// NOTE: This is modified from clip.cpp only for LLaVA, // so there might be still unnecessary artifacts hanging around // I'll gradually clean and extend it #include "clip.h" #include "ggml.h" #include "ggml-alloc.h" #include "ggml-backend.h" #ifdef GGML_USE_CUBLAS #include "ggml-cuda.h" #endif #ifdef GGML_USE_METAL #include "ggml-metal.h" #endif #define STB_IMAGE_IMPLEMENTATION #include "stb_image.h" #include #include #include #include #include #include #include #include #include #include #include #include static std::string format(const char * fmt, ...) { va_list ap; va_list ap2; va_start(ap, fmt); va_copy(ap2, ap); int size = vsnprintf(NULL, 0, fmt, ap); GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT std::vector buf(size + 1); int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); GGML_ASSERT(size2 == size); va_end(ap2); va_end(ap); return std::string(buf.data(), buf.size()); } // // key constants // #define KEY_FTYPE "general.file_type" #define KEY_NAME "general.name" #define KEY_DESCRIPTION "general.description" #define KEY_HAS_TEXT_ENC "clip.has_text_encoder" #define KEY_HAS_VIS_ENC "clip.has_vision_encoder" #define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector" #define KEY_USE_GELU "clip.use_gelu" #define KEY_N_EMBD "clip.%s.embedding_length" #define KEY_N_FF "clip.%s.feed_forward_length" #define KEY_N_BLOCK "clip.%s.block_count" #define KEY_N_HEAD "clip.%s.attention.head_count" #define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon" #define KEY_PROJ_DIM "clip.%s.projection_dim" #define KEY_TOKENS "tokenizer.ggml.tokens" #define KEY_N_POSITIONS "clip.text.context_length" #define KEY_IMAGE_SIZE "clip.vision.image_size" #define KEY_PATCH_SIZE "clip.vision.patch_size" #define KEY_IMAGE_MEAN "clip.vision.image_mean" #define KEY_IMAGE_STD "clip.vision.image_std" #define KEY_PROJ_TYPE "clip.projector_type" // // tensor name constants // #define TN_TOKEN_EMBD "%s.token_embd.weight" #define TN_POS_EMBD "%s.position_embd.weight" #define TN_CLASS_EMBD "v.class_embd" #define TN_PATCH_EMBD "v.patch_embd.weight" #define TN_ATTN_K "%s.blk.%d.attn_k.%s" #define TN_ATTN_Q "%s.blk.%d.attn_q.%s" #define TN_ATTN_V "%s.blk.%d.attn_v.%s" #define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s" #define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s" #define TN_FFN_UP "%s.blk.%d.ffn_up.%s" #define TN_LN_1 "%s.blk.%d.ln1.%s" #define TN_LN_2 "%s.blk.%d.ln2.%s" #define TN_LN_PRE "%s.pre_ln.%s" #define TN_LN_POST "%s.post_ln.%s" #define TN_TEXT_PROJ "text_projection.weight" #define TN_VIS_PROJ "visual_projection.weight" #define TN_LLAVA_PROJ "mm.%d.%s" #define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s" #define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s" enum projector_type { PROJECTOR_TYPE_MLP, PROJECTOR_TYPE_LDP, PROJECTOR_TYPE_UNKNOWN, }; static std::map PROJECTOR_TYPE_NAMES = { { PROJECTOR_TYPE_MLP, "mlp" }, { PROJECTOR_TYPE_LDP, "ldp" }, }; // // utilities to get data from a gguf file // static int get_key_idx(const gguf_context * ctx, const char * key) { int i = gguf_find_key(ctx, key); if (i == -1) { fprintf(stderr, "key %s not found in file\n", key); throw std::runtime_error(format("Missing required key: %s", key)); } return i; } static uint32_t get_u32(const gguf_context * ctx, const std::string & key) { const int i = get_key_idx(ctx, key.c_str()); return gguf_get_val_u32(ctx, i); } static float get_f32(const gguf_context * ctx, const std::string & key) { const int i = get_key_idx(ctx, key.c_str()); return gguf_get_val_f32(ctx, i); } static struct ggml_tensor * get_tensor(struct ggml_context * ctx, const std::string & name) { struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str()); if (!cur) { throw std::runtime_error(format("%s: unable to find tensor %s\n", __func__, name.c_str())); } return cur; } static std::string get_ftype(int ftype) { return ggml_type_name(static_cast(ftype)); } static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) { switch (type) { case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]); case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]); case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]); case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]); case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]); case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]); case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]); case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]); case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]); case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]); case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false"; default: return format("unknown type %d", type); } } static void replace_all(std::string & s, const std::string & search, const std::string & replace) { std::string result; for (size_t pos = 0; ; pos += search.length()) { auto new_pos = s.find(search, pos); if (new_pos == std::string::npos) { result += s.substr(pos, s.size() - pos); break; } result += s.substr(pos, new_pos - pos) + replace; pos = new_pos; } s = std::move(result); } static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) { const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i); switch (type) { case GGUF_TYPE_STRING: return gguf_get_val_str(ctx_gguf, i); case GGUF_TYPE_ARRAY: { const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i); int arr_n = gguf_get_arr_n(ctx_gguf, i); const void * data = gguf_get_arr_data(ctx_gguf, i); std::stringstream ss; ss << "["; for (int j = 0; j < arr_n; j++) { if (arr_type == GGUF_TYPE_STRING) { std::string val = gguf_get_arr_str(ctx_gguf, i, j); // escape quotes replace_all(val, "\\", "\\\\"); replace_all(val, "\"", "\\\""); ss << '"' << val << '"'; } else if (arr_type == GGUF_TYPE_ARRAY) { ss << "???"; } else { ss << gguf_data_to_str(arr_type, data, j); } if (j < arr_n - 1) { ss << ", "; } } ss << "]"; return ss.str(); } default: return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0); } } static void print_tensor_info(const ggml_tensor* tensor, const char* prefix = "") { size_t tensor_size = ggml_nbytes(tensor); printf("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n", prefix, ggml_n_dims(tensor), tensor->name, tensor_size, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type)); } static projector_type clip_projector_type_from_string(const std::string & name) { for (const auto & kv : PROJECTOR_TYPE_NAMES) { // NOLINT if (kv.second == name) { return kv.first; } } return PROJECTOR_TYPE_UNKNOWN; } // // image data // // RGB uint8 image struct clip_image_u8 { int nx; int ny; std::vector buf; }; // RGB float32 image (NHWC) // Memory layout: RGBRGBRGB... struct clip_image_f32 { int nx; int ny; std::vector buf; }; // // clip layers // struct clip_layer { // attention struct ggml_tensor * k_w; struct ggml_tensor * k_b; struct ggml_tensor * q_w; struct ggml_tensor * q_b; struct ggml_tensor * v_w; struct ggml_tensor * v_b; struct ggml_tensor * o_w; struct ggml_tensor * o_b; // layernorm 1 struct ggml_tensor * ln_1_w; struct ggml_tensor * ln_1_b; // ff struct ggml_tensor * ff_i_w; struct ggml_tensor * ff_i_b; struct ggml_tensor * ff_o_w; struct ggml_tensor * ff_o_b; // layernorm 2 struct ggml_tensor * ln_2_w; struct ggml_tensor * ln_2_b; }; struct clip_vision_model { struct clip_vision_hparams hparams; // embeddings struct ggml_tensor * class_embedding; struct ggml_tensor * patch_embeddings; struct ggml_tensor * position_embeddings; struct ggml_tensor * pre_ln_w; struct ggml_tensor * pre_ln_b; std::vector layers; struct ggml_tensor * post_ln_w; struct ggml_tensor * post_ln_b; struct ggml_tensor * projection; // LLaVA projection struct ggml_tensor * mm_0_w; struct ggml_tensor * mm_0_b; struct ggml_tensor * mm_2_w; struct ggml_tensor * mm_2_b; // MobileVLM projection struct ggml_tensor * mm_model_mlp_1_w; struct ggml_tensor * mm_model_mlp_1_b; struct ggml_tensor * mm_model_mlp_3_w; struct ggml_tensor * mm_model_mlp_3_b; struct ggml_tensor * mm_model_block_1_block_0_0_w; struct ggml_tensor * mm_model_block_1_block_0_1_w; struct ggml_tensor * mm_model_block_1_block_0_1_b; struct ggml_tensor * mm_model_block_1_block_1_fc1_w; struct ggml_tensor * mm_model_block_1_block_1_fc1_b; struct ggml_tensor * mm_model_block_1_block_1_fc2_w; struct ggml_tensor * mm_model_block_1_block_1_fc2_b; struct ggml_tensor * mm_model_block_1_block_2_0_w; struct ggml_tensor * mm_model_block_1_block_2_1_w; struct ggml_tensor * mm_model_block_1_block_2_1_b; struct ggml_tensor * mm_model_block_2_block_0_0_w; struct ggml_tensor * mm_model_block_2_block_0_1_w; struct ggml_tensor * mm_model_block_2_block_0_1_b; struct ggml_tensor * mm_model_block_2_block_1_fc1_w; struct ggml_tensor * mm_model_block_2_block_1_fc1_b; struct ggml_tensor * mm_model_block_2_block_1_fc2_w; struct ggml_tensor * mm_model_block_2_block_1_fc2_b; struct ggml_tensor * mm_model_block_2_block_2_0_w; struct ggml_tensor * mm_model_block_2_block_2_1_w; struct ggml_tensor * mm_model_block_2_block_2_1_b; }; struct clip_ctx { bool has_text_encoder = false; bool has_vision_encoder = false; bool has_llava_projector = false; struct clip_vision_model vision_model; projector_type proj_type = PROJECTOR_TYPE_MLP; float image_mean[3]; float image_std[3]; bool use_gelu = false; int32_t ftype = 1; struct gguf_context * ctx_gguf; struct ggml_context * ctx_data; std::vector buf_compute_meta; // memory buffers to evaluate the model ggml_backend_buffer_t params_buffer = NULL; ggml_backend_buffer_t compute_buffer = NULL; ggml_backend_t backend = NULL; ggml_allocr * compute_alloc = NULL; }; static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs) { if (!ctx->has_vision_encoder) { printf("This gguf file seems to have no vision encoder\n"); return nullptr; } const auto & model = ctx->vision_model; const auto & hparams = model.hparams; const int image_size = hparams.image_size; const int patch_size = hparams.patch_size; const int num_patches = ((image_size / patch_size) * (image_size / patch_size)); const int num_positions = num_patches + 1; const int hidden_size = hparams.hidden_size; const int n_head = hparams.n_head; const int d_head = hidden_size / n_head; const int n_layer = hparams.n_layer; //const int n_intermediate = hparams.n_intermediate; //const int projection_dim = hparams.projection_dim; const float eps = hparams.eps; int batch_size = imgs->size; if (ctx->has_llava_projector) { GGML_ASSERT(batch_size == 1); } struct ggml_init_params params = { /*.mem_size =*/ ctx->buf_compute_meta.size(), /*.mem_buffer =*/ ctx->buf_compute_meta.data(), /*.no_alloc =*/ true, }; struct ggml_context * ctx0 = ggml_init(params); struct ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size, image_size, 3, batch_size); ggml_allocr_alloc(ctx->compute_alloc, inp_raw); if (!ggml_allocr_is_measure(ctx->compute_alloc)) { float * data = (float *)malloc(ggml_nbytes(inp_raw)); for (size_t i = 0; i < imgs->size; i++) { const int nx = imgs->data[i].nx; const int ny = imgs->data[i].ny; GGML_ASSERT(nx == image_size && ny == image_size); const int n = nx * ny; for (int b = 0; b < batch_size; b++) { for (int k = 0; k < 3; k++) { for (int y = 0; y < ny; y++) { for (int x = 0; x < nx; x++) { data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k]; } } } } } ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw)); free(data); } struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1); inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size); inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3)); // concat class_embeddings and patch_embeddings struct ggml_tensor * embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size); ggml_allocr_alloc(ctx->compute_alloc, embeddings); if (!ggml_allocr_is_measure(ctx->compute_alloc)) { void* zero_mem = malloc(ggml_nbytes(embeddings)); memset(zero_mem, 0, ggml_nbytes(embeddings)); ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings)); free(zero_mem); } embeddings = ggml_acc(ctx0, embeddings, model.class_embedding, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0); embeddings = ggml_acc(ctx0, embeddings, inp, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]); struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions); ggml_allocr_alloc(ctx->compute_alloc, positions); if (!ggml_allocr_is_measure(ctx->compute_alloc)) { int* positions_data = (int*)malloc(ggml_nbytes(positions)); for (int i = 0; i < num_positions; i++) { positions_data[i] = i; } ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions)); free(positions_data); } embeddings = ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions)); // pre-layernorm { embeddings = ggml_norm(ctx0, embeddings, eps); embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b); } // loop over layers for (int il = 0; il < n_layer - 1; il++) { struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states //const size_t nb_q_w = model.layers[il].q_w->nb[0]; // layernorm1 { cur = ggml_norm(ctx0, cur, eps); cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w), model.layers[il].ln_1_b); } // self-attention { struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b); Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head)); Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size); Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3)); Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size); struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b); K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size); K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3)); K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size); struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b); V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size); V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3)); V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size); struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); KQ = ggml_soft_max_inplace(ctx0, KQ); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ); KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size); KQV = ggml_cont(ctx0, ggml_permute(ctx0, KQV, 0, 2, 1, 3)); cur = ggml_cpy(ctx0, KQV, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size)); } // attention output cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b); // re-add the layer input, e.g., residual cur = ggml_add(ctx0, cur, embeddings); embeddings = cur; // embeddings = residual, cur = hidden_states // layernorm2 { cur = ggml_norm(ctx0, cur, eps); cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b); } cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur); cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b); if (ctx->use_gelu) { cur = ggml_gelu_inplace(ctx0, cur); } else { cur = ggml_gelu_quick_inplace(ctx0, cur); } cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur); cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b); // residual 2 cur = ggml_add(ctx0, embeddings, cur); embeddings = cur; } // llava projector { embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]); struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches); ggml_allocr_alloc(ctx->compute_alloc, patches); if (!ggml_allocr_is_measure(ctx->compute_alloc)) { int* patches_data = (int*)malloc(ggml_nbytes(patches)); for (int i = 0; i < num_patches; i++) { patches_data[i] = i + 1; } ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches)); free(patches_data); } // shape [1, 576, 1024] // ne is whcn, ne = [1024, 576, 1, 1] embeddings = ggml_get_rows(ctx0, embeddings, patches); // print_tensor_info(embeddings, "embeddings"); // llava projector if (ctx->proj_type == PROJECTOR_TYPE_MLP) { embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); embeddings = ggml_gelu(ctx0, embeddings); embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_2_b); } else if (ctx->proj_type == PROJECTOR_TYPE_LDP) { // MobileVLM projector int n_patch = 24; struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings); mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b); mlp_1 = ggml_gelu(ctx0, mlp_1); struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1); mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b); // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1] // block 1 struct ggml_tensor * block_1 = nullptr; { // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24] mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3)); mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]); // stride = 1, padding = 1, bias is nullptr block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1); // layer norm // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1] block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3)); // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1] block_1 = ggml_norm(ctx0, block_1, eps); block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b); block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3)); // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1] // hardswish struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1); block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0); // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1] // pointwise conv block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]); block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1); block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b); block_1 = ggml_relu(ctx0, block_1); block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1); block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b); block_1 = ggml_hardsigmoid(ctx0, block_1); // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1] block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]); block_1 = ggml_mul(ctx0, block_1_hw, block_1); int w = block_1->ne[0], h = block_1->ne[1]; block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]); block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3)); // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1] block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1); block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]); // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1] block_1 = ggml_norm(ctx0, block_1, eps); block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b); block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3)); // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1] // residual block_1 = ggml_add(ctx0, mlp_3, block_1); } // block_2 { // stride = 2 block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1); // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1] // layer norm block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3)); // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1] block_1 = ggml_norm(ctx0, block_1, eps); block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b); block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3)); // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1] // hardswish struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1); // not sure the parameters is right for globalAvgPooling block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0); // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1] // pointwise conv block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]); block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1); block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b); block_1 = ggml_relu(ctx0, block_1); block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1); block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b); block_1 = ggml_hardsigmoid(ctx0, block_1); // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1] block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]); block_1 = ggml_mul(ctx0, block_1_hw, block_1); int w = block_1->ne[0], h = block_1->ne[1]; block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]); block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3)); // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1] block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1); block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]); // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1] block_1 = ggml_norm(ctx0, block_1, eps); block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b); block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]); // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1] } embeddings = block_1; } else { GGML_ASSERT(false); } } // build the graph ggml_build_forward_expand(gf, embeddings); ggml_free(ctx0); return gf; } // read and create ggml_context containing the tensors and their data struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { struct ggml_context * meta = NULL; struct gguf_init_params params = { /*.no_alloc = */ true, /*.ctx = */ &meta, }; struct gguf_context * ctx = gguf_init_from_file(fname, params); if (!ctx) { throw std::runtime_error(format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname)); } if (verbosity >= 1) { const int n_tensors = gguf_get_n_tensors(ctx); const int n_kv = gguf_get_n_kv(ctx); const int ftype = get_u32(ctx, KEY_FTYPE); const std::string ftype_str = get_ftype(ftype); const int idx_desc = get_key_idx(ctx, KEY_DESCRIPTION); const std::string description = gguf_get_val_str(ctx, idx_desc); const int idx_name = gguf_find_key(ctx, KEY_NAME); if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug const std::string name = gguf_get_val_str(ctx, idx_name); printf("%s: model name: %s\n", __func__, name.c_str()); } printf("%s: description: %s\n", __func__, description.c_str()); printf("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx)); printf("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx)); printf("%s: n_tensors: %d\n", __func__, n_tensors); printf("%s: n_kv: %d\n", __func__, n_kv); printf("%s: ftype: %s\n", __func__, ftype_str.c_str()); printf("\n"); } const int n_tensors = gguf_get_n_tensors(ctx); // kv const int n_kv = gguf_get_n_kv(ctx); printf("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n", __func__, n_kv, n_tensors, fname); { std::map n_type; for (int i = 0; i < n_tensors; i++) { enum ggml_type type = gguf_get_tensor_type(ctx, i); n_type[type]++; } printf("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__); for (int i = 0; i < n_kv; i++) { const char * name = gguf_get_key(ctx, i); const enum gguf_type type = gguf_get_kv_type(ctx, i); const std::string type_name = type == GGUF_TYPE_ARRAY ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx, i)), gguf_get_arr_n(ctx, i)) : gguf_type_name(type); std::string value = gguf_kv_to_str(ctx, i); const size_t MAX_VALUE_LEN = 40; if (value.size() > MAX_VALUE_LEN) { value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str()); } replace_all(value, "\n", "\\n"); printf("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str()); } // print type counts for (auto & kv : n_type) { if (kv.second == 0) { continue; } printf("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second); } } // data size_t buffer_size = 0; { for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name(ctx, i); const size_t offset = gguf_get_tensor_offset(ctx, i); enum ggml_type type = gguf_get_tensor_type(ctx, i); struct ggml_tensor * cur = ggml_get_tensor(meta, name); size_t tensor_size = ggml_nbytes(cur); buffer_size += tensor_size; if (verbosity >= 3) { printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n", __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type)); } } } buffer_size += n_tensors * 128 /* CLIP PADDING */; clip_ctx * new_clip = new clip_ctx; // update projector type { int idx = gguf_find_key(ctx, KEY_PROJ_TYPE); if (idx != -1) { const std::string proj_type = gguf_get_val_str(ctx, idx); new_clip->proj_type = clip_projector_type_from_string(proj_type); } else { new_clip->proj_type = PROJECTOR_TYPE_MLP; } } #ifdef GGML_USE_CUBLAS new_clip->backend = ggml_backend_cuda_init(0); printf("%s: CLIP using CUDA backend\n", __func__); #endif #ifdef GGML_USE_METAL new_clip->backend = ggml_backend_metal_init(); printf("%s: CLIP using Metal backend\n", __func__); #endif if (!new_clip->backend) { new_clip->backend = ggml_backend_cpu_init(); printf("%s: CLIP using CPU backend\n", __func__); } // model size and capabilities { int idx = get_key_idx(ctx, KEY_HAS_TEXT_ENC); new_clip->has_text_encoder = gguf_get_val_bool(ctx, idx); idx = get_key_idx(ctx, KEY_HAS_VIS_ENC); new_clip->has_vision_encoder = gguf_get_val_bool(ctx, idx); idx = gguf_find_key(ctx, KEY_HAS_LLAVA_PROJ); if (idx != -1) { new_clip->has_llava_projector = gguf_get_val_bool(ctx, idx); } GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search GGML_ASSERT(new_clip->has_vision_encoder); GGML_ASSERT(!new_clip->has_text_encoder); idx = get_key_idx(ctx, KEY_USE_GELU); new_clip->use_gelu = gguf_get_val_bool(ctx, idx); if (verbosity >= 1) { printf("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder); printf("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder); printf("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector); printf("%s: model size: %.2f MB\n", __func__, buffer_size / 1024.0 / 1024.0); printf("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0); } } printf("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, buffer_size / (1024.0 * 1024.0), n_tensors); // load tensors { std::vector read_buf; struct ggml_init_params params = { /*.mem_size =*/ (n_tensors + 1) * ggml_tensor_overhead(), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; new_clip->ctx_data = ggml_init(params); if (!new_clip->ctx_data) { fprintf(stderr, "%s: ggml_init() failed\n", __func__); clip_free(new_clip); return nullptr; } auto fin = std::ifstream(fname, std::ios::binary); if (!fin) { printf("cannot open model file for loading tensors\n"); clip_free(new_clip); return nullptr; } // add tensors to context for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name(ctx, i); struct ggml_tensor * t = ggml_get_tensor(meta, name); struct ggml_tensor * cur = ggml_dup_tensor(new_clip->ctx_data, t); ggml_set_name(cur, name); } // alloc memory and offload data new_clip->params_buffer = ggml_backend_alloc_buffer(new_clip->backend, buffer_size); ggml_allocr* alloc = ggml_allocr_new_from_buffer(new_clip->params_buffer); for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name(ctx, i); struct ggml_tensor * cur = ggml_get_tensor(new_clip->ctx_data, name); ggml_allocr_alloc(alloc, cur); const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i); fin.seekg(offset, std::ios::beg); if (!fin) { printf("%s: failed to seek for tensor %s\n", __func__, name); clip_free(new_clip); return nullptr; } int num_bytes = ggml_nbytes(cur); if (ggml_backend_buffer_is_host(new_clip->params_buffer)) { // for the CPU and Metal backend, we can read directly into the tensor fin.read(reinterpret_cast(cur->data), num_bytes); } else { // read into a temporary buffer first, then copy to device memory read_buf.resize(num_bytes); fin.read(reinterpret_cast(read_buf.data()), num_bytes); ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes); } } ggml_allocr_free(alloc); fin.close(); } // vision model if (new_clip->has_vision_encoder) { // load vision model auto & vision_model = new_clip->vision_model; auto & hparams = vision_model.hparams; hparams.hidden_size = get_u32(ctx, format(KEY_N_EMBD, "vision")); hparams.n_head = get_u32(ctx, format(KEY_N_HEAD, "vision")); hparams.n_intermediate = get_u32(ctx, format(KEY_N_FF, "vision")); hparams.n_layer = get_u32(ctx, format(KEY_N_BLOCK, "vision")); hparams.image_size = get_u32(ctx, KEY_IMAGE_SIZE); hparams.patch_size = get_u32(ctx, KEY_PATCH_SIZE); hparams.projection_dim = get_u32(ctx, format(KEY_PROJ_DIM, "vision")); hparams.eps = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision")); int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN); int idx_std = get_key_idx(ctx, KEY_IMAGE_STD); for (int i = 0; i < 3; ++i) { new_clip->image_mean[i] = *((const float *)gguf_get_arr_data(ctx, idx_mean)); new_clip->image_std[i] = *((const float *)gguf_get_arr_data(ctx, idx_std)); } if (verbosity >= 2) { printf("\n%s: vision model hparams\n", __func__); printf("image_size %d\n", hparams.image_size); printf("patch_size %d\n", hparams.patch_size); printf("v_hidden_size %d\n", hparams.hidden_size); printf("v_n_intermediate %d\n", hparams.n_intermediate); printf("v_projection_dim %d\n", hparams.projection_dim); printf("v_n_head %d\n", hparams.n_head); printf("v_n_layer %d\n", hparams.n_layer); } vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD); vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD); vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v")); vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight")); vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias")); // LLaVA projection if (new_clip->proj_type == PROJECTOR_TYPE_MLP) { vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight")); vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias")); vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight")); vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias")); } else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) { // MobileVLM projection vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight")); vision_model.mm_model_mlp_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "bias")); vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "weight")); vision_model.mm_model_mlp_3_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "bias")); vision_model.mm_model_block_1_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight")); vision_model.mm_model_block_1_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight")); vision_model.mm_model_block_1_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias")); vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight")); vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias")); vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight")); vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias")); vision_model.mm_model_block_1_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight")); vision_model.mm_model_block_1_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight")); vision_model.mm_model_block_1_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias")); vision_model.mm_model_block_2_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight")); vision_model.mm_model_block_2_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight")); vision_model.mm_model_block_2_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias")); vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight")); vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias")); vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight")); vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias")); vision_model.mm_model_block_2_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight")); vision_model.mm_model_block_2_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight")); vision_model.mm_model_block_2_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias")); } else { std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type]; throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str())); } vision_model.layers.resize(hparams.n_layer); for (int il = 0; il < hparams.n_layer; ++il) { auto & layer = vision_model.layers[il]; layer.k_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "weight")); layer.q_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "weight")); layer.v_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "weight")); layer.o_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "weight")); layer.ln_1_w = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "weight")); layer.ln_2_w = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "weight")); layer.ff_i_w = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "weight")); layer.ff_o_w = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "weight")); layer.k_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "bias")); layer.q_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "bias")); layer.v_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "bias")); layer.o_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "bias")); layer.ln_1_b = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "bias")); layer.ln_2_b = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "bias")); layer.ff_i_b = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "bias")); layer.ff_o_b = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "bias")); } } ggml_free(meta); new_clip->ctx_gguf = ctx; // measure mem requirement and allocate { new_clip->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead()); new_clip->compute_alloc = ggml_allocr_new_measure_from_backend(new_clip->backend); clip_image_f32_batch batch; batch.size = 1; ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch); size_t compute_memory_buffer_size = ggml_allocr_alloc_graph(new_clip->compute_alloc, gf); ggml_allocr_free(new_clip->compute_alloc); new_clip->compute_buffer = ggml_backend_alloc_buffer(new_clip->backend, compute_memory_buffer_size); new_clip->compute_alloc = ggml_allocr_new_from_buffer(new_clip->compute_buffer); printf("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0); } return new_clip; } struct clip_image_u8 * clip_image_u8_init() { return new clip_image_u8(); } struct clip_image_f32 * clip_image_f32_init() { return new clip_image_f32(); } void clip_image_u8_free (struct clip_image_u8 * img) { delete img; } void clip_image_f32_free(struct clip_image_f32 * img) { delete img; } static void build_clip_img_from_data(const stbi_uc * data, int nx, int ny, clip_image_u8 * img) { img->nx = nx; img->ny = ny; img->buf.resize(3 * nx * ny); memcpy(img->buf.data(), data, img->buf.size()); } bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) { int nx, ny, nc; auto * data = stbi_load(fname, &nx, &ny, &nc, 3); if (!data) { fprintf(stderr, "%s: failed to load image '%s'\n", __func__, fname); return false; } build_clip_img_from_data(data, nx, ny, img); stbi_image_free(data); return true; } bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) { int nx, ny, nc; auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3); if (!data) { fprintf(stderr, "%s: failed to decode image bytes\n", __func__); return false; } build_clip_img_from_data(data, nx, ny, img); stbi_image_free(data); return true; } // normalize: x = (x - mean) / std // TODO: implement bicubic interpolation instead of linear. bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32 * res, const bool pad2square) { if (!ctx->has_vision_encoder) { printf("This gguf file seems to have no vision encoder\n"); return false; } // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104) // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156 clip_image_u8 * temp = clip_image_u8_init(); // we will keep the input image data here temporarily if (pad2square && img->nx != img->ny) { int longer_side = std::max(img->nx, img->ny); temp->nx = longer_side; temp->ny = longer_side; temp->buf.resize(3 * longer_side * longer_side); const uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA // fill with background color for (size_t i = 0; i < temp->buf.size(); i++) { temp->buf[i] = bc[i % 3]; } // copy from the input image for (int y = 0; y < img->ny; y++) { for (int x = 0; x < img->nx; x++) { const int i = 3 * (y * img->nx + x); const int j = 3 * (y * temp->nx + x); temp->buf[j] = img->buf[i]; temp->buf[j+1] = img->buf[i+1]; temp->buf[j+2] = img->buf[i+2]; } } } else { temp->nx = img->nx; temp->ny = img->ny; temp->buf.resize(img->buf.size()); memcpy(temp->buf.data(), img->buf.data(), temp->buf.size()); } const int nx = temp->nx; const int ny = temp->ny; const int nx2 = ctx->vision_model.hparams.image_size; const int ny2 = ctx->vision_model.hparams.image_size; res->nx = nx2; res->ny = ny2; res->buf.resize(3 * nx2 * ny2); const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size; const int nx3 = int(nx / scale + 0.5f); const int ny3 = int(ny / scale + 0.5f); const auto & m3 = ctx->image_mean; // {0.48145466f, 0.4578275f, 0.40821073f}; const auto & s3 = ctx->image_std; // {0.26862954f, 0.26130258f, 0.27577711f}; for (int y = 0; y < ny3; y++) { for (int x = 0; x < nx3; x++) { for (int c = 0; c < 3; c++) { // linear interpolation const float sx = (x + 0.5f) * scale - 0.5f; const float sy = (y + 0.5f) * scale - 0.5f; const int x0 = std::max(0, (int)std::floor(sx)); const int y0 = std::max(0, (int)std::floor(sy)); const int x1 = std::min(x0 + 1, nx - 1); const int y1 = std::min(y0 + 1, ny - 1); const float dx = sx - x0; const float dy = sy - y0; const int j00 = 3 * (y0 * nx + x0) + c; const int j01 = 3 * (y0 * nx + x1) + c; const int j10 = 3 * (y1 * nx + x0) + c; const int j11 = 3 * (y1 * nx + x1) + c; const float v00 = temp->buf[j00]; const float v01 = temp->buf[j01]; const float v10 = temp->buf[j10]; const float v11 = temp->buf[j11]; const float v0 = v00 * (1.0f - dx) + v01 * dx; const float v1 = v10 * (1.0f - dx) + v11 * dx; const float v = v0 * (1.0f - dy) + v1 * dy; const uint8_t v2 = std::min(std::max(std::round(v), 0.0f), 255.0f); const int i = 3 * (y * nx3 + x) + c; res->buf[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c]; } } } clip_image_u8_free(temp); return true; } void clip_free(clip_ctx * ctx) { ggml_free(ctx->ctx_data); gguf_free(ctx->ctx_gguf); delete ctx; } bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) { if (!ctx->has_vision_encoder) { printf("This gguf file seems to have no vision encoder\n"); return false; } clip_image_f32_batch imgs{}; imgs.size = 1; imgs.data = img; return clip_image_batch_encode(ctx, n_threads, &imgs, vec); } bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) { if (!ctx->has_vision_encoder) { printf("This gguf file seems to have no vision encoder\n"); return false; } int batch_size = imgs->size; if(ctx->has_llava_projector) { GGML_ASSERT(batch_size == 1); // TODO: support multiple images } // reset alloc buffer to clean the memory from previous invocations ggml_allocr_reset(ctx->compute_alloc); // build the inference graph ggml_cgraph * gf = clip_image_build_graph(ctx, imgs); ggml_allocr_alloc_graph(ctx->compute_alloc, gf); if (ggml_backend_is_cpu(ctx->backend)) { ggml_backend_cpu_set_n_threads(ctx->backend, n_threads); } #ifdef GGML_USE_METAL if (ggml_backend_is_metal(ctx->backend)) { ggml_backend_metal_set_n_cb(ctx->backend, n_threads); } #endif ggml_backend_graph_compute(ctx->backend, gf); // the last node is the embedding tensor struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 1]; // copy the embeddings to the location passed by the user ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings)); return true; } bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) { ggml_type type = GGML_TYPE_Q4_1; assert(itype < GGML_TYPE_COUNT); type = static_cast(itype); auto * ctx_clip = clip_model_load(fname_inp, 2); const auto & ctx_src = ctx_clip->ctx_gguf; const auto & ctx_data = ctx_clip->ctx_data; auto * ctx_out = gguf_init_empty(); gguf_set_kv(ctx_out, ctx_src); gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION); gguf_set_val_u32(ctx_out, "general.file_type", itype); auto fout = std::ofstream(fname_out, std::ios::binary); const int n_tensors = gguf_get_n_tensors(ctx_src); for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name(ctx_src, i); struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name); gguf_add_tensor(ctx_out, cur); } const size_t meta_size = gguf_get_meta_size(ctx_out); for (size_t i = 0; i < meta_size; ++i) { fout.put(0); } // regexes of tensor names to be quantized const std::vector k_names = { ".*weight", }; std::vector read_data(512); std::vector work(512); std::vector conv_buf(512); std::vector hist_all(1 << 4, 0); size_t total_size_org = 0; size_t total_size_new = 0; for (int i = 0; i < n_tensors; ++i) { const std::string name = gguf_get_tensor_name(ctx_src, i); struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str()); enum ggml_type new_type; void * new_data; size_t new_size; bool quantize = false; for (const auto & s : k_names) { if (std::regex_match(name, std::regex(s))) { quantize = true; break; } } // quantize only 2D tensors quantize &= (ggml_n_dims(cur) == 2); if (quantize) { new_type = type; if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) { new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type // fprintf(stderr, "%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type)); } const size_t n_elms = ggml_nelements(cur); float * f32_data; switch (cur->type) { case GGML_TYPE_F32: f32_data = (float *)cur->data; break; case GGML_TYPE_F16: if (conv_buf.size() < n_elms) { conv_buf.resize(n_elms); } for (size_t j = 0; j < n_elms; ++j) { conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]); } f32_data = (float *)conv_buf.data(); break; default: printf("Please use an input file in f32 or f16\n"); return false; } if (work.size() < n_elms * 4) { work.resize(n_elms * 4); } new_data = work.data(); std::vector hist_cur(1 << 4, 0); switch (new_type) { case GGML_TYPE_Q4_0: { new_size = ggml_quantize_q4_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data()); } break; case GGML_TYPE_Q4_1: { new_size = ggml_quantize_q4_1(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data()); } break; case GGML_TYPE_Q5_0: { new_size = ggml_quantize_q5_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data()); } break; case GGML_TYPE_Q5_1: { new_size = ggml_quantize_q5_1(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data()); } break; case GGML_TYPE_Q8_0: { new_size = ggml_quantize_q8_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data()); } break; case GGML_TYPE_Q2_K: { new_size = ggml_quantize_q2_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data()); } break; case GGML_TYPE_Q3_K: { new_size = ggml_quantize_q3_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data()); } break; case GGML_TYPE_Q4_K: { new_size = ggml_quantize_q4_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data()); } break; case GGML_TYPE_Q5_K: { new_size = ggml_quantize_q5_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data()); } break; case GGML_TYPE_Q6_K: { new_size = ggml_quantize_q6_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data()); } break; default: { fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, new_type); return false; } } for (size_t j = 0; j < hist_cur.size(); ++j) { hist_all[j] += hist_cur[j]; } } else { new_type = cur->type; new_data = cur->data; new_size = ggml_nbytes(cur); } const size_t orig_size = ggml_nbytes(cur); total_size_org += orig_size; total_size_new += new_size; gguf_set_tensor_type(ctx_out, name.c_str(), new_type); gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size); fout.write((const char *)new_data, new_size); size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size; for (size_t j = 0; j < pad; ++j) { fout.put(0); } printf("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize, orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0); } // go back to beginning of file and write the updated metadata fout.seekp(0, std::ios::beg); std::vector meta(meta_size); gguf_get_meta_data(ctx_out, meta.data()); fout.write((const char *)meta.data(), meta_size); fout.close(); clip_free(ctx_clip); gguf_free(ctx_out); { printf("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0); printf("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0); int64_t sum_all = 0; for (size_t i = 0; i < hist_all.size(); ++i) { sum_all += hist_all[i]; } printf("%s: hist: ", __func__); for (size_t i = 0; i < hist_all.size(); ++i) { printf("%5.3f ", hist_all[i] / (float)sum_all); } printf("\n"); } return true; } int clip_n_mmproj_embd(const struct clip_ctx * ctx) { if (ctx->proj_type == PROJECTOR_TYPE_LDP) { return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0]; } else if (ctx->proj_type == PROJECTOR_TYPE_MLP) { return ctx->vision_model.mm_2_b->ne[0]; } else { std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type]; throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str())); } } int clip_n_patches(const struct clip_ctx * ctx) { auto & params = ctx->vision_model.hparams; int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size); if (ctx->proj_type == PROJECTOR_TYPE_LDP) { n_patches /= 4; } return n_patches; } size_t clip_embd_nbytes(const struct clip_ctx * ctx) { return clip_n_patches(ctx) * clip_n_mmproj_embd(ctx) * sizeof(float); }