, n_embd, embd_norm); } } int main(int argc, char ** argv) { common_params params; if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_EMBEDDING)) { return 1; } common_init(); params.embedding = true; // For non-causal models, batch size must be equal to ubatch size params.n_ubatch = params.n_batch; llama_backend_init(); llama_numa_init(params.numa); // load the model common_init_result llama_init = common_init_from_params(params); llama_model * model = llama_init.model.get(); llama_context * ctx = llama_init.context.get(); if (model == NULL) { LOG_ERR("%s: unable to load model\n", __func__); return 1; } const int n_ctx_train = llama_n_ctx_train(model); const int n_ctx = llama_n_ctx(ctx); const enum llama_pooling_type pooling_type = llama_pooling_type(ctx); if (llama_model_has_encoder(model) && llama_model_has_decoder(model)) { LOG_ERR("%s: computing embeddings in encoder-decoder models is not supported\n", __func__); return 1; } if (n_ctx > n_ctx_train) { LOG_WRN("%s: warning: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx); } // print system information { LOG_INF("\n"); LOG_INF("%s\n", common_params_get_system_info(params).c_str()); } // split the prompt into lines std::vector prompts = split_lines(params.prompt, params.embd_sep); // max batch size const uint64_t n_batch = params.n_batch; GGML_ASSERT(params.n_batch >= params.n_ctx); // tokenize the prompts and trim std::vector> inputs; for (const auto & prompt : prompts) { auto inp = common_tokenize(ctx, prompt, true, true); if (inp.size() > n_batch) { LOG_ERR("%s: number of tokens in input line (%lld) exceeds batch size (%lld), increase batch size and re-run\n", __func__, (long long int) inp.size(), (long long int) n_batch); return 1; } inputs.push_back(inp); } // check if the last token is SEP // it should be automatically added by the tokenizer when 'tokenizer.ggml.add_eos_token' is set to 'true' for (auto & inp : inputs) { if (inp.empty() || inp.back() != llama_token_sep(model)) { LOG_WRN("%s: last token in the prompt is not SEP\n", __func__); LOG_WRN("%s: 'tokenizer.ggml.add_eos_token' should be set to 'true' in the GGUF header\n", __func__); } } // tokenization stats if (params.verbose_prompt) { for (int i = 0; i < (int) inputs.size(); i++) { LOG_INF("%s: prompt %d: '%s'\n", __func__, i, prompts[i].c_str()); LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, inputs[i].size()); for (int j = 0; j < (int) inputs[i].size(); j++) { LOG("%6d -> '%s'\n", inputs[i][j], common_token_to_piece(ctx, inputs[i][j]).c_str()); } LOG("\n\n"); } } // initialize batch const int n_prompts = prompts.size(); struct llama_batch batch = llama_batch_init(n_batch, 0, 1); // count number of embeddings int n_embd_count = 0; if (pooling_type == LLAMA_POOLING_TYPE_NONE) { for (int k = 0; k < n_prompts; k++) { n_embd_count += inputs[k].size(); } } else { n_embd_count = n_prompts; } // allocate output const int n_embd = llama_n_embd(model); std::vector embeddings(n_embd_count * n_embd, 0); float * emb = embeddings.data(); // break into batches int e = 0; // number of embeddings already stored int s = 0; // number of prompts in current batch for (int k = 0; k < n_prompts; k++) { // clamp to n_batch tokens auto & inp = inputs[k]; const uint64_t n_toks = inp.size(); // encode if at capacity if (batch.n_tokens + n_toks > n_batch) { float * out = emb + e * n_embd; batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize); e += pooling_type == LLAMA_POOLING_TYPE_NONE ? batch.n_tokens : s; s = 0; common_batch_clear(batch); } // add to batch batch_add_seq(batch, inp, s); s += 1; } // final batch float * out = emb + e * n_embd; batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize); if (params.embd_out.empty()) { LOG("\n"); if (pooling_type == LLAMA_POOLING_TYPE_NONE) { for (int j = 0; j < n_embd_count; j++) { LOG("embedding %d: ", j); for (int i = 0; i < std::min(3, n_embd); i++) { if (params.embd_normalize == 0) { LOG("%6.0f ", emb[j * n_embd + i]); } else { LOG("%9.6f ", emb[j * n_embd + i]); } } LOG(" ... "); for (int i = n_embd - 3; i < n_embd; i++) { if (params.embd_normalize == 0) { LOG("%6.0f ", emb[j * n_embd + i]); } else { LOG("%9.6f ", emb[j * n_embd + i]); } } LOG("\n"); } } else if (pooling_type == LLAMA_POOLING_TYPE_RANK) { for (int j = 0; j < n_embd_count; j++) { // NOTE: if you change this log - update the tests in ci/run.sh LOG("rerank score %d: %8.3f\n", j, emb[j * n_embd]); } } else { // print the first part of the embeddings or for a single prompt, the full embedding for (int j = 0; j < n_prompts; j++) { LOG("embedding %d: ", j); for (int i = 0; i < (n_prompts > 1 ? std::min(16, n_embd) : n_embd); i++) { if (params.embd_normalize == 0) { LOG("%6.0f ", emb[j * n_embd + i]); } else { LOG("%9.6f ", emb[j * n_embd + i]); } } LOG("\n"); } // print cosine similarity matrix if (n_prompts > 1) { LOG("\n"); LOG("cosine similarity matrix:\n\n"); for (int i = 0; i < n_prompts; i++) { LOG("%6.6s ", prompts[i].c_str()); } LOG("\n"); for (int i = 0; i < n_prompts; i++) { for (int j = 0; j < n_prompts; j++) { float sim = common_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd); LOG("%6.2f ", sim); } LOG("%1.10s", prompts[i].c_str()); LOG("\n"); } } } } if (params.embd_out == "json" || params.embd_out == "json+" || params.embd_out == "array") { const bool notArray = params.embd_out != "array"; LOG(notArray ? "{\n \"object\": \"list\",\n \"data\": [\n" : "["); for (int j = 0;;) { // at least one iteration (one prompt) if (notArray) LOG(" {\n \"object\": \"embedding\",\n \"index\": %d,\n \"embedding\": ",j); LOG("["); for (int i = 0;;) { // at least one iteration (n_embd > 0) LOG(params.embd_normalize == 0 ? "%1.0f" : "%1.7f", emb[j * n_embd + i]); i++; if (i < n_embd) LOG(","); else break; } LOG(notArray ? "]\n }" : "]"); j++; if (j < n_embd_count) LOG(notArray ? ",\n" : ","); else break; } LOG(notArray ? "\n ]" : "]\n"); if (params.embd_out == "json+" && n_prompts > 1) { LOG(",\n \"cosineSimilarity\": [\n"); for (int i = 0;;) { // at least two iteration (n_embd_count > 1) LOG(" ["); for (int j = 0;;) { // at least two iteration (n_embd_count > 1) float sim = common_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd); LOG("%6.2f", sim); j++; if (j < n_embd_count) LOG(", "); else break; } LOG(" ]"); i++; if (i < n_embd_count) LOG(",\n"); else break; } LOG("\n ]"); } if (notArray) LOG("\n}\n"); } LOG("\n"); llama_perf_context_print(ctx); // clean up llama_batch_free(batch); llama_backend_free(); return 0; }